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One of the most fundamental problems in studying general Hamiltonian systems with many degrees of
freedom is to extract a low-dimensional subsystem including the essential dynamics. In this paper, a new
partial normal form �PNF� method is developed to reduce the number of coupling terms in the Hamiltonian and
to simplify the dynamics analyses. The PNF method allows one to decouple many unimportant bath modes as
well as the reactive mode from the system by assessing the significance of the coupling terms. The method is
applied to the chemical reaction O�1D�+N2O→NO+NO, which was found to exhibit efficient energy ex-
change between the two NO stretching modes despite the short lifetime of the reaction intermediate �S. Kawai
et al., J. Chem. Phys. 124, 184315 �2006��. Through the analysis of the two-dimensional PNF Hamiltonian
subsystem, it is found that the motion of the subsystem preserves the “normal mode picture” of the symmetric
and antisymmetric NO stretching modes despite its high energy. Then the vibrational energy, initially localized
in the newly formed NO bond, is transferred to the reactants’ NO bond through the beating between the
symmetric and antisymmetric stretching modes. The preservation of the normal mode picture and the short
period of the beating explain the fast energy exchange between the two NO bonds. This successful application
proves that the PNF method can extract the essential small subspace from many-degrees-of-freedom Hamil-
tonian systems.

DOI: 10.1103/PhysRevA.75.022714 PACS number�s�: 34.10.�x

I. INTRODUCTION

The investigation of geometrical structure of multidimen-
sional phase space provides crucial information to solve vari-
ous problems in general physics ranging from chemical re-
actions to planet motions. For a system with two degrees-of-
freedom �DOF�, it is well known that its phase-space
structure can easily be visualized by the Poincaré surface of
section �SOS�. However, it becomes difficult to capture the
essence of dynamics in higher-dimensional systems because

the increase of the SOS dimension makes the visualizations
of the SOS impossible. Hence it would be desirable to intro-
duce a low-dimensional model, which may effectively de-
scribe the essential dynamics of the systems in question. For
the problems of characterizing molecular vibrations around
an equilibrium point, two-DOF models with some of the
bond lengths and/or angles fixed in advance have been often
used to study the phase-space structure below the dissocia-
tion energy �1–10�. It has been shown that the simple de-
scription by normal modes becomes invalid as the energy
increases, and that new types of periodic orbits �POs� emerge
through bifurcation then. The new types of POs have been
characterized as local modes �1–4�, precessional modes �6�,
dissociation modes �8,9�, and so forth, according to the en-
ergy and the types of couplings. Such effective two-DOF
models have been constructed based on empirical intuitions.
In contrast to vibrations of bound molecules, dimensions of
reacting systems involving bond forming and breaking can-
not be reduced by those intuitions. Since they cannot always
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reduce the dimensionality of the system in question through
the entire region of the space to a certain lower dimension,
an appropriate theory without any empirical intuitions is
needed to extract a small essential subspace from the
multiple-DOF phase space.

In this respect, the normal form �NF� theory, a classical
analog of Van Vleck perturbation theory �11,12�, is a power-
ful tool for such dimension reduction. This theory provides
considerable information on phase-space geometry around
stationary points by simplifying the form of Hamiltonian as
much as possible. It has been applied to many systems to
characterize the dynamics around rank-1 saddles as phase-
space structures �13–25�. At a rank-1 saddle point, that is, an
equilibrium point with one negative Hessian eigenvalue, one
reactive mode and the other nonreactive bath modes have
one imaginary and multiple real frequencies, respectively. It
was found �13–22� that up to a certain high energy, the re-
active mode defined in the phase space could be separated
from all the bath DOF by the application of the NF theory,
even when the nonlinear couplings wash out all the constants
of motion in the bath space. In other words, the reactive and
bath spaces can be investigated independently if the NF
theory is utilized. The dynamics in the bath space in the
vicinity of a saddle can be mathematically referred to the
motion in the normally hyperbolic invariant manifold
�NHIM� �26,27�, which generalizes the PO dividing surface
in two-DOF systems. Recently, Li et al. �24,25� applied this
method to a three-DOF model Hamiltonian regarded as a
prototype of isomerization reaction. The dynamics in NHIM
was easily examined by SOS because the system is reduced
to two-DOF after the separation of the reactive mode. How-
ever, for systems with more DOF than three, we can no
longer carry out the SOS analysis to investigate the dynamics
in NHIM, because the NHIM has still more than three DOF.

In this paper, we present a dimension reduction scheme to
look into the phase-space geometry of the internal structure
of high-dimensional NHIM. In addition to the separation of
the reactive mode, we eliminate as many couplings as pos-
sible among the bath modes. By simplifying the bath mode
couplings, we can construct a subsystem that describes the

essential aspects of the process. As an illustrative example,
we apply our dimension reduction method to the most char-
acteristic path �named Path 1 in Ref. �28�� of the planar
reaction of O�1D� with N2O,

O�1D� + NN�O� → NO + N�O�, �1.1�

where prime symbols are used to distinguish the two NO
products. Due to the high dimensionality of this system, it is
crucial to look further into the possibility of reducing the
dimensionality of the bath space after it is separated from the
reactive DOF, in order to reveal the complexity of the reac-
tion dynamics. The profile of the analytic potential energy
surface �PES� function constructed with CASPT2 calcula-
tions �28� is schematically shown in Fig. 1.

The quasiclassical trajectory study of this system revealed
that the reactive trajectories of this system can be classified
into four categories, which were named paths 1–4. Along
path 1, the trajectories pass through three stationary points,
the collinear saddle �denoted by the symbol Is�, the trans
minimum �Tm�, and the trans saddle �Ts�. The initial stage
of this reaction, where the nearly collinear approach of the
O�1D� atom to N2O takes place, can be regarded as a motion
along a bath mode direction of Is. The system then falls into
Tm following the reactive direction of Is. Since the large
energy difference between Is and the reactant is mostly re-
leased along the bath direction, the bath mode oscillation at
Is is expected to have a large amplitude. Therefore the bath
modes are subject to large nonlinear couplings. It is not at all
trivial to estimate to what extent we can reduce the dimen-
sionality of the system. For this reason, this system is a suit-
able example to show how our method works for analyzing
NHIM in high-dimensional systems.

The analyses of the motion around Is are also interesting
from the viewpoint of product energy disposal, which pro-
vides important information for clarifying the chemical reac-
tion dynamics. Traditionally it has been believed that the
deeper the potential well of the reaction intermediate be-
comes, the more statistically the product states distribute,
since the long residence time in the well allows the consid-

FIG. 1. A schematic representation of the sta-
tionary points and the energy profile of the PES
of the reaction O�1D�+N2O→NO+NO.
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erable energy mixing �29�. However, path 1 of the reaction
�1.1� shows nearly equal excitation of two NO vibrations
despite its short residence time �28�. Of the two NO prod-
ucts, the one originating in O�1D� is called “new NO” and
the other from the reactant N2O is called “old NO.” At the
initial stage of the reaction, the new NO part has an infinite
nuclear distance whereas the old NO has almost the same
distance as in the product. Thus, the equal vibrational energy
of the products indicates that an efficient energy transfer has
taken place from the new NO to the old despite the short
residence time. This is in clear contrast to the traditional
picture �29� mentioned above. As will be shown in Sec. III,
the characteristic energy exchange along path 1 occurs when
the trajectory is passing by the collinear saddle point �Is�.
Thus, careful analysis of the phase space around Is is quite
crucial for understanding the underlying mechanism of the
efficient energy exchange.

This paper is organized as follows. Our new dimension
reduction method is presented in terms of partial NF theory
in Sec. II. The model and calculation are described in Sec.
III. In Sec. IV, we analyze the dynamics of this system and
propose a simple model to explain the fast energy exchange
between two NO vibrations. We give a summary and outlook
in Sec. V.

II. DIMENSION REDUCTION SCHEME BASED ON
PARTIAL NORMAL FORM THEORY

Here we describe our procedure to scrutinize the internal
structure and the effective dimension of phase space in terms
of partial normal form theory. First, by introducing normal
mode coordinates at the saddle point, the quadratic part H0

�0�

of the n-DOF Hamiltonian becomes

H0
�0� =

�

2
��p1

r�2 − �q1
r�2� + �

�=2

n
��

2
��p�

r�2 + �q�
r�2� �2.1�

=�q1
cp1

c + �
�=2

n

i��q�
cp�

c . �2.2�

In this equation, i� is the imaginary frequency of the reactive
mode, and ��’s ��=2, . . . ,n� are the �real� frequencies of the
bath modes. q�

r , p�
r ,q�

c , p�
c ��=1, . . . ,n� are real and complex-

valued normal mode coordinates and momenta. Their rela-
tions are

q1
c =

q1
r + p1

r

21/2 , p1
c =

p1
r − q1

r

21/2 , �2.3�

q�
c =

q�
r − ip�

r

21/2 , p�
c =

p�
r − iq�

r

21/2 �� = 2, . . . ,n� . �2.4�

We have defined mode 1 as the reactive mode and modes
2 , . . . ,n as the bath modes. The action variables for the har-
monic approximation are defined as I1�q1

cp1
c and I�� iq�

cp�
c.

The true Hamiltonian contains terms of order 3 and higher
in addition to those in Eq. �2.2�. We transform the Hamil-
tonian using a new set of variables �q̄c , p̄c�, which are called

NF coordinates, to reduce the number of the coupling terms
in the Hamiltonian when expressed in these new coordinates.
After the NF transformation, the Hamiltonian is expressed in
the polynomial of �q̄c , p̄c�. This new Hamiltonian is denoted

as H̄�q̄c , p̄c�. In the Hamiltonian, the off-diagonal terms, that
is, terms with different powers of q̄�

c and p̄�
c, denote couplings

among the modes. This can be seen as follows. If the

transformed Hamiltonian H̄ takes the following form:

H̄�q̄c, p̄c� = �q̄1
cp̄1

c + �
�=2

n

i��q̄�
cp̄�

c + �
��j��2

āj
c	

�=1

n

�q̄�
cp̄�

c� j�,

�2.5�

where āj
c’s are the coefficients of the polynomial, then all of

the new action variables Ī1= q̄1
cp̄1

c, and Ī�= iq̄�
cp̄�

c ��
=2, . . . ,n� are constants of motion and the system is fully

integrable. The Hamiltonian H̄ of the form �2.5� is called a
full normal form.

The NF transformation from �qc ,pc� to �q̄c , p̄c� is con-
structed by a Lie perturbation theory �30�. We follow the
formulation by Dragt and Finn �31�. We start by writing the
Hamiltonian in a power series of a small parameter �,

H�qc,pc,�� = �
�=0

�

��H�
�0��qc,pc� , �2.6�

where H0
�0� is the harmonic part of the Hamiltonian �Eq.

�2.2��. To introduce a small parameter, we scale the coordi-
nates �qc ,pc�� ��qc ,�pc� and H��−2H. After the transfor-
mation is constructed, the parameter � is set equal to 1. The
canonical transformation �qc ,pc�� �q̄c , p̄c� is constructed by
successive operations of Lie transformations,

q̄� = exp�− �F1�exp�− �2F2� ¯ exp�− �NFN�q�, �2.7�

p̄� = exp�− �F1�exp�− �2F2� ¯ exp�− �NFN�p�, �2.8�

where N is the order of the perturbation and
F���=1, . . . ,N� is an operation of the Poisson bracket with a
function f�,

F� = �· , f�� . �2.9�

Then, the transformation of the Hamiltonian

H�qc ,pc ,��� H̄�q̄c , p̄c ,�� is given by

H̄ = exp��NFN� ¯ exp��2F2�exp��F1�H . �2.10�

If we define H̄����q̄c , p̄c ,�� and H̄�
����q̄c , p̄c� by

H̄��� = exp���F��H̄��−1�

= exp���F�� ¯ exp��2F2�exp��F1�H , �2.11�

H̄��� = �
�=0

�

��H̄�
���, �2.12�

we can readily obtain the following recursion formulas for

H̄�
���:
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� 	 �: H̄�
��� = H̄�

��−1�, �2.13�

� = �: H̄�
��� = H̄�

��−1� + F�H̄0
�0�, �2.14�

� 
 �: H̄�
��� = H̄�

��−1� + �
s=1

�
�F��s

s!
H̄�−s�

��−1�. �2.15�

In the final Hamiltonian H̄= H̄�N�=��=0
� ��H̄�

�N�, the terms of
the order � are

H̄�
�N� = H̄�

�N−1� = ¯ = H̄�
��� = H̄�

��−1� + F�H̄0
�0�, �2.16�

because of Eqs. �2.13� and �2.14�. Thus, F� can be deter-

mined so that the function H̄�
�N� has a “desired” form.

In the present case, H̄�
��−1� is expressed in the form of a

polynomial,

H̄�
��−1��qc,pc� = �

���j�+k��=�+2
�jk

���	
�=1

n

�q�
c� j��p�

c�k�, �2.17�

where �jk
��� is the coefficient of the polynomial. Moreover,

F�H̄0
�0�= �H̄0

�0� , f�� and H̄0
�0�=H0

�0� has the form of Eq. �2.2�.
Therefore, if we are to eliminate the terms with certain val-

ues of �j ,k� from the final Hamiltonian H̄, we set

f� = �
�j,k�

�jk
���

jk
	
�=1

n

�q�
c� j��p�

c�k�, �2.18�

where the divisor jk is defined as follows:

jk = ��j1 − k1� + i�
�=2

n

���j� − k�� . �2.19�

To obtain a well-defined transformation, the range of the
summation in Eq. �2.18� is determined so that the polynomial
series converges. If we have jk
0 for certain combinations
of �j ,k�, then the corresponding coefficients of Eq. �2.18�
take large values and cause the divergence of the series. This
is the notorious problem of small divisors �32�. This situation
arises when the bath mode frequencies �2 , . . . ,�n are nearly
in the ratio of integers and is called the “resonance” effect.
Such values of �j ,k� cannot be included in the summation of

Eq. �2.18� and have to be kept in H̄. Which terms should be

included in H̄ must be determined based on convergence of
the transformed Hamiltonian.

In previous works �13–25�, it was found that the reactive
DOF can be separated from all the bath modes even when
the couplings among the bath modes wash out all the invari-
ants of motion in the bath space. As pointed out previously
�11� this is due to the fact that resonance conditions, which
cause divergence in perturbation expansion through the prob-
lem of small divisors, can never be satisfied between real and
imaginary frequencies �33�. For the purpose of extracting
phase-space objects such as no-return transition state and
NHIM, the separation of the reactive mode from the bath
space is sufficient, which yields the following NF Hamil-
tonian �24,25�:

H̄ = �q̄1
cp̄1

c + �
�=2

n

i��q̄�
cp̄�

c + �
��j��2

āj
c	

�=1

n

�q̄�
cp̄�

c� j�

+ �
j1=k1

ājk
c 	

�=1

n

�q̄�
c� j��p̄�

c�k�, �2.20�

where āj
c’s and ājk

c ’s are the coefficients of the diagonal and
the off-diagonal terms, respectively. Note that Eq. �2.20�
does not include terms with j1�k1 although it includes all
the coupling terms among the bath modes. This leads us to
expect that, up to moderately high energy above the reaction

threshold, the action Ī1= q̄1
cp̄1

c of the reactive mode can persist
as an approximate constant. Therefore the reactive mode is
separated from the bath space �24,25�.

However, for the n�
3�-DOF systems, even after the
separation of the reactive mode the NHIM is still a high-
dimensional abstract object such that the corresponding in-
visible SOS is not helpful in clarifying the phase-space struc-
ture of the NHIM. Thus it is desirable to include as few

terms as possible in H̄, because the bath mode dynamics can
be simplified with a small number of coupling terms among
the bath modes.

In this paper, we present the further reduction of the
Hamiltonian represented by the following form:

H̄ = �q̄1
cp̄1

c + �
�=2

n

i��q̄�
cp̄�

c + �
��j��2

āj
c	

�=1

n

�q̄�
cp̄�

c� j�

+ �
d

�
�j−k��d

ājk
c 	

�=1

n

�q̄�
c� j��p̄�

c�k�, �2.21�

which includes only those terms with �j−k��d, where the
integer vector d= �d1 ,d2 , . . . ,dn� covers all the terms which
cannot be eliminated. If d covers all the value of d
= �0,d2 , . . . ,dn� with d1=0, one can obtain Eq. �2.20�.

To examine which terms can be eliminated from H̄ or
must be included, we use the energy error �23� �E�N�

= �H̄�N�−H� as a criterion of the convergence, where H̄�N� is
the NF Hamiltonian up to the Nth order and H is the true
Hamiltonian. Note that, even with the off-diagonal terms, the
form �2.21� is simpler than the form �2.20�, because the num-
ber of terms in Eq. �2.21� is restricted by the condition
�j−k��d. Hereinafter we call the forms like Eq. �2.20� and
Eq. �2.21� a “partial NF” �PNF� in contrast to the full NF.

With the reduced number of the coupling terms, we can
examine the value of each term along the trajectories. De-
pending on the system, it can happen that some of the terms
have negligibly small values. Then, we can further restrict
the range of d in Eq. �2.21� by ignoring those small terms. If
the range of the summation covers only those terms with
d1=d2= ¯ =dm=0 for some m	n, the resulting Hamil-
tonian takes the following form:
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H̄ = �q̄1
cp̄1

c + �
�=2

n

i��q̄�
cp̄�

c + �
��j��2

āj
c	

�=1

n

�q̄�
cp̄�

c� j�

+ �
j,k

ājk
c �	

�=1

m

�q̄�
cp̄�

c�k�� 	
�=m+1

n

�q̄�
c� j��p̄�

c�k� .

�2.22�

With this Hamiltonian, the actions for the modes 1 ,2 , . . . ,m
are constants of motion. Thus, we can separate these modes
and there remain �n−m� DOF to investigate. The effective
Hamiltonian for these �n−m� modes is given by

H̄eff�q̄m+1
c , . . . , q̄n

c, p̄m+1
c , . . . , p̄n

c, Ī1, . . . , Īm�

= �Ī1 + �
�=1

m

��Ī� + �
�=m+1

n

i��q̄�
cp̄�

c

+ �
��j��2

āj
c�	

�=1

m

Ī�
j�� 	

�=m+1

n

�q̄�
cp̄�

c� j�
+ �

j,k
ājk

c �	
�=1

m

�Ī��k�� 	
�=m+1

n

�q̄�
c� j��p̄�

c�k� ,

�2.23�

with Ī1= q̄1
cp̄1

c and Ī�= iq̄�
cp̄�

c��=2, . . . ,m� appearing as con-
stant parameters. This completes our dimension reduction
from an n-DOF system to an effective �n−m�-DOF system.

III. MODEL AND CALCULATION

A. Description of path 1 trajectories

Here we describe the model system to which we apply
PNF analyses in this paper. Throughout the paper, we adopt
the nuclear masses of 18O�1D�+ 14N14N16O for which the
experiment �34� and the calculation �28� have been done. For
the sake of brevity we fix the initial rovibrational energy of
N2O to zero and the impact parameter b �see Fig. 2�a�� is
confined to zero. It was found that freezing the initial motion
of N2O does not change the product vibrational distribution
significantly �28� and also, as will be shown below, one can
find significant vibrational excitation of the old NO for b
=0. Therefore the analysis of the motion with b=0 can be
regarded as a first important step for understanding the en-
ergy exchange in this system. The numerical simulation of
the trajectories is performed by numerically integrating the
equations of motion for the Jacobi vectors by the fourth-
order Runge-Kutta method with variable time steps �35�.

To describe the trajectories, we plot the time evolution of
Jacobi coordinates �r0 ,r1 ,r2 ,�1 ,�2� as defined in Fig. 2�b�.

We denote the internuclear distances of NO and N�O� moi-
eties as r1 and r2, respectively. The distance between the
mass centers of the two NO’s is denoted by r0. �1 and �2 are
the angles between the line connecting the mass centers of
NO’s and the nuclear axes of NO and N�O�, respectively.
The time evolution of the Jacobi coordinates is shown in the
upper panels of Figs. 3�a�–3�d� for four different initial ori-
entations � of N2O, where � is defined in Fig. 2�a�. The
initial conditions are generated as follows: At t=0, the O�1D�
atom is placed in the distance of 8 Å from the mass center of
N2O with the impact parameter b=0 and the translational
energy 20.9 kJ/mol=3.47�10−20 J, which corresponds to
the experimental condition of Ref. �34�. N2O is placed with
the orientation �=0° ,5° ,10°, and 13° for panels �a�, �b�,
�c�, and �d� of Fig. 3, respectively. Note that, for b=0, the
trajectories of path 1 cover the range of �� � 
0–15° �see
Fig. 6 of Ref. �28��, and that there is a symmetry with respect
to the reflection ��−� so that we have only to consider the
trajectories of �=0–15°. The trajectory of �=0 has an ex-
actly collinear configuration and thus experiences no force
along the bending direction because of the symmetry. The
other trajectories of path 1, that is, the trajectories of ��0
start with near-collinear configurations ��1
� ,�2
0�. Af-
ter they pass by the regions near the collinear saddle, they
fall into trans-type configurations ��1	� ,�2	0�. Thus, in
the early stage of the reaction, that is, when the system is in
near-collinear configurations, the motion can be well ap-
proximated by the motion for �=0.

B. Taylor expansion of the Hamiltonian around the collinear
saddle point

Here we perform the Taylor expansion of the Hamiltonian
around the collinear saddle point �Is�. This saddle point con-
nects two trans-shaped minima �Tm�,

�3.1�

These two minimum configurations can be distinguished
from each other in the planar system, although only one of
them is shown in Fig. 1. As was shown in Ref. �28�, trajec-
tories go downhill along a bath mode direction of Is until
they pass by the region near Is, and then fall into either Tm
following the reactive mode at Is.

We obtain the expansion coefficients of the potential func-
tion by calculating the Lagrange interpolation polynomial
�35� with potential energy values at grid points around Is,
while the analytic expansion form for the kinetic term can be
obtained straightforwardly. In the lower panels of Figs.
3�a�–3�d�, the error �V�n�=V�n�−V of the nth-order polyno-
mial approximation for the potential is shown for each initial
condition, where V�n� denotes the nth-order polynomial ex-
pansion and V is the true value of the potential. If the error is
small, it means that the system is in the vicinity of the saddle
point. In order to judge whether the error is small or not, it
must be compared with the typical energy per one degree of
freedom, which is of the order of 10−19 J for this system. For

FIG. 2. Definition of the parameters used in this paper. �a� Im-
pact parameter b and the initial orientation � of N2O. �b� Jacobi
coordinates.
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the trajectory of �=0 �Fig. 3�a��, the error �V�4� is one order
of magnitude smaller than this value in the time range of t

280–305 fs. For �=5° and 10°, the time range for �V�4�

�10−20 is t
283–293 fs, and t
287–291 fs, respectively.
Thus, the trajectories of ��10° come sufficiently close to
the collinear saddle point. The trajectories of ��10° cover
2/3 of the whole path 1 trajectories. This means that a sig-
nificant proportion of the path 1 trajectories approach the
collinear saddle point. Moreover, the excitation of the old
NO, r2, begins when the system comes close to the saddle
point. Thus, we focus below on the dynamics in the vicinity
of Is.

C. The internal structure of the phase space at saddle Is

The displacements and the frequencies of the normal
modes at the collinear saddle point are shown in Fig. 4. We

define the reactive mode as mode 1, and the bath modes are
numbered in the decreasing order of their frequencies. The
normal mode coordinates �qc ,pc� are constructed as linear
combinations of the displacements of the Jacobi coordinates,
and are used as the starting coordinates of the PNF
procedure.

By examining the energy error, we have found that the
terms listed in Table I should be kept in the transformed
Hamiltonian, since their elimination results in a larger error
�E�4� than the error �E�2� of the harmonic approximation.
The integer vector d in Eq. �2.21� covers all the terms listed

in Table I. Even with the off-diagonal terms, the form of H̄ is
still much simpler than the original form. Namely, a fourth-
order polynomial with ten variables has 1001 terms, whereas
there are only 12 types �listed in Table I� of coupling terms in
Eq. �2.21�.

FIG. 3. Time evolution of Jacobi coordinates and the residual error of Taylor expansion of the potential energy shown for four different
initial conditions of �. Upper panels: Time evolution of r0 �thin solid line�, r1 �medium solid line�, r2 �thick solid line�, �1 �thin dotted line�,
and �2 �thick dotted line�. Lower panels: Residual error of Taylor expansion up to the second �thin line�, third �medium line�, and fourth
order �thick line�.
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Note that all of the terms listed in Table I have zero in
their first component. Therefore Ī1= q̄1

cp̄1
c is a local constant

of motion. This means that the motion along mode 1 is sepa-
rable from the others. Similar situations are found in former
studies �13–19,21,22,24,36,37�. It is attributed to the fact that
there can be no resonance between imaginary and real fre-
quencies �33�. Note also that Table I contains those terms for
which all �j�−k��’s are non-negative, such as 0:0:1:0:0 and
0:0:2:1:0. These terms are not of the “resonance” type but
cannot be eliminated from the PNF Hamiltonian. This might
arise from the fact that the values of the actions for models 3
and 4 are so large that they cannot be eliminated by
perturbation.

IV. ANALYSES OF THE DYNAMICS

A. Evaluation of the couplings

First, we analyze the time development of the vibrational
energy of each of the PNF coordinates. The upper panels of

Fig. 5 show the values of ��Ī�, that is, a rough estimate of
the vibrational energy of each mode, calculated along the
trajectories shown in Fig. 3. The lower panels of the same
figure show the energy errors of the harmonic �thin dotted
lines� and the PNF �thick solid lines� Hamiltonian, respec-
tively. Here we can see that, for ��10°, the PNF shows
convergence for the time region in which trajectories are in
the vicinity of the saddle point �when compared with Fig. 3�.
Moreover, the action value for mode 1 is nearly constant, as
can be predicted from the PNF Hamiltonian �Eq. �2.21� and
Table I�.

Now, we introduce the concept of NHIM. The NHIM is
defined in terms of �q̄c , p̄c� as

MNHIM = ��p̄1
c, . . . , p̄5

c, q̄1
c, . . . , q̄5

c��p̄1
c = q̄1

c = 0;

�H̄�Ī1 = 0, q̄2
c, q̄3

c, q̄4
c, q̄5

c, p̄2
c, p̄3

c, p̄4
c, p̄5

c� = E� , �4.1�

at a given energy E. Because the reactive degree of freedom
is decoupled from the bath space in the �q̄c , p̄c� coordinate
system, the NHIM forms an invariant set.

Note that the trajectories of ��10° have qualitatively
similar properties to each other as seen in Figs. 3 and 5. This
can be understood based on the fact that in the vicinity of the
saddle, the motions along and normal to NHIM are separated
from each other. Therefore, we now focus on the case of �
=0 to extract the underlying mechanism of the energy trans-
fer. For �=0, we can treat the system locally as an effective
three-DOF system with an effective Hamiltonian given by

Heff�q̄2
c, q̄3

c, q̄4
c, p̄2

c, p̄3
c, p̄4

c� = H̄�q̄1
c = 0, q̄2

c, q̄3
c, q̄4

c, q̄5
c = 0, p̄1

c = 0, p̄2
c, p̄3

c, p̄4
c, p̄5

c = 0� , �4.2�

when the system is in the neighborhood of the collinear
saddle Is. The dynamics of Heff takes place in a subspace of
the NHIM.

We further simplify the above Hamiltonian by taking into
account the coupling terms listed in Table I. In order to as-
sess their effects, we have plotted, in Fig. 6, the values of
these terms along the trajectory of �=0. Among the coupling
terms including mode 2, only the “0:1:−2:0:0” term is non-
negligible, but it is still smaller than the coupling terms be-
tween modes 3 and 4. Thus, modes 3 and 4 have large an-
harmonicity and are strongly coupled with each other,
whereas mode 2 is coupled only weakly with mode 3
through one term. Therefore we can gain more insight into
the dynamics by making the following separation of the
Hamiltonian:

Heff�q̄2
c, q̄3

c, q̄4
c, p̄2

c, p̄3
c, p̄4

c� = H̄34�q̄3
c, q̄4

c, p̄3
c, p̄4

c� + �2Ī2

+ � ājk
c 	

�=2

4

�q̄�
c� j��p̄�

c�k�, �4.3�

where H̄34�q̄3
c , q̄4

c , p̄3
c , p̄4

c�=Heff�q̄2
c =0, q̄3

c , q̄4
c , p̄2

c =0, p̄3
c , p̄4

c�.
The first term can be interpreted as a Hamiltonian of a two-
DOF subsystem consisting of modes 3 and 4, the second is
the harmonic energy of mode 2, and the third denotes the
coupling between the two-DOF subsystem and mode 2.

When we plot the values of H̄34 and �2Ī2 as functions of

time, a gradual and monotonic decrease of H̄34 and an in-

crease of Ī2 were found. This is consistent with the idea
presented above, that is, the coupling between mode 2 and
the two-DOF subsystem is due to only one resonance term.

TABLE I. Types of the terms that cannot be eliminated from the

NF Hamiltonian. j� and k� are the exponents of q̄�
c and p̄�

c in H̄
�see Eq. �2.21��.

�j1−k1�: �j1−k2�: �j3−k3�: �j4−k4�: �j5−k5�

0 1 0 −3 0

0 0 1 −1 0

0 1 −1 −2 0

0 0 0 0 2

0 0 0 2 −2

0 0 1 0 0

0 0 1 1 0

0 1 −2 0 0

0 0 1 −2 0

0 0 0 1 0

0 0 2 −1 0

0 0 2 1 0
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We now look deeply into this two-DOF subsystem in the
next subsection.

B. Dynamics of the two-DOF subsystem

Figure 7�a� shows the SOS of the two-DOF Hamiltonian

H̄34 for q̄4
r =0, p̄4

r 
0 with the horizontal and vertical axes
being q̄3

r and p̄3
r , respectively. The value of the Hamiltonian

H̄34, i.e., the energy of these trajectories, is chosen as fol-
lows: After calculating the trajectory of �=0 by the original
Hamiltonian up to t=283 fs, we transform the coordinates to

�q̄r , p̄r�. Substituting their values into the Hamiltonian H̄34,

we obtain the value of H̄34.
In Fig. 7�a�, we can see the existence of regular tori in the

outer region, whereas the inner region shows irregular be-
havior. To find which region corresponds to the actual reac-
tion trajectories, we have plotted, in Fig. 7�b�, the SOS for
five trajectories. The initial conditions of these five trajecto-
ries are chosen as follows. First, we calculate the trajectory
of �=0 using the original Hamiltonian up to five different
times t=283,290,295,300, and 305 fs. They cover the time
interval where the system stays near the saddle �see Fig.
5�a��. The values of the Jacobi coordinates and their conju-
gate momenta at these five instances are transformed to
the values of �q̄r , p̄r� to give the five initial conditions
�q̄3

r , q̄4
r , p̄3

r , p̄4
r�.

In Fig. 7�b�, the system first appears in the intermediate
region between the center and the outermost ellipse. This is
because the reaction trajectories start with an elongation of
the new NO bond, which corresponds to simultaneous exci-
tation of the symmetric and antisymmetric stretches. At early
times, the system is found in the region of regular torus
structure. Then the torus shrinks as the time passes, due to
the coupling with mode 2, and finally enters into the inner
irregular region after t=290 fs.

The tori found in the early time period are topologically
the same as those of the harmonic case ��q̄3

r�2+ �p̄3
r�2

=const. �. Strictly speaking, their shapes are distorted from
the true circle. We should also note that the coordinates used
in Fig. 7 are the PNF coordinates, whose main parts are the
normal mode coordinates but they are not exactly the same.
However, bifurcation into the local modes �1–4� or other
types of periodic orbits �5–10� does not occur for this system
�at least in the region corresponding to the reaction trajecto-
ries�. Hereafter, we refer to this motion as “distorted normal
mode.”

So far we have limited our attention to the trajectory of
�=0, which is collinear and thus contained in the NHIM.
This is based on the idea that the deviation from �=0 mainly
results in the displacement in the direction of the reactive
mode �mode 1�, which has little effect on the bath mode
dynamics. However, its effect on the bath modes is not ex-
actly zero and thus it is worth investigating whether it is
really negligible. This is performed by taking the initial value
of �q̄3

r , q̄4
r , p̄3

r , p̄4
r� from trajectories of ��0. Although

not shown in figures, we have also found a distorted
normal- mode type structure with the initial condition taken
at t=285,290 fs for �=5°, and t=290 fs for �=10°. The

chaotic motion in the inner region does not appear for these
trajectories. This is because their residence times in the vi-
cinity of the saddle point are finite, whereas the collinear
trajectory ��=0� remains in the NHIM all the time. Thus, the
noncollinear trajectories do not have enough time to travel
into the inner region. Therefore we can conclude that the
distorted normal mode picture holds for the noncollinear tra-
jectories when they enter into the vicinity of the saddle point.

C. Mechanism of efficient energy transfer

Here we propose a simple model to explain the efficient
energy transfer in spite of short lifetime in terms of the geo-
metrical feature of the phase space in the region of saddle Is.
Qualitatively, the symmetric �q̄4

r� and antisymmetric �q̄3
r� co-

ordinates can be expressed as

q̄4
r 
 q4

r �
�r1 + �r2

21/2 , q̄3
r 
 q3

r �
�r1 − �r2

21/2 , �4.4�

respectively, where �r1 and �r2 are the deviation of the bond
length of the new and old NO, respectively, from their equi-
librium values. Since the normal mode picture is conserved
with a little distortion, the time evolution of q̄4

r and q̄3
r is

approximated by simple trigonometric functions,

q̄4
r 
 A cos��4t�, q̄3

r 
 A cos��3t� , �4.5�

Thus, the vibrations of the new and old NO bonds are

�r1 �
q4

r + q3
r

21/2 
 2−1/2A�cos��4t� + cos��3t��

= 21/2A cos��4 − �3

2
t�cos��4 + �3

2
t� , �4.6�

�r2 �
q4

r − q3
r

21/2 
 2−1/2A�cos��4t� − cos��3t��

= 21/2A sin��4 − �3

2
t�sin��4 + �3

2
t� . �4.7�

The interpretation of the right-hand sides are that they are
oscillating with the mean frequency ��4+�3� /2 while their
amplitudes vary with the frequency ��4−�3� /2. This change
of the amplitudes is called “beat.” The time scale for the
excitation of the old NO bond can be estimated by � /2��4

−�3�. If we use the values shown in Fig. 4, it becomes 23 fs,

FIG. 4. Normal modes at the collinear saddle point.
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which is of the same order as the residence time in the vi-
cinity of the collinear saddle point �see Figs. 3�a�–3�d��. This
means that the residence time is sufficient to allow the exci-
tation of the old NO vibration. Here, the important point is
that the energy transfer takes place very fast, since the period
of the beat is short. Even though the lifetime of the reaction
intermediate is short, the time scale of the beat is comparable
to the lifetime of the reaction intermediate and thus causes a
significant excitation of the old bond when the system passes
through the saddle Is. The short time scale of the beat derives
from the relatively large difference between the frequencies
of the symmetric and antisymmetric stretches. Note also that
the regularity is not strictly required for the beat model. Even
in the case of chaos, it is possible that the system sees so-
called “vague tori” �38,39� and follows a orbit similar to that
of the distorted normal mode picture for some short time
period. The important aspect is the existence of two different

mechanisms for the energy transfer. One is the randomiza-
tion by strong chaos, where the system travels around in the
potential well. This is close to the traditional picture of the
energy transfer, that is, the randomization after a long life-
time in a deep well. The other mechanism is the motion of
the distorted normal mode type, where the system visits only
a part of the phase space but the motion is represented as a
superposition of a few distorted normal modes. If the periods
of the beats are short enough, efficient energy transfer takes
place. In particular, this mechanism works not only in the
well but also near the saddle. As one of the possible mecha-
nisms of the origin of efficient energy exchange of the reac-
tion of O�1D�+N2O→NO+NO, the present work analysis
suggests the beat mechanism arisen from the preservation of
the distorted normal mode picture in spite of the high energy
near the saddle and the relatively large difference between

FIG. 5. Results of PNF calculation shown for the same four initial conditions as in Fig. 3. Upper panels: Time evolution of the actions
multiplied by the harmonic frequencies. The values for modes 1, 2, 3, 4, and 5 are shown by thin dotted, thin solid, medium solid, thick solid,
and thick dotted lines, respectively. Lower panels: Energy errors. The thin line depicts the difference �E�2� between the true Hamiltonian and
the harmonic approximation. The thick line depicts the difference �E�4� between the true Hamiltonian and the fourth-order PNF Hamiltonian.
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the frequencies of the symmetric and antisymmetric
stretches.

V. SUMMARY AND OUTLOOK

A new systematic dimension reduction scheme in the lo-
cal region near a stationary point was proposed based on the
partial normal form theory �PNF�, which decomposes the
multidimensional phase space into new building blocks of
the invariants. The crux is the PNF scheme, which eliminates
many coupling terms through coordinate transformations. By
careful investigation of the coupling terms and a check of the
convergence, we succeeded in eliminating not only the cou-
pling between the reactive and bath modes, but also as many
couplings as possible among the bath modes. Then, in PNF
coordinates the number of the coupling terms in the Hamil-
tonian decreased drastically compared to the original coordi-
nates. As an illustrative example, the dynamics of the short
lifetime trajectories of a near-collinear approach, named
“path 1,” �28� of the reaction O�1D�+N2O→NO+NO, was
investigated. This reaction was found to exhibit a significant
energy transfer from the new to the old NO vibration in spite
of its short lifetime �28,34�. It was found that the symmetric
and antisymmetric NO stretching modes were strongly
coupled to each other, whereas the other modes were un-
coupled or only weakly coupled to these modes. The dynam-
ics in the vicinity of the saddle Is could be well reduced into
a two-DOF system consisting of the two stretching modes.

Analyses of the two-DOF subsystem revealed the robust
persistence of the distorted normal mode picture for the re-
action trajectories in spite of high energy above the saddle
point. The period of the beat between the two NO stretching
modes was of the order of 10 fs, due to the large difference
between their frequencies. This period is short enough to
cause excitation of the old NO vibration. Thus we proposed
a simple model to explain the efficient energy transfer from
the new to the old NO in terms of the beat between the
distorted normal mode pictures buried in the multidimen-
sional phase space even at high energy above the saddle
point. It should be noted, however, that for the comprehen-
sive understanding of the mechanism of the reaction, it is of

vital importance to extend the PNF analysis to the other sta-
tionary points and the other paths. In addition, although the
planar model was found �28� to reproduce the essential fea-
ture of the experimentally observed distribution �34�, it is
also worthwhile to scrutinize the phase-space geometry of
the nonplanar system by using the PNF analysis.

Our PNF method is generally applicable to any systems of
many degrees of freedom and provides us with an essential
clue of the underlying geometrical structure of the multidi-
mensional phase space. For example, chemical reactions
O�1D�+HCl �40–42�, O�1D�+H2O �43,44�, and H+NO2,
�45–47� are also quite interesting systems because the PES
have deep wells but the product state distributions deviate
significantly from the statistical distributions �that is, they are
counterintuitive�. These require systematic scrutiny of the
phase space in the region of a potential well. Our dimension
reduction by PNF will be of great help to capture the phase-
space properties of any stationary point. To be sure, it de-
pends on the system to what extent we can reduce the dimen-
sion of the system. The Poincaré surface of section is a
powerful tool only for the cases where the system can be

FIG. 6. Values of the coupling terms in the NF Hamiltonian as
functions of time calculated for the trajectory of �=0.

FIG. 7. �Color online� Poincaré surface of section for the two-
DOF subsystem consisting of modes 3 and 4 calculated with the

polynomial Hamiltonian H̄34. �a� Total Poincaré surface of section
with q̄4

r =0 and p̄4
r 
0 plotted with q̄3

r and p̄3
r . The unit is

10−17 kg1/2 ms−1/2. The energy is H̄34=3.50�10−19 J corresponding
to the value of �q̄3

r , q̄4
r , p̄3

r , p̄4
r� at t=283 fs for the trajectory of �

=0. �b� The Poincaré surface of section is drawn for five different
initial values of �q̄3

r , q̄4
r , p̄3

r , p̄4
r�. The times from which the initial

values were taken are t=283, 290, 295, 300, 305 fs and are indi-
cated in the figure. The points for t=300 and 305 fs are distin-
guished by color: Light �or orange� and black color correspond to
t=300 and 305 fs, respectively.
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reduced to a two-DOF system. However, even if the system
can only be reduced to an m��3�-DOF system, this makes
the analyses much simpler than the original n�
m�-DOF
system. Moreover, it is significant information by itself
which modes are separated and which modes are strongly
coupled to the other modes. This reveals a nonuniform char-
acter of the phase space highly contrasted to a simple statis-
tical description where all the DOF are completely mixed.
Thus, our PNF method is expected to capture the dynamical
structure of the system and thereby shed light on the origin
of complicated behavior in chemical reaction dynamics.
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