
Title A Simplified Model for Excitability

Author(s) Murase, Masatoshi

Citation  (1992)

Issue Date 1992

URL http://hdl.handle.net/2433/48886

Right

Type Learning Material

Textversion author

Kyoto University



Lecture Note I (1992) 

Graduate School of Science 

Kyoto University

A Simplified Model for Excitability

Masatoshi Murase

Yuka wa Institute for Theoretical Physics 

        Kyoto University

    Our final goal is to develop a model for a flagellum which is 
considered to be a class of nonlinear distributed systems (see Seminar 
Note II). For this purpose, we need a simplified model for the local 
system. It is now established that muscle and flagella undergo the 
common molecular mechanism. In developing a theoretical model , 
therefore, we have to equally take into account experimental 
observations in muscle as well as in flagella. In the present paper, a 
simplified model is proposed based on the force-length relationship in 
the muscle system. Computer simulations and phase-plane methods 
reveal that the model exhibits complex bifurcation diagrams such as a 
homoclinic connection, a Hopf bifurcation and a saddle-node 
bifurcation. The onset and cessation of oscillations observed in the 
flagellar system are also interpreted in terms of the model behavior.

1. Introduction 
     Oscillations with high frequencies (-- 100 - 1000 Hz) -

sometimes these high-frequency oscillations are referred to as 
hyperoscillations - have been observed in two different types of 
motile systems. One is the wingbeats of flying insects like mosquitoes. 
Each wingbeat results from a contraction of the insect flight muscle . 
The muscle contraction is in turn caused by a motor nerve impulse . 
Until 1949, it was believed that the origin of the rhythmic wingbeats 
was ascribed to the repetitive nerve impulses. However , Pringle [1] d

iscovered that the motor nerve impulses were not always 
synchronized with wingbeats. His findings strongly suggest that the 
muscular oscillations are not caused by the repetitive firings of the 
motor neurons, but result from the intrinsic properties of the muscle 
itself. It has been a challenging problem in biophysics to clarify these 
intrinsic properties. 
    Another example of hyperoscillations is the vibrations of flagella . 
Generally, flagella show bending wave propagation with about 30-80 
Hz. If such flagella are fragmented and placed between a glass slide
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and a coverslip, these fragmented flagella do not beat, instead they 
display hyperoscillations (2]. As biochemical conditions are changed, 
these oscillations disappear. There are two ways by which oscillations 
disappear. In one, an inhibitor is added. This effect is interpreted as 
the decrease in the fraction of the active "cross-bridge", because it 
causes the decrease in the active force. The second way by which 
hyperoscillations disappear is through the reduction of the Mg-ATP 
concentration. As the Mg-ATP concentration is decreased, the 
vibration frequency decreases. The question now arising is how the 
motile systems exhibit the onset and cessation of oscillations. 

     In the present paper, a simplified model for excitability is 

proposed based on the force-length relationship in the muscle system. 
Then, the resultant model is used to explain the turning "on" and "off' 
of oscillations observed in the flagellar system. Using computer 
simulations and phase-plane methods, the bifurcation diagrams of this 
model are detailed.

2. The model 
2.1. Mathematical description 
    The present model assumes that (i) a cross-bridge in the active 
state shows a cubic force-distance function, and (ii) there are passive 
elastic and external shear forces. Let x, n and Z be the dimensionless 
sliding displacement (x = 1 corresponds to 24 nm), the fraction of the 
active cross-bridges (varying continuously between 0 and 1), and the 
external shear force, respectively. Then, the model can be expressed 
as:

yd =nf(x)-Kex+Z

dn=~b(1-n) 
dt - cn

(XS Xa) 
(X > Xa)

(la)

(lb)

where

f(x) = Ax2(1 - x) . (lc)

A, b, c, Ke, xa and y are the force constant of the active cross-bridges, 
the activation rate constant, the inactivation rate constant, the force 
constant of the passive elastic component, the activation region and 
the internal viscous shear resistance, respectively. Here b and c are in 
msec-1, A, Ke and Z in pN per cross-bridge and y in pNmsec per cross-
bridge. Equation (la) describes the balance of all the shear forces. 
Equation (lb) shows that n is allowed to change continuously between 
0 (completely lacking in excitability) and 1 (maximal excitability), 
depending on x. 
    There are several ways by which dynamical properties of the 
model can be represented. One way to predict the model behavior is 
by numerical integration of equations (1). This numerical technique is 
useful in describing quantitatively the time evolution of state variables 
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x and n. In addition to using numerical techniques, it is also useful to 
deduce important qualitative properties of the solutions to equations 
(1) without explicitly solving it. Examples of such qualitative 
visualizations are the force-distance representation and the phase 

plane representation. The next three subsections describes these two 
qualitative analytical methods.

2.2. Force-distance relationship 
    By setting dx/dt = 0 in equation (la), we have the following 
steady-state force-distance relationship for the model:

Z=-nf(x)+Kex. (2)

Figure 1 illustrates such force-distance relationships in the (x, Z) 
plane. When n = 1, there is a cubic force-distance relationship which 
has three intersections, P1, P2 and P3, with the x axis. These three 

points are the actual steady-state points when Z = 0. P1 corresponds 
to a stable resting state, P2 to an unstable threshold state, and P3 to a 
stable excited state. Superthreshold x values lead to the excited state, 
P3; while subthreshold x values lead to the resting state, Pl. This 
model, thus, accounts for a threshold phenomenon. 

     Instead of applying the superthreshold x values, an excited state 
is also achieved by increasing Z. As Z is increased (say, Z = 0.004), the 
intersections, P1 and P2, approach each other. A sufficiently large 
value for Z makes P1 and P2 disappear. As a result, the phase point 
moves toward P3. 

    It is clear that the excited state is obtained by the shift of either 
x or Z. However, this excited state is not definitely stable because n 
begins to decrease according to equation (lb). We set xa = 0.2, so that 
the excited state exists in the region where inactivation takes place 
(i.e. the decrease in n toward 0). The force-distance relationship 
changes dynamically from Z = - f(x) + Kex to Z = Kex. The resultant 
force-distance relationship has only a single steady state at the origin, 
and so the system returns to this state. There is a refractory period 
during which the cubic force-distance relationship disappears, and 
hence there is no threshold phenomenon. 

     If Z is set at a value that causes the two intersections P1 and P2 
vanish, the system no longer stays in a stable steady state, but instead 
displays oscillatory behaviors. Depending on the constant values of Z, a 
number of different rhythms arise in which low- and high-amplitude 
oscillations can be observed. 

     Now it should be noted that, if the external force, Z, the sliding 
displacement, x, and the fraction of the active cross-bridges, n, are 
viewed as the external current, I, the transmembrane voltage, V, and 
the generalized excitability parameter, Y (where Y can be considered 
as summing up the whole behavior of the sodium activation m, sodium 
inactivation h and potassium activation n of the Hodgkin-Huxley model 
[31), then Z = - f(x) + Kex and Z = Kex are analogous to the current-
voltage relationship for a maximally excitable membrane and that for a
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completely inexcitable membrane. In this analogy, the model 
described by equations (1) accounts for the electrical excitability 
phenomena. Indeed this model resembles the simple version of the 
Hodgkin-Huxley model for an excitable membrane presented by van 
Capelle and Durrer [4] and extended by Landau et al. [5]. 

2.3 Phase-plane representation 
    The model behavior is completely described by the state 
variables x and n. Solutions to equations (1) can be represented as 
trajectories in the (x, n) phase plane. A typical trajectory is given in 
Figure 2, which corresponds to the solution in Figure 3. This figure 
also represents the vertical isocline or the x-nullcline (i.e. k = 0) and 
the horizontal isocline or the n-nullcline (n = 0). These nullclines are 
written as follows: 

     x = 0 n = Ix - Z (3a) 
                     Ax2(1 - x) 

   n=0 n=+0 (x<x) (3b) 

a 

    The intersections of the two nullclines give the steady-state 
points, P1, P2 and P,,. P1 is a stable node (i.e. resting point), P2 a 
saddle point (i.e. threshold point), and P„ an unstable point. Starting 
from the point (circled number 1), the phase point moves rapidly 
along a horizontal path. This part of the trajectory corresponds to the 
cross-bridge power stroke - or the upstroke of the "action-potential" 
like behavior - in Figure 3. This cross-bridge power stroke is 
followed by its inactivation leading to a decrease in n. As a result, the 
trajectory turns downward. When the phase point enters the local, 
activation region, it ascends vertically toward the resting point, P1, 
resulting in the completion of the loop. 
    The last part of this trajectory determines the key features of the 
model behavior. The next section discusses how this part of the 
trajectory in the phase plane is influenced by the vector field and/or 
the shape of isoclines. 

3. Excitability and oscillations in the motile system 
3.1 Homoclinic orbit 
     Let us first consider the effect of a change in the vector field. 
For this purpose we shall change the value of activation rate b. For 
small values of b (say b = 1.3 as in Fig.2), the phase point moves toward 
the resting point. P1. As b increases from 1.3, the trajectory in the 
region for x<_ xa moves slightly upward (Figure 4 for b = 1.320), and at 
the critical value of b it touches the saddle point. This is known as 
homoclinic orbit. The homoclinic connection may be considered as a 
limit cycle of infinite period. As b continues to increase to b = 1.322, 
the phase point no longer moves toward the resting point, leaving a 
stable limit cycle oscillation with an amplitude of about 0.4 and a 
frequency of 133 Hz. 
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   Although the vector field given by equations (1) varies continuously 
with b, there is a sudden appearance of a stable limit cycle across a 
threshold value of b. Figure 5 illustrates how a limit cycle appears as 
the parameter, b, is increased. When b = 1.3, a stable node, P1, a 
saddle point, P2, and an unstable fixed point, Pu coexist (left panel). 
The saddle point has a stable and an unstable separatrix as indicated by 
the arrowheads. As b is increased to the critical value (b = 1.321), the 
stable separatrix just touches the limit cycle, resulting in a homoclinic 
connection (middle panel). With further increases in b, the limit cycle 
oscillation spontaneously appears. As a result, there is a stable limit 
cycle, a stable node, and a saddle point in the phase plane (right 

panel). By reversing the parameter and decreasing b, the limit cycle 
suddenly disappears upon collision with the saddle point. After the 
annihilation of the limit cycle oscillation, there remains a saddle point 
and a stable node in the phase plane.

3.2 Dynamic hysteresis loop 
    It is also important to study the effect of changing the constant 

parameter, Z, on the x-nullcline. Figure 6A shows how the change in Z 
affects the shape of the x-nullcline, and hence the trajectories in the 
(x, n) phase plane. According to equation (3a), n is decreased by a 
positive change of Z for any x values. This change lowers the x-
nullcline. Inversely, the x-nullcline is raised by a negative change of Z. 
The n-nullcline, however, is not modified by any of these changes. 

     Because of the short distance between the two intersections, Pi 
and P2, the locations of these intersections are very sensitive to small 
changes in the x-nullcline. As Z is increased from zero, the x-nullcline 
is lowered, so that PI moves to the right and P2 to the left. As a result, 
P1 and P2 meet with each other, and then vanish (e.g. Z = 0.007). The 
resulting x-nullcline is characterized by an S-shaped sigmoid. As long 
as the S-shaped characteristic exists, oscillations of any amplitude and 
frequency appear. Figure 6B shows one example of such oscillations 
when Z = 0.02. The amplitude and frequency are about 0.3 
(corresponding to about 7 nm) and 280 Hz, respectively. As Z 
continues to increase to Z = 0.04, the S-shaped characteristic is 
replaced by a rather monotonic curve. Oscillatory behavior ceased 
after oscillatory transients damped (Fig.6C). If Z is further increased 
to Z = 0.08, non-oscillatory decay of the motion appears (Fig.6D). 

     It is also interesting to note that the S-shaped x-nullcline in this 
model highly resembles nullclines of the biochemical models for 
excitability and oscillations [see e.g. 6], and those of the models for 
excitable membranes [see e.g. 4]. There appears to be common 
features for excitability and oscillations among quite diverse 
biochemical, electrophysiological, and mechano-chemical systems 

     Figure 7 depicts the bifurcation diagram as a function of Z. 
There are two types of dynamic hysteresis loops as labelled A and B. 
First consider the diagram labelled A. Starting in the oscillatory state 
(the upper solid curve) and decreasing Z, the limit cycle disappears 
through a homoclinic connection (see Fig.5) and the system jumps to a 
stable node (the lower solid curve). If Z is now increased, the stable
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node will persist until it vanishes upon collision with a saddle (the 
middle broken curve). This is known as a saddle-node bifurcation or 
fold bifurcation. Figure 8A illustrates how a saddle-node bifurcation 
occurs. Through this saddle-node bifurcation, the limit cycle 
reappears. 

     Next consider the diagram labelled B. For small values of Z (< 
0.03), there is a stable limit cycle (the lower solid curve). When Z is 
increased to Z > 0.03, there is also a stable steady state at x = 0.2 (the 
upper solid line), but the dynamics will be stuck at the stable limit 
cycle. However, as Z is further increased, the limit cycle disappears 
suddenly. If Z is now decreased, a stable steady state persists until Z < 
0.03, and then a stable limit cycle oscillation of finite amplitude and 
frequency suddenly appears. This is known as a subcritical Hopf 
bifurcation or hard excitation as illustrated in Figure 8B. Unlike the 
general Hopf bifurcation, the dotted curve of the unstable limit cycle 
does not rise vertically from an unstable steady state when increasing 
Z. This occurs because the system lacks differentiability at x = 0.2 (see 
equation (ib). 

     The important characteristic common in both bifurcation 
diagrams (labelled A and B) is that for some ranges of parameter values 
there is bi-stability (i.e. a stable steady state coexists with a stable limit 
cycle). For a system possessing these types of characteristics, two 
interesting experiments are possible. In one, the system is subjected 
to an alternate increasing and decreasing control parameter. Either a 
stable steady state or a stable limit cycle might appear, depending on 
the history of the control parameter. Thus, the system dynamically 
switches oscillations "on" and "off'. If the control parameter is 
increased and decreased slowly, compared with the frequency of the 
limit cycle oscillation, then the system can exhibit distinct burst-like 
activity. 

     In the second type of experiment, a brief stimulus of a certain 
strength is delivered at a critical phase of the ongoing limit cycle. It is 
possible that the system jumps to the stable state because of this 
stimulus, resulting in an abrupt loss of oscillation. Similarly, another 
stimulus can trigger oscillations when it is delivered to the quiescent 
system. The annihilation of oscillations induced by a single pulse-like 
perturbation has been discovered in cardiac pacemaker cells [7] and in 
nerve cells [8], but it has not yet been observed in flagellar systems.

4. Onset and cessation of hyperoscillations 
    Analysis in the previous section reveals that (i) oscillations of any 
amplitude and frequency can be present by modifying the vector field 
and/or nullclines: and (ii) the initiation and termination of limit cycle 
oscillations can be controlled by stimuli. Based on these 
considerations, we try to understand how hyperoscillations appear and 
disappear in the flagellar system. 

     As we have discussed, there are two ways by which 
hyperoscillations are annihilated: one is by the decrease in the 
frequency asymptotically toward 0, which is associated with a decrease 
in the ATP concentration; and the other is by the decrease in the

6



fraction of the cross-bridge in the force-generating state when an 
inhibitor is added. 

     Consider, for example, the stable limit cycle oscillation shown in 
Fig.6B. Figure 9 re-draws the same limit cycle trajectory (solid curve) 
as that in Fig.6B for b = 1.3 and Z = 0.02. We first consider the effects 
of lowering ATP concentration on hyperoscillations. For this purpose, 
we assume that the inactivation rate constant, c, is roughly 

proportional to the ATP concentration. As c decreases, the trajectory 
along which a phase point is moving is raised (dotted line) and the 

phase point stays longer on the x-nullcline. This means that the 
inactivation process becomes a rate limiting step, and hence the limit 
cycle oscillation slows down with the decrease of the frequency. When 
c = 0, the oscillation is completely annihilated. This model behavior 
corresponds to the experimental observation that hyperoscillations are 
annihilated through the decrease in the frequency when ATP 
concentration is lowered. 

     How can we interpret the effects of inhibitor in terms of the 
model behavior ? In order to account for these effects, equation (lb) 
should be rewritten as follows: 

          dnn = (b(no - n) (x <_ xa) (4) 
          dt I - cn (x > xa) 

where no is the maximal fraction of cross-bridges in the force-

generating state. Previously, we have assumed that no = 1. However, it 
is reasonable to consider that no is inversely proportional to the 
concentration of inhibitor. As no is decreased from 1, the n-nullcline 
in the activation region (x<_ xa) is lowered as illustrated in Figure 10. 
There is no significant effect on the speed of motion of a phase point 
there, and so the frequency is not changed dramatically. At the 
critical value of no, a homoclinic connection appears. With a slight 
decrease in no, a limit cycle oscillation completely disappears in the 

phase plane. This model behavior, therefore, accounts for the 
cessation of hyperoscillations through the decrease in the fraction of 
cross-bridges in the active state when inhibitor is added. 

5. Discussion 
     The theoretical model proposed here accounts for not only 

simple modes of excitability and oscillations, but also more complex 
bifurcation diagrams leading to bursting and chaos. Unfortunately, 
flagellar and ciliary dynamics have not been studied along this line, 
although some cilia actually show bursts of repeated cycles of beating 
[see 91. One reason for this is that many cell biologists have been 
interested in the regular behaviors, such as the symmetric steady-state 
bend propagation typical of flagella and the asymmetric beat cycle with 
an effective and a recovery stroke typical of cilia, but not in the 

potential irregular behaviors. Although periodic perturbation methods 
have been applied to the flagellum [9,10), no one has ever investigated 
its aperiodic responsiveness. Another reason is that theoretical 
biologists have not tried to develop simple mathematical models in 
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this field, but instead have aimed to develop complicated models. 
They have been interested in qualitatively explaining specific modes of 
cilia and flagella. It is, therefore, very difficult to understand the 
essential features of the model. 

    I think that it is much better to have any "qualitative" agreement 
with experimental data than to make efforts to do "quantitative" curve 
fitting. So the point in this chapter is that (I) a very simple model can 
explain qualitative behaviors observed in experiments, and (ii) this 
model can potentially exhibit complex dynamics which may be 
observed in experiments in future. 
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Figure 1 
     Force-distance characteristics. The area denoted by a broken 
square in panel (A) is enlarged in panel (B). When Z = 0 and n = 1, 
there are three steady states with two stable states, P1 and P3, and one 
unstable state, P2. As n decreases from 1 to 0, the cubic function is 
replaced by a monotonic function. Interestingly, these force-distance 
characteristics are analogous to the well known voltage-current 
characteristics of excitable membranes.

Figure 2 
    Phase plane of the model described by equations (1). One 

solution to this equation is represented by a trajectory marked with 
arrowheads. The circled numbers correspond to those in Figure 3. 
Three singular points, P1, P2, and Pu, occur at these intersections of x-
and n-nullclines. Pi is a stable node, P2 a saddle point, and P„ an 
unstable point. The two intersections, P1 and P2, correspond to those 
in Fig.l. A threshold phenomenon appears at the saddle point. 
Parameters are: A = 6 pN, b = 1.3 msec-1, c = 0.3 msec-1, 1 e = 0.4 pN, 

xa = 0.2, y = 0.1 pNmsec, and Z = 0. Initial conditions are: n = 1 and 
x = 0.1.

Figure 3 
     The time course of x and n. x shows an "action-potential" like 
behavior in nerve membrane. The circled numbers correspond to 
those in Fig.2. Prameters and initial conditions are as in Fig.2.

Figure 4 
     Influence of the parameter b. (A): For small parameter values (b 

  1.320), the trajectory starts from the superthreshold initial 
conditions and returns to the stable point, P1. This excitable behavior 
is similar to the previous case shown in Fig.2. When b is slightly larger 
(b = 1.322), there appears a closed trajectory on which a phase point 
circulates clockwise around the unstable point, Pu. This corresponds 
to a stable limit cycle oscillation with an amplitude of about 0.4 and a 
frequency of 133 Hz. (B): Enlarged detail of panel A to show two 
separating trajectories.

Figure 5 
     Sudden appearance of a limit cycle through a homoclinic 
connection. There is a stable node, P1, a saddle point, P2, and an 
unstable fixed point, Pu (left panel). As the parameter, b, is increased, 
the unstable separatrix of the saddle point meets with the stable 
separatrix, resulting in a homoclinic orbit (middle panel). The 
homoclinic orbit exists only for a single value of b. By increasing b, the 
limit cycle oscillation suddenly appears (right panel). Inversely, 
decreasing b makes the limit cycle disappear upon collision with the 
saddle point. This is the typical mechanism by which a limit cycle can 
abruptly vanish from a phase plane. The upper solid curve, middle 
broken line, and lower solid line represent the paths of the particular
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phase point of the limit cycle, of the saddle point and of the stable 
node, respectively. If b is replaced by Z, this figure represents the 
emergence of the homoclinic orbit as observed in Fig.7. 

Figure 6 
     Influence of the parameter, Z. The parameters and initial 

conditions are as in Figures 2 and 3, except for the value of Z. (A): 
When Z = 0, there are three intersections, P1, P2, and Pu, of the x- and 
n-nullclines. P1 is a stable node, P2 a saddle point, and P„ an unstable 

point. As Z is increased from 0, the x-nullcline is lowered without 
changing the n-nullcline. For Z = 0.007, the two intersections, P1 and 
P2, vanish upon collision, though there still remains an unstable point, 
Pu. However, if Z is further increased to Z = 0.03, the unstable point, 
Pu, disappears, and instead there appears a stable point, Ps. For Z > 
0.03, there is always the stable point, Ps, as a single intersection of the 
two nullclines. (B): Limit cycle oscillation with an amplitude of about 
0.3 and a frequency of 280 Hz for Z = 0.02. Starting from the initial 
conditions (i.e., n = 1 and x = 0.1), the trajectory converges on the 
stable limit cycle as shown by a solid curve with arrowheads. (C): 
Damped oscillation leading to a stable point, Ps, for Z = 0.04. The 
trajectory starts the same initial conditions. (D): Non-oscillatory decay 
of the model behavior for Z = 0.08.

Figure 7 
    Bifurcation diagram for the model described by equations (1) as a 

function of the control parameter, Z. The parameters are as in Figures 
2, 3, and 6 except for the Z values. The upper broken line refers to an 
unstable fixed point. The lower broken curve refers to a saddle point. 
Besides them, there is a limit cycle, a stable node and a stable fixed 

point as indicated in the figure. The homoclinic connection in the 
broken rectangle labelled A resembles that in Fig.5. If b is viewed as Z, 
the same is true. The saddle-node bifurcation shown in the broken 
rectangle labelled A is detailed in Figure 8A. The Hopf bifurcation 
appears in the broken rectangle labelled B. This is detailed in Figure 
8B.

Figure 8 
     (A): Saddle-node bifurcation. The bifurcation diagram shown in 

the broken rectangle A of Figure 7 is detailed. The upper broken and 
the lower solid curves correspond to the paths of the saddle point, P1, 
and the stable node, P2, respectively. As Z is increased, the two 
steady-state points approach each other (left panel), and then vanish 
(middle panel). As a result, every trajectory goes away to infinity (right 
panel). (B): Subcritical Hopf bifurcation (or Hard excitation). The 
bifurcation diagram shown in the broken rectangle B of Figure 7 is 
detailed. Initially, there is a stable limit cycle oscillation (solid 
trajectory) and an unstable fixed point, Pu, for a relatively small value of 
Z (left panel). As Z is increased, the unstable point, Pu, is converted to 
an unstable limit cycle (broken circle), leaving a stable fixed point, Ps
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(middle panel). For a sufficiently large value of Z, the stable and 
unstable oscillations disappear and a single stable point remains (right 
panel). There is bistability (i.e. the stable point and stable limit cycle 
coexist) in the middle panel, so that hysteresis appears when the 
control parameter, Z, is increased and decreased. 

Figure 9 
    Annihilation of oscillations accompanied by the decrease in their 
frequencies. The parameters are as in Figure 6B except for the values 
of c. When c = 0.3, there is the same trajectory as in Fig.6B. If c is 
decreased, the phase point moves slowly in the region of x > xa (see 
equation (lb)). As a result, the frequency of oscillation decreases. 
When c = 0, the trajectory approaches the stable point depending on 
the initial conditions. This means that oscillation is annihilated. This 
dynamical behavior probably accounts for the effects of the change in 
ATP concentration in the experiments by Kamimura and Kamiya ]2]. 

Figure 10 
     Annihilation of oscillations due to the decrease in the fraction of 

the cross-bridge in the force generating state. The parameters are as 
in Figure 6B except for no. As no is decreased from 1, the n-nullcline 
in the region for x < Xa is lowered. When no = 0.5, there is little 
difference in the trajectory, so that the frequency is not changed 
significantly. As no is decreased, the homoclinic connection appears. 
For no = 0.25, the phase point moves toward the stable fixed point. 
Thus, the oscillation is annihilated without changing its frequency. 
This behavior may account for the effects of vanadate in the 
experiments by Kamimura and Kamiya [2].
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Appendix I

The FitzHugh (or BVP) 

x=x 3 y+I 
 y=O(x+a-by)

model

a, b, and $: positive constants 

x: the membrane potential 

y: the recovery valuable 
I: the membrane current

I

x0

(x, Y)

(x)

0 x

The Murase model 

     yx=Anx2(1-x)-Kex+Z 

          b(1-n) (X<Xa)      ft = 
             en (X>Xa)

n4

z

a

Z -a,x

z -- Qx)

A, b, c, Ke, xa and 7: positive constants 

x: the shear displacement 

n: the fraction of attached cross-bridges 

Z: the external shear force

r,

i

  O.O

x



Appendix II

The FitzHugh (or BVP) model

is = 0

Y=0

y=x-

Y=X+
1~'

a, and b: positive constants 

x: the membrane potential 

y: the recovery valuable 

I: the membrane current

V,

2

     =R I

x=o/ VIII

R

=n\

F

r, I

The Murase model

x=0 n=
Kex-Z

n=0

Ax2(1

n- 1 0

- x)

(x<_xa) 
(x > xa)

A, b, c, Ke, and xa: positive constants 

x: the shear displacement 

n: the fraction of attached cross-bridges 

Z: the external shear force
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