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    A flagellum suspended in a viscous fluid is considered to be a 
class of nonlinear distributed systems. Within a local system shear 
motion occurs back and forth, which results from an alternate turning 
"on" and "off' of opposed -active elements . Each active element is 
characterized by excitability in that shear motion is triggered only by a 
superthreshold shear displacement. Once shear motion is initiated at 
one end of the system, it is successively triggered to the other end. 
These triggering events cause the propagation of bending waves. The 
dynamics of such propagating waves are described by the forth-order 
partial differential equation. From a point of view of nonlinear 
dynamics, it is useful to consider this equation to be a possible 
extension of the Kuramoto-Sivashinsky equation which describes seif-
turbulization phenomena in different physical contexts. Numerical 
simulations for the present flagellar model reveal (i) the reversal of the 
direction of propagating waves and (ii) the soliton-tike non-
annihilating waves. These simulation results are qualitatively in good 
agreement with experimental observations. 

1. Introduction 
     Flagella not only show regular wave phenomena like base-to-tip 
bending wave propagation, but also exhibit irregular wave phenomena 
such as the reversal of propagating waves [1-5] and non-annihilating 
waves [2,6]. However, most of the theoretical work has been focused 
only on the regular wave phenomena rather than potentially important 
irregularity in the flagellar dynamics [7-14]. Recently, we have 
developed a flagellar model which contains a series of opposed-
excitable units [15]. The model appeared to be hard to control regular 
wave patterns. This occurs because there are two different types of 
interactions among local systems: one is attractive and the other is
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repulsive. The competition between the two interactions causes the 
spatio-temporal irregularity. Similar situation appears in the 
Kuramoto-Sivashinsky equation which describes self-turbulization 

phenomena in different physical contexts [16-25]. In fact, the present 
model equation can be reduced to the Kuramoto-Sivashinsky equation 
under a certain extent. In the present paper, irregular nature 
inherent in this model system has been investigated. Numerical 
simulations for this model show that (i) the direction of propagating 
waves is successively reversed and (ii) the two waves propagating in 
the opposite directions pass through on collision like solitons. The 

present studies would provide us with a bridge between cell biology 
and nonlinear science. 

2. Model system 
     Since the model for a flagellum has been developed elsewhere 
[15,26,27], the final form of equations are given as follows: 
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         a (S - ) 
+ EBa a a + CNaa = 0 (la) 

            aS2 aS4 at 
          S = FInI + FII(1 - nI) - Ke(a - oo) (lb) 

          FI = QI(a - ai)(a - (72)(ac - a) (lc) 

          FII = QII((y - a'j)(x - a2)(a'c - a) (1d) 

    nI = 01 Sl a~ Si (if initially nI = 0 for a > SI) (le) 

    nI = I 0 0 as S2 . (if initially nI = 1 for a < S2) (10                 S2 < 

Equation (1a) describes the dynamics of a flagellum suspended in 

a viscous fluid, where S is the shear force, a the shear (as a function of 
arc length s and time t), EB the bending resistance, CN the external 

viscous drag coefficient and y is the internal viscous drag coefficient. 
The shear force, S, is represented by equation (lb) which consists of 
the active shear force in subsystem I (i.e. the first term of the right-
hand side), the active shear force in opposed subsystem II (i.e. the 
second term) and the passive restoring force (i.e. the third term). 

     The cubic force-shear relationships for subsystems I and II are 

given by equations (lc) and (ld), respectively. Figure 1A illustrates 
these cubic functions. The form of the cubic function is essential for 
the excitable nature because for example in subsystem I there is a 
threshold position at ac, below which a goes to one stable state at al 

(resting state) and above which it goes to the other state at 02 (active 
state). The resultant transition from the resting state to the active 
state corresponds to active shear motion. The same is true for 
subsystem II except for the shear direction.
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     Each subsystem is assumed to possess "on" and "off' states. It 
switches between these two states when the shear passes critical 
values (called switching points). When the shear falls below S1 

subsystem I is turned "on" (nj = 1) and maintains its state until the 
shear rises above S2, and is turned "off' (ni = 0). By setting Sl # S2, 
either "on" or "off' can occur depending on the "history" of the 
subsystem. This history-dependent characteristic is called hysteresis. 
This hysteresis switching process can be described by the binary 

function of a, which is described by equations (le) and (If). Figure 1B 
illustrates these binary functions. 

     In obtaining solutions to equations (la-fl, the free end boundary 
conditions are used:

         a2 a =0; a6 =0 (1g) 
           asz S = 0 as s = 0 

2        a6 =0; aal =0. (lh) 
           asz s = L as s = L 

Here, s is the arc length along the flagellum and L is the length of the 
flagellum. Boundary conditions (1g) and (1h) represent that all the 
moments and forces vanish at both ends. 

    It should be noticed that equation (la) can be reduced to the so-

called reaction-diffusion equation when y # 0 and CN = 0 [see 28]:

Do a2a 
Y = Eg az + S (la')

and the boundary conditions (ig) and (lh) become

a 6 

as s=o

=0 (1g')

as 

as

=0. (lh')

Boundary conditions (lg') and (lh') require zero curvature at s = 0 and 
L

3. Instability inherent in the model system 
    Before attempting to demonstrate wave phenomena by solving 

equations (la-h), it is useful to examine instability arising from the 
model system. To understand such an instability two types of
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simulations were performed, either with only internal viscosity (i.e. y ;~ 

0 and CN = 0) or only external viscosity (i.e. y = 0 and CN # 0). 
    For numerical simulations, a 50-µm model flagellum is divided 

into 50 segments of length 1 gm. The simulation results did not 
change when the number of segments of the model flagellum was 
increased. 

     In the following simulations the system had only passive elastic 
links along its entire length (i.e. 91 = QII = 0), and a completely 
straight configuration was used as an initial condition. In the first type 
of simulation, a positive shear force (S = 50 pN) was applied to the 
middle segment of the flagellum (at s = 25 µm) under free end 
boundary conditions. 

     Figure 2 illustrates the relative shear plotted against the arc 
length, s, immediately (0.01 msec) after a step increase in shear force 

at s = 25 µm. The simulated shear distribution is spiky because a short 
time interval is allowed between the onset of the shear force and the 
time when the resultant shear distribution is calculated. By adopting 
this simulation technique we can ignore the effects of the elastic 
bending resistance, and hence neglect the effects of the terms 
involving EB in equations (1a) and (la'). At zero external viscosity but 
with internal viscosity, a positive shear force can only lead to positive 
shear displacements (Fig.2A). In the presence of external viscosity 
only, however, positive shear force can lead to negative shear in nearby 
regions (Fig.2B). This difference is clearly understood by considering 
the finite-difference approximation as follows. 
     Let space, s, and time, t, be made discrete by adopting s = iAs 
and t = jot, where i and j are integers, and As and At are the 
respective steps of the mesh along the s- and t-axis. Now ai , j is used 
to denote a(iAs, jAt). Similarly, let Si denote S(s = iAs). For 
convenience we assume As = At = 1. The final form of the finite-
difference scheme for equation (la') under a single point force at i-th 
segment (at s = 25 µm in Fig.2A) is: 

            01..1 + 1 = at. j + Si (2) 

and the form of equation (la) is written as follows: 

           at, j + 1 = al, j + 2St (3a) 
            ai-1,j+1=at-i.j-St (3b) 
            ai+1'j+1=ai+l.j-St. (3c) 

Equation (2) predicts that ai increases when Si > 0. In contrast 

equations (3a-c) predict that ai increases, but at the same time ai - 1 

and ai + 1 decrease even if Si > 0.
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     In the second type of simulation, an abrupt change in shear (not 
shear force) was applied at s = 0 under the clamped end boundary 
conditions. When there is only internal viscosity the clamped 
condition at a certain shear ao is described by: 

           al s=0=ao• (4) 

While when there is only external viscosity the clamped conditions 
are: 

           a3 07 = 0 : a I S = O = ao . (5) 
         as3                    s=0 

     Figure 3 shows shear distribution some time (1 msec) after a 
step change in shear at s = 0 (ao is changed from 0 to 0.5). Since all 
the segments are passive, the shear force, S, is almost zero. The 
terms involving S can be neglected in equations (la) and (la'). An 
abrupt change in shear at s = 0 is transmitted via an elastic coupling. 
A long period (1 msec) was allowed to proceed in order to obtain the 
shear distribution affected by the secondary effects of the elastic 
coupling. If there is only an internal viscosity, then shear is always in 
the same direction as the abrupt change (dotted curve). If, however, 
an external viscosity is present (with no internal viscosity), an external 
shear force develops in a distal region which causes shear in the 
opposite direction, though shear in the segment closer to the basal 
end is in the same direction as the abrupt change (solid curve). 

     This difference is again understood by considering the finite-
difference form for each original partial differential equation. The 
finite-difference form of equation (la') is: 

      ai,j+l=ai,j+EB(aj-i,j-2ai,j+ai+i,j) (6) 

and the form of equation (la) is written as 

      ai,j+1=ai.j-EB((ai-2.j-2ai-1,j+aj,jJ-2(ai-1.j-2ai,j+oi+l.j) 
               + (ai , j - 2ai + 1,j + ai + 2j] . (7) 

Equations (6) and (7) show the attractive interaction between the 
nearest neighbor segments, because the right-hand side of equation 
(6) is decomposed into 

 EB(ai-1.j-2(;i,j+ai+1,j) _-EB((Yi,j-ai+i.j)-EB((Ji,j-ai-1.j). (8) 

As a result, positive shear at s = 0 always induces positive shear in 
regions nearby. On the contrary, the average shear defined by 

             ai,j=ai. 1,j-2ai,j+ai+i.j (9) 
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shows the repulsive interactions between the average regions nearby, 
because the right-hand side of equation (7) is decomposed into 

  EB(~-i ,J 26i,J+6i+1, J)=EB(6{,J oI+1 J)+EB(6i J oi_1 J). (10)

Equation (7) suggests that positive shear at s = 0 induces positive 
shear in the region nearby, yet at the same time negative shear via its 
average shear. This situation seems to be somewhat analogous to 

phenomena with short range activation and long range inhibition in 
neurophysiology, population dynamics, and morphogenesis [29). For 
real simulations, three terms in equation (la) must be taken into 
account. One can therefore expect that complex dynamical behavior 
will appear in the flagellar system described by equation (la). 

4. Propagating waves 
4.1 Self-organization of propagating waves with only internal viscosity 

     To demonstrate self-organization of propagating waves, a self-
oscillatory basal end is combined with 49 segments exhibiting 
excitable behavior in the model described by equation (la'). This type 
of model is easily developed by adopting Ke = 60 pN/24 nm at s = 1 

µm and Ke = 1 pN/24 nm for 1 < s < 50 gm, because the proximal 
segment with a large Ke value acts as a pacemaker which can 

periodically stimulate the rest of the flagellum. The simulations were 
performed starting from a straight-formed flagellum under free end 
boundary conditions. 

     For the convenience of the following discussion, we shall 
introduce the space-time diagram as shown in Figure 4. This figure 

depicts the positions of waves (where the regions a > 0.5 are plotted 
by bars) as a function of time, t, and space, s. There is only a single bar 
at a given time for 0 < t < 45 msec corresponding to a single bend. As 
time proceeds, the bar moves to the right which is associated with 
bend propagation. A steady-state waveform is attained as the first bend 
reaches the tip. As a result there are two bars (corresponding to two 
bends) at any time for t > 45 msec. They continuously move to the 
right. The degree of successive shifts of bars in the space-time 
diagram indicates the velocity of bend propagation. The regular 
spatio-temporal patterns suggest that the system reaches a stable cycle 
of steady-state bend initiation and propagation. 

4.2 The reversal of propagating waves with only external viscosity. 
     It is of interest to know what happens in the absence of the 

internal viscosity. Under the conditions with the external visocity, the 
model is started from a straight configuration at t = 0. Figure 5 shows 
that bend propagation occurs first from base to tip and then the 
direction is reversed at the first arrow (about t = 300 msec). These 
tip-to-base propagating waves are further replaced by the base-to-tip 

propagating waves at the second arrow (about t = 600 msec). This
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kind of reversal of bend propagation occurs at 300 - 400 msec 
intervals as long as the computer simulation persists. 
    The frequency of this reversal depends on the stiffness of the 
elastic component at the base. The stiffness of the basal elastic 
component determines the characteristic frequency of the self-
oscillation, so that the basal region affects the duration of the reversal. 
An alternative way to change the frequency of the reversal of the 
direction of propagating waves is to insert the "passive" region at the 
tip end. This kind of passive region amounts to the structural 
asymmetry of the flagellum. From a functional point of view, the 
passive region acts as "buffer" which absorbs viscosity-induced 

perturbations. For example, the model with a passive region 5 µm 
long shows shorter duration of the reversal than the model without the 

passive region. As the length of the passive region is increased, the 
possibility for the reversal of bend propagation decreases markedly. A 
10-µm passive region is sufficient to ensure unidirectional bend 

propagation 1151. 
     Suppose we have a "homogeneous" flagellum without the passive 
or the self-oscillatory region, but with excitability throughout the 
length of the flagellum. This model is obtained when the stiffness at 
the basal segment is reduced from Ke = 60 to 1 pN/24 nm. Of course 
this "homogeneous" excitable system can not develop bending waves 
without superthreshold perturbations if the flagellum is initially 
straight. Once the flagellum was slightly deformed, however, bending 
waves were developed. Under these conditions the model showed the 
reversal of propagating waves at about 1200-msec intervals. 
    These simulations suggest that the flagellar structure is highly 
responsible for the dynamical behavior. Boundary conditions seem to 
be of secondary importance. Indeed there was an interesting 
observation by Brokaw [30], in which removal of the normal distal end 
of the flagellum interfered with its ability to generate base-to-tip 

propagating waves. Omoto and Brokaw [31] also observed a clear "end 
effect", which involves a rapid unbending of bends that have reached 
the distal end of the flagellum lacking a "terminal" region. 

     Besides the reversal of the direction of propagating waves, the 

patterns in Fig.5 are slightly different from those in Fig.4 in the 
following ways. First, the velocity of bend propagation would fluctuate 
as the slope of successive bars is not constant. There is some 
experimental evidence that the bend propagation velocity in the basal 
and distal region is lower than the velocity in the mid-region of the 
flagellum. This refers to non-uniform bend propagation [32]. Our 
results may be relevant to this experimental observation. Second, the 
wavelength would fluctuate as the width of the bars along the s-axis is 
not constant. Third, the beat frequency would fluctuate as the "black-
white" interval along the t-axis is not constant. 

     These three characteristics are not obvious as long as we take 
only a small number of snapshots of flagellar shape at different 
instants. Furthermore, the flagellar shapes in the (x, y) coordinate are 
obtained by an integral form:
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       x(s) = f a cos (a) ds, y(s) = J sin (a) ds. (11) 
                          0 o 

so that if there are spatial fluctuations on the sliding patterns they 
smooth away when they are transformed into the shapes [see 15]. For 
these reasons the above characteristics have not been discussed 
deeply. 
    Although experimental data show irregularity, it has been 
ascribed to the nature of random noise [32]. However the present 
study suggests that these fluctuations arise in a deterministic 
mathematical model. It seems that they are not caused by random 
noise nor numerical errors, but are inherent in the system under the 
influence of external viscosity. 

5. Interaction of two waves propagating in the opposite directions 
     It has been observed that two waves traveling in opposite 

directions along the flagellum under abnormal conditions where the 
viscosity of the medium is increased [2] or when some chemical agent 
is added [6]. When two such waves meet they appear to be frozen, but 
do not annihilate each other. These observations raise a problem 
concerning the interaction between the two waves. From a theoretical 
modelling point of view, however, no attempts have been made to 
solve this problem. It is, therefore, important to know whether or not 
two waves moving in opposite directions annihilate each other. 

     Simulations were carried out under two different situations: (i) 
with only internal viscosity; and (ii) with only external viscosity. The 
model was allowed to develop two bends propagating in opposite 
directions by applying stimuli at both ends. If there is only internal 
viscosity, two oppositely directed bends annihilate each other upon 
collision (Figure 6). Each bend has a leading edge and a trailing edge. 
In the leading edge of each bend, subsystem I is turned "on" and 
subsystem II is turned "off', while in the trailing edge the reverse 
holds. The waves move in accordance with the operation of these "on-
off' switches. This switching operation continuously propagates, so 
that the system is completely reset after the bend passes through. As 
a result, the two waves seem to annihilate, leaving the system at rest. 
This phenomenon is analogous to the annihilation of action potentials 
in nerve systems [33,34] and chemical waves such as the Belousov-
Zhabotinsky reaction [35-39]. 

     If there is external viscosity, instead of internal viscosity, the 
waves appear to pass through one another (Figure 7). The waves move 
slowly because only a small region at the trailing edge of each bend 
contributes to active sliding. The active region is small because 
viscous forces oppose the force required to reach the switching point. 

Thus both peak height and width in the a-s curves become smaller as 
the waves approach one another, as indicated by less smoothness. As 
the waves approach sufficiently close, the bends appear to merge, and 
switching occurs in many segments in the region of the collision.
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Since the resting state is not stable enough in these segments, sliding 
in the opposite direction, caused by subsystem II, occurs. After the 
collision, the number of segments contributing to active sliding is four 
times larger than before the collision, so wave speed is about four-fold 
faster. 

     Non-annihilating waves appear because the operation of "on-off' 
switches is not continuously propagated but sometimes skips several 
segments due to viscosity-induced perturbations. As a result, the 
system never returns to the resting state, but instead some segments 
are spontaneously activating. By using the two-component reaction-
diffusion model, Tuckwell [40] found solitary wave solutions with 
soliton-like properties when "on-off' switches were introduced into 
the model. Because the system 'sees' the new source functions during 
the collision of two solitary waves due to a number of "on-off' switches, 
it is possible that solitary waves emerge from the collision. 
    Tuckwell [40] also found that with slightly asymmetric initial 
data, when two waves collided, one wave more or less destroyed the 
other and continued to propagate after the collision. Similar 
phenomena appeared in the present model behavior when the 
direction of bend propagation was reversed. As already shown in Fig.5. 
the flagellar system happened to initiate the tip-to-base propagating 
wave. This destroyed the base-to-tip propagating wave since two 
waves are slightly different in the shape. 

6. Discussion 
     To understand the dynamical aspects of external viscosity-

induced perturbations, the model is started from the same initial 
conditions with only internal viscosity (Fig.8A) or only external 
viscosity (Fig.8B). If there is only internal viscosity, the flagellum 
becomes quiescent when the bend reaches the tip. On the contrary, if 
there is only external viscosity, viscosity-induced perturbations 
strongly influence the basal end to move up and down. Since this 
rhythmic motion continues for ever, the flagellum never returns to the 
resting state. 

     It is now clear that the ratio between y and CN in equation (la) 

plays an important role in determining the dynamical behavior of the 

model. If y >> CN the term - Y6 stabilizes the solution, and hence the 

dynamical behavior is similar to that obtained by equation (la'). If y << 

CN the behavior is analogous to that generated by equation (la) with 'y 
=OandCN#0. 

   The forth-order partial differential equations of this kind appear in 
various ways. The general form of these equations is: 

             2 4 
     a~ 

=Aa Boa+F(0) (12) 
       at as2 as4
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where 0 is a state variable defined at space, s, and time, t, A and B are 

constants, and F(4)) is some nonlinear function. This type of equation 
is sometimes called the generalized reaction diffusion equation [29], 
but also named the Kuramoto-Sivashinsky equation [16-20]. Similar 
equations are also proposed in quite different contexts [21-25]. The 
second order term in equation (12) corresponds to the diffusion 
process. When A > 0 spatial perturbations are stabilized (normal 
diffusion), though when A < 0 they are destabilized (negative diffusion). 

    It is instructive to consider that the internal shear force, S, is 

proportional to the shear, a, as a linearized form of the cubic force-
distance function in equation (lb-d). Then, equation (la) is analogous 
to equation (12) when y = 0. This situation corresponds to negative 
diffusion, leading to instability. Indeed, Brokaw [8] pointed out that 
the presence of internal viscosity (i.e. y > 0) can stabilize the 

wavelength. The stable wavelength arises because the situation y > 0 
amounts to the normal diffusion, and hence stabilization. 
    To demonstrate regular base-to-tip wave propagatin, most of the 
theoretical models have assumed that the shear force, S, is controlled 
by the curvature of the flagellum [7-13]. Now consider the effects of 
the curvature control on solutions to equation (la). There are only 
even powers of the space derivatives, so that symmetry holds with 
respect to space, s. (Both the equation and boundary conditions are 
invariant under the spatial inversion s -4 - s.) As a result, base-to-tip 
and tip-to-base waves are potentially equivalent. One way by which 
unidirectional propagated waves are obtained is to introduce the 
curvature feedback control. The curvature of the flagellum can only be 
defined when two separate positions are specified (or mathematically, 
the curvature, K, is defined as a space derivative of shear: K = as/as). 
This automatically induces the spatial coordination in violation of the s 
-+ - s symmetry because of the first space derivative, as/as, which is 
necessary in maintaining bend propagation in one direction. An 
alternative way in demonstrating unidirectional bend propagation is to 
take into account the structural asymmetry such as the basal elastic 
component and the passive terminal piece. 

     As a concrete example, let us consider an flagellum with self-
oscillatory behavior. By adopting Ke = 60 pN/24 nm and the cubic 

force-distance function for 0 < s < 50 µm, we can obtain a model with 
"homogeneously" distributed self -oscillatory segments . Simulations 
were carried out from straight-line initial conditions in the following 
three cases. When the flagellum is "homogeneous" two waves initiate 
at both ends and propagate in opposite directions (Fig.9A). If the 
distal 10-µm of the flagellum was replaced by the passive region 
without active force-generating systems, then unidirectional bend 
propagation can occur (Fig.9B). If the curvature control mechanisms 
are introduced such that subsystem I is turned "off' when K > 0 and
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turned "on" when x < 0, unidirectional bend propagation can also 
occur (Fig.9C). 

    By incorporating the curvature feedback control into theoretical 
models, unidirectional bend propagation has been demonstrated. 
Although these models successfully generate bend propagation from 
base to tip, important and interesting aspects have been missed. In 
the absence of the curvature control mechanism, models lose their 
ability to propagate bending waves in one direction. The failure of 
unidirectional bend propagation is not a 'defect' of the models, but a 
'merit' inherent in the system suspended in the viscous medium . 
There is the possibility that such a system shows a wide variety of 
spatio-temporal behaviors. The complex dynamical behavior of this 
kind is one of the most interesting topics in modern physics, biology 
and chemistry. 
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Figure Captions 
Figure 1 

     The cubic force-shear and hysteresis switching functions. (A): 

The active force is shown as a function of the (dimensionless) shear, a. 
The solid line shows the force, FI, for sliding in the forward direction 

(increasing a), and the dotted line the force, FII, for sliding in the 

backward direction (decreasing (;). The force-shear functions are: Fl = 

QI(a- 0.1)(a - 1)(0.3 - (Y), and FII = QII(a- 0.9)(a) (0.7 - (Y) with QI =QII 
= 250 pN. (B): The hysteresis switch as a function of a. The binary 

function is defined in the region Si < a< S2, where SI = 0.2 and S2 = 
0.8. The value depends on what direction the region is entered. Note 
that nI + nil = 1 for each direction of movement. 

Figure 2 

     Relative shear, a(s)/a(25), as a function of space, s, after an 

application of a point force of 50 pN at s = 25 µm under free end 
boundary conditions. An initially straight flagellum has only passive 
elastic links, i.e., Ke = I pN/24 nm, QI = QII = 0 and EB = 400 

pNµm2. A single point force of 50 pN is applied to the middle 
segment at s = 25 µm. The relative shear is plotted 0.01 msec after 

the stimulus. (A): There is only internal viscosity, i.e., y = 50 pN 
msec/24 nm and CN = 0. Positive shear force always causes positive 

shear. (B): There is only external viscosity, i.e., y = 0 and Cpl = 5 

pNmsec/µm2. Positive shear force induces negative shear in the 
nearby region. 

Figure 3 
     Shear, a, as a function of s after an abrupt change of shear at the 

basal end, such that ap = 0.5 under the clamped end boundary 
conditions. An initially straight flagellum with only passive elastic 
links Ke = 1 pN/24 nm and EB = 400 pNµm2 is subjected to an abrupt 
change in the shear at the base. The distribution of shear 1 msec after 
the proximal end is displaced. Note that ao = 0 at t = 0 for 0 < s < 50 

µm. The dotted line shows a(s) with only internal viscosity, i.e., y = 50 

pN msec/24 nm and Cpl = 0. The solid line shows a(s) with only 
external viscosity, i.e., y = 0 and CN = 5 pNmsec/µm2. 

Figure 4 
     Positions of waves as a function of time, t (in msec), and space, s 

(in µm). The initially straight flagellum was allowed to develop its 
bending waves. The parameters are: EB = 300 pNµm2, y = 100

1



pNmsec/24 nm, QI = QII = 300 pN, al = 0.15, a2 = 1, ac = 0.25, a'1 = 
0.85, a'2 = 0, and a'c = 0.75. The properties of the flagellum vary 

along its length as follows: Ke = 60 pN/24 nm for s = 1 µm and Ke = 1 

pN/24 nm for 1 < s < 50 gm. This is equivalent to an oscillatory 
region in the first segment, an excitable region in segments 2 - 50. 
The regions a > 0.5 are plotted by bars. As time proceeds, the groups 
of bars move toward the right reflecting the fact that bending waves 
initiated at the base (at the left end) propagate toward the tip (the 
right end). The schematic representation of this flagellum is shown in 
the bottom panel. 

Figure 5 
     Reversal of the direction of propagating waves under free end 

boundary conditions in the presence of the external viscosity. The 

parameters are: EB = 400 pNµm2, CN = 5 pNmsec/µm2, QI = QII = 
270 pN and Ke = 1 pN/24 nm. Positions of waves are depicted as a 

function of time, t (in msec), and space, s (in µm). The regions a > 0.5 
are plotted by bars. As time proceeds, first base-to-tip bend 
propagation occurs and then tip-to-base bend propagation appears at 
about t = 300 msec. At about t = 600 msec base-to-tip bend 
propagation occurs. The schematic representation of this flagellum is 
shown in the bottom panel. 

Figure 6 
     Annihilation of two waves propagating in opposite directions at 

zero external viscosity under free end boundary conditions. The 

parameters are: QI = QII = 290 pN, EB = 300 pNµm2, L = 100 µm, CN 
= 0, y = 100 pN msec/24 nm , and Ke = 1 pN/24 rim. a is plotted as a 
function of space, s, at 1-msec intervals. Time proceeds from front to 
back. 

Figure 7 
     Soliton-like behavior at non-zero external viscosity under free 
end boundary conditions. The parameters are: QI = QII = 400 pN, EB 
= 400 pNµm2, L = 100 µm, CN = 5 pNmsec/µm2 , y = 0, and Ke = 1 

pN/24 nm. a is plotted as a function of space, s, at 2-msec intervals. 
Time proceeds from front to back. 

Figure 8 
     Dynamical behavior of a "homogeneous" excitable flagellum under 

free end boundary conditions. a is plotted as a function of space, s, at 
5-msec intervals. The flagellum has only excitable segments, i.e., Ke = 

1 pN/24 nm, QI = QII = 250 pN and EB = 400 pNµm2 for 0 < s < 50 

µm. The model is started from the same initial conditions. (A): There
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is only internal viscosity, i.e., y = 100 pN msec/24 nm and CN = 0. 
The flagellum becomes "quiescent" when the bend propagates to the 
tip. (B): There is only external viscosity, i.e., y = 0 and CN = 5 

pNmsec/µm2. Due to external viscosity-induced perturbations the 
basal end beats up and down, which leads to continuous bend 
initiation.

Figure 9 
     Dynamical behavior of the self-oscillatory flagellum under free 

end boundary conditions. 6 is plotted as a function of space, s, at 20-
msec intervals. The flagellum has only self-oscillatory segments, i.e., 
Ke = 60 pN/24 nm, QI = QII = 250 pN and EB = 400 pNµm2 for 0 < s 

< 50 µm. The model is started from the same straight configuration. 

(A): The "homogeneous" self-oscillatory flagellum is allowed to develop 
bending waves. (B): The self-oscillatory flagellum with a 10-µm long 

passive region at the tip. Unidirectional bend propagation results from 
this asymmetric structure. (C): The "homogeneous" self-oscillatory 
flagellum under the influence of the curvature control mechanism , in 
which Qj = 0 for K > 0 and QII = 0 for x < 0. Unidirectional bend 

propagation is caused by the feedback function which is asymmetric 
about K = 0-
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