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Finite groups and codes

Kanat Abdukhalikov
Institute of Mathematics,
Pushkin Str 125, Almaty 480100, Kazakhstan
and
Graduate School of Mathematics, Kyushu University,
Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

1 Introduction

Let G be a doubly transitive group on a finite set ). Consider the permutation module F& =
{f| f:Q — F}, where F is a ring or a field. We are interesting to find all G-invariant
F-submodules in F. In case of finite field F it means that we are looking for G-invariant
codes, and in case F = Z we will have G-invariant lattices. Many known codes and lattices
can be constructed by such a construction: quadratic residue codes, Reed-Muller codes, Golay
codes, Leech and Barnes-Wall lattices. Recently constructed quaternary Kerdock, Preparata,
Goethals, Goethals-Delsarte, Delsarte-Goethals codes are also covered by this construction, if
we take F = Zy.

We will write elements of f € F in the form f = Y ncq GaXa, Where xq is a characte-
rigtic function. The natural action of an element g € G on F< is given by 93 peq taXa) =
Y ach %aXg(a)- This action of G preserves the natural bilinear form defined by

(Z Qo Xas Z baXa) = Z aaba.

There are two natural submodules in F*:

M= <ZX&>’

the set of constant functions, and its orthogonal complement

Mt = {Z%Xa | Zaa = 0}.

If Fis a field and the characteristic of F does not divide the order of G then M and M*
are the only nontrivial G-invariant F-submodules of F?. Also M < M* precisely when the
characteristic of the field F' divides the degree || of the group G.

2 Doubly transitive groups

If G is a doubly transitive group on Q, H is the socle of G then O’Nan-Scott theorem and the
classification of finite simple groups implies that only two cases are possible:

1. H is a nonregular nonabelian simple group, G < Aut(H);

2. H is a regular elementary abelian p-group for some prime p, |Q] = p" = [H|, G <
AGLy(p).

All possible groups for the case 1 are listed in the Table 1 [9].
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H 12 Remarks
A,,n>5 n Two representations if n = 6
PSLn(q), n>2 (" - 1)/(qg - 1) (n, q) # (2,2), (2,3)

' Two representations if n > 2
PSUs(q) @ +1 q>2
2B>(g) (Suzuki) P+1 g =22+l > 2
2Go(q) (Ree) @ +1 g=232+1 53
Span(2) 22n—1 4 gn-1 n>2
Spon(2) 92n~1 _ gn—1 n>2
PSLy(11) 11 - Two representations
PSLy(8) 28 ‘
Az 15 Two representations
M1 (Mathieu) 11
M11 (Mathieu) 12 .
Mo (Mathieu) 12 Two representations
Ms, (Mathieu) 22
Moz (Mathieu) 23
Moy (Mathieu) 24
HS (Higman-Sims) 176 Two representations
Cos (Conway) 276

Table 1: Non-abelian socles of doubly transitive groups

In the affine case we have G < AT'Ln,{q) =V -T'L,(q), ¢ = p*, G =V - Gy, and one of the
following cases hold:

(i) SLm(q) < Go < TLm(q);

(i1) Spm(q) < Go < TLm(q);

(iif) G2(2%) < G < T'Lg(2%);

(iv) Several exceptions [11, 13].

3 Invariant submodules for groups with nonabelian socle

Starting point in our considerations is the Mortimer’s paper [16]. He defines the heart over the
fleld F' of the group G acting on the set  as the G-module ML /(M N ML). The Table 2 from
[16] describes the cases when heart is reducible. In fact, this result points out the cases when it
Is possible to get nontrivial codes and lattices.

In case G = PSLy(q), | = ¢+ 1, F 2 Fy for g = £1 (mod 8) and F > Fy for ¢ = 43
(mod 8), all the G-invariant nontrivial subspaces in F® are M , M+t and two more subspaces,
C1 and C3, where PGLa(g) permutes them. These subspaces C; and C, give realizations of
quadratic residue codes of length g -+ 1.

Studying PSLy(13)-invariant lattices in M+, F = Q(v/=3), we get a construction [2] of the
unique hermitian unimodular rootless lattice of rank 13 over the Eisenstein numbers (of course
in this case we have to take hermitian form in place of bilinear form). Its automorphism group
is isomorphic to Zg x PSpg(3).

The structure of permutation modules for Spyn(2) over a field was studied in [17]. There is
no clear classification of submodules, and description is done through some filtrations.
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Group, G Degree |0} Transitivity | Conditions under which the
: heart of G over F is reducible
(F a field of characteristic p)

S, n >3 n n always simple

An, n>5 n n—2 always simple

G < AT'L,(g) containing q° 2o0r3 p divides ¢

the translations :

PSLu(q) <G < PTLn(q), | (" —1)/(g—1) | 2 p divides ¢

n>3

PSLy(q) <G < PELy(g) |q+1 2 F>Fyifq==+1 (mod8)
F>Fyifg=+43 (mod 8)

G, a 3-transitive subgroup | ¢+ 1 3 always simple

of PT'Ly(q)

PSU3(q) <G < PTU3(q) | ¢*+1 2 p divides g +1

2By(g) < G < Aut(®*Ba(g)) | ¢ +1 2 p divides ¢ + 1+ v/2¢

2Gy(q) < G < Aut(?Ga(g)) | ¢ +1 2 p divides (¢ + 1)(g+ 1 ++/3q)
and perhaps if
p divides (¢+ 1)(¢+ 1 ~ /39)

Span(2),n > 2 22n-1 4 gn-l 2 p=2

Span(2),n >3 2n—1 _ gn-1 2 p=2

Ay = AGL1(4) 4 2 F>Fy

PSLy(11) 11 2 p=3

G = A7 < PGL4(2) 15 2 p=2

Mi; (Mathieu) 11 4 always simple

Mn (Mathieu) 12 3 D= 3

M2 (Mathieu) 12 5 always simple

Moo (Mathieu) 22 3 p=2

Mog (Mathieu) 23 4 p=2

Moy, (Mathieu) 24 5 p=2

HS (Higman-Sims) 176 2 p=2,3

Cog (Conway) 276 2 perhapsifp=12or 3

Table 2: Reducibility of the hearts of some 2-transitive groups

The unitary group PSUs(g) acts 2-transitively on the points Q of the hermitian unital of
order g, which is a 2—(¢°+1, ¢+1, 1) design. Suzuki group 2B2(g), ¢ = 22r+1 is an automorphism
group of an inversive plane of order g, that is, of a 3— (¢ + 1,9+ 1,1) design. Ree group 2G5 (g),
g = 8% acts 2-transitively on the points  of the Ree unital, which is a 2 — (@®+1,g+1,1)
design. In these three cases design modules give examples of G-invariant codes over a field F
of corresponding characteristic (see Table 2). However the list of all submodules is not known.
The dimensions of design modules of the Ree unital is calculated in [12].

The group PSLy(11) and Mathieu groups produce codes related to Golay codes. For the
Higman-Sims group some invariant codes are presented in [8].

Projective groups PGLy(g) are studied only in the case ¢ = p, they produce projective
generalized Reed-Muller codes [4] (over field Fp and Zym). Invariant lattices for these groups
are studied in [6]. ’

When we consider G-invariant codes and lattices in F we get codes of length |(f and lattices
of rank |Q|. If we consider invariant sublattices in M L (F = Z) we get lattices of rank [ — 1.
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Let W be a rational module over a finite group G. Recall [14] that number of similarity
classes of invariant lattices in W is finite if and only if G acts absolutely irreducible on W. In
this case on the vector space W there exists unique (up to scalar factor) G-invariant symmetric
positive definite bilinear form. Denote by Aut(A) the group of isometries of A with respect to
this form.

Now we take W = QM~L. Then W is absolutely irreducible G-module. We can assume that
G is a minimal doubly transitive group (that is, any proper subgroup of G is no longer doubly
transitive). If it is the case then G is simple, except for G = 2Gy(3) & PT'Ly(8) = PSLy(8) : 3.

We have the following theorem [5].

Theorem 1 Let G be a minimal doubly transitive group with nonabelian socle, A be a G-
invariant Z-lattice in the module W. Then one of the following assertions holds:

1) Ze x G < Aut(A) < Zg x Aut(G).

2) Aut(A) > Za X Sq.

3) G = PSLy(7), |9 =8, Aut(A) = Zy x AGL3(2), Za x Spe(2) or Z : Sr.

4) G = PSLz(ll), !Q! =11, Aut(A) = 7o X M.

5) G = PSLQ(ll), [l =12, Zg x Myp < Aut(A) < Zo x Mys: 2.

8) G = My, |Q| =12, Zy x Mis < Aut(A) < Zp x M2 : 2 or Aut(A) =Z3' : Sy,

7) G = Ay, | =15, Zg x Ag < Aut{A) < Zz x Ss.

8) G= PSL2(23), IQ! =24, Aut(A) & o X Mog.

9) G = PSU3(3), || = 28, Aut(A) = Zy x Sps(2).

10) G= 2G2(3), IQ! = 28, Zo X Ag < Aut(A) < Z2 X Sg or Aut(A) > 7o X Sp5(2).

A similar consideration for the group G = ASLy(5) gives a construction of the Leech lattice
as a G-invariant lattice.

4 Invariant submodules for groups with abelian socle

Let G =V - Spon(q). This case is studied only for odd prime values g = p. Let F' = F,. Then
G-invariant subcodes of F are C°, C1, ..., C¥™®@=1) and, if m > 2, two more codes C* and
C~, where

ool Om(P—l) ») o=+ L~ CQm(P—l)j

ct+Cm =cme-l),
ctNe = Cm(p—l)-&»l‘
Now let F = Z, A = M*, so rank(A) = p*™ — 1. Then there are G-invariant basic sublattices

AT <k<2mp-1); A% A AR 1<r<p-1,1<s<2m~1,1<k< (2m—s)(p-1)/2,
such that any invariant sublattice will be a linear combination of these basic lattices:

A= Zpi/\i.

Here A%, A* and A~ are defined as the minimal lattices T, such that (I'+pA)/pA is isomorphic to
C*, C* or C~ respectively. Furthermore, A2™(P—1)=k L psSAE 5 ARST 5 AZm(p=1)=k+1 | ps AR+l
and Ak,s,r/(A2m(p—l)-k+1 4 psAk+1) o C'k/Ck'H.

Ifp=5m=1k=1,s=1, then A% i isometric to the Leech lattice (in this case we
have ASpa(5) & ASLa(5)).

If we consider invariant lattices in F = ZV, we will have additional invariant lattices A?;
AOST 1 <r<p—1,5>1.

Permutation module for the group Spom(p) is studied also in [18].
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Now we are coming to the most interesting case, the affine group G = AGLy(g) = V-GL,(g).
We have here Q = V. First we consider the group G; = AGLi(p") = V - GL1(p"). Let Fpn
be a finite field of p™ elements. Consider F® as group algebra 4 = F[V] of the abelian group

V= IF;; over a ring F:
A= {Z%X” | avEF}.

veV
So we write X7 in place of x,. Operations in A are given by:

S @ X+ b X" = (ay + by) XY,
cZavX” = anuX”, ceF,
(Fax) - (L ax") =Y abx =3 (Z aubw_u) x®.
U,v w u

The element X is the unity of the algebra A and A is a module over F of rank p™ with basis
{X¥|veV}

The affine group G1 = AGL1(p") = V - GL1(p") is a semidirect product of the abelian group
V and the multiplicative group GL1(p") = Fyn of the field Fyn and it acts on A:

AXY) =X* X' =X, weV,
G(X") = X%, g€ Fi.

So V-invariant F-submodules in A are exactly ideals of F-algebra A.

G-invariant submodules of A are called affine invariant codes, and GL; (p™)-invariant codes
in ‘
A'={> a,X"|a,€F}

v#0

are cyclic codes. If C is a cyclic code in A’, then the extended cyclic code C is obtained by

embedding:
Z apX¥ = (— Z a,) X% + Z a, X"
v#0 v#0 v#0
We recall some facts and definitions for the case when F is a field. A cyclic code C' of length
p® — 1 over F is an ideal in the quotient ring F[Y]/ (Y?"~1 — 1), and the code C' is uniquely
determined by its generating polynomial f(Y). Let 6 be a primitive element of the field Fpn.
Then the set T of all numbers s, such that 0 < s < p™ — 1 and f(6°) = 0, is called the defining
set of C. Note that we consider the defining set of a cyclic code in the range 0 < s < p™ — 1,
rather than 0 < s < p™ — 1, as usually defined; this allows us later to consider 0 as an element
of the defining set of the extended code.
Consider the following F-linear map of A (resp. A'):

‘Ps(z aaX%) = Zaaas,
where 0 < s < p" —1 (resp. 0 < s < p" —1). If C C A’ is a cyclic code then
T = {s | ps(c) =0Vce C}

is the defining set of C. In this case T'U {0} can be considered as the defining set of C.
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For 5,0 < s < p™ — 1, the p-adic expansion is

n—1

stsipi, 0<s<p-1).
=0

The partial order relation < on {0,1,...,p™ — 1} is defined as follows:
Vs,r€{0,1,...,p" = 1}: s<r<=>5<nr, 0<i<n-1
The following result is well-known [15].

Theorem 2 Let T be the defining set of an extended cyclic code C. Then C is affine invariant
if and only if the condition s € T implies v € T for any r < s.

The group G is contained in the group Gy = AGLp(q) =V - GLp(q), where n = mt and
g =p* (consider V = If?;n as m-dimensional space over Fg). '
Theorem 3 Let T' be the defining set of an extended cyclic code C of length p™ over a field F'.
Then C is invariant under G, n = mt, if and only if the following two conditions hold:

{)seT,r<s=reT;

() s=Y"FapeT (0<si<p-1),8>0=(s—p+ ") poqpm_y €T forl =1,
o, m—1,

General situation (AG Ly, (q)-invariant codes over the ring Zpe and AGLn,(g)-invariant lat-
tices) was considered in [1, 3]. Note that remarkable Barnes-Wall lattices are also covered by
this construction. Permutation modules for G Ly, (g) are studied also in [7].

5 Codes over Z4

In this section we consider extended cyclic codes of length 2™ over the ring Z4 of integers modulo
4. The ambient space will be

A - Z GﬂuXv | Oy S Z4
veV=Fon

Let C be an extended cyclic code over Zg in A (i.e. invariant under GL1(2")). There are
two canonical subcodes of C:

Cy = (C+24)/2A (residue code),

Cy=CnN24={ceC|2 =0} (torsion code).

They can be considered as linear codes over Fg. We say that (77, 7%) is the defining set of C if T}
and Th are the defining sets of C; and Cj respectively. Assuming that C; is naturally embedded
in A mod 2, we have

CiCC, Ti27T.

We will say that a quaterhary code is affine invariant if it is invariant under AGL;(2"). We have
the following theorem [1].
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Theorem 4 Let (T1,Ty) be the defining set of an extended cyclic code C of length 2" over Zy.
Then C is affine invariant if and only if the following two properties hold:
(iYseTyr<s=reTyford=1,2;
(ii) § = Sp-++- 4820 40-2H 4 1.252 4 € Ty = g+ 45;-20+1.204140.22 4 € T,
(Subscripts and superscripts modn.)

Now we show that all known good series of quaternary codes [10] are affine invariant. Note
that if s = sp-20+ 8721 +-- 4 8p_1-2"1 € Ty then 5.2 mod (27— 1) = Sp1-24s50-2V 4+
sn_g - 2" 1 € T}, so we will denote by Cl{sg, s1,...,8n-1) = Cl{so + 51+ 2! + -+ + 851 - 2"71)
the cyclotomic coset of the number s = sq - 20 pg -2 sy 27—1  that is, numbers s,
s-2mod (27" — 1), s-22 mod (27 — 1),..., 5- 2" mod (2" - 1).

Preparata code is given by the defining set (11,73), where

Ty =T, = {CI0,...,0),Cl(1,0,...,0)}.

Tt is clear that conditions of Theorem 4 are satisfied, so this Z4-code is affine invariant. For
odd n, the Gray image of the Zs-Preparata code determines binary (2n+1, g2™i-2n-2 8) code.
(Gray map sends elements 0,1,2,3 of Z4 to the binary combinations 00,01, 11, 10 respectively).

Kerdock code is the dual code to Preparata code, considered as Z4-code. It is given by
the following defining set:

T, =Ty ={0,1,2,...,p" = 1}\ {CI(1,...,1),Cl{0,1,..., D}.

For odd n, the Gray image of the Zy-Kerdock code is binary (271,4",2" — 2(n=1)/2 code.
Quaternary Preparata and Kerdock codes are particular cases of quaternary Reed-Muller
codes QRM (r,n), defined by

Ty =Ty = {Cl{so,...,5n-1) | S0+ -+ 8p1 <n—1—7}

Quaternary Reed-Muller codes are also affine invariant. Codes QRM (n—2,n) and QRM(1,n)
are Preparata and Kerdock codes respectively. Note that QRM (r,n) is a lifted Reed-Muller
code, in the sense that 7} = T% and T} determines binary Reed-Muller code RM/(r,n). Similarly
one can define lifted Reed-Muller Zox-codes (k > 3), and lifted Generalized Reed-Muller codes
for odd characteristic p > 2. However these codes will not be affine invariant [4].

Goethals codes are determined by the defining sets

Ty = {CI(0,...,0),C1(1,0,...,0)},

T =TU {Cl(l, 1L,0,... ,O)}.

They define binary codes with parameters (2”“,22"““3"‘8, 8).
Helleseth, Kumar and Shanbhag define a quaternary code which determines binary code
with the same parameters as Goethals code:

T = {Cl(0,...,0),Cl(1,0,...,00},

T =T u{CUL,0,...,0,1,0,...,0)} = HLUCI2" +1),

where (r,n) = 1.
Goethals-Delsarte codes are defined by:

T, = {CI(0,...,0),CI(1,0,...,0)},
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Ty =Ty U{CI(1,1,0,...,0),C1(1,0,1,0,...,0),...Cl(1,0,...,0,1,0,...,0)}
=Ty U{CI(1+2Y),Cl(1 +2%),...,Cl(1 + 2")},

where 1 <r < (n—1)/2.
Similarly, Delsarte-Goethals and Calderbank-McGuire codes are also affine invariant.
Finally, we show the connection between defining sets and parity check matrices of quaternary
codes. If a quaternary code C has the defining set

Ty = {CK0),Cl(s1),...,Cl(s4)},

T =T5U {Cl('[‘}_), o ,Cl('i‘b)},
then the parity check matrix of the code C will be

(1 1 1 1t ... 1
0 1 ¢ g glem
01 g g . gloDe
0 2 2n 27 .. 262
0 2 % 2 . agledm

(where ¢ = 2™ and £ is the Teichmiiller representative of a primitive generator 6 of Fon, see [10]
for details).
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