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Integer-valued and almost integer-valued functions
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Abstract

In this article, we discuss conditions so that complex entire functions are integer-valued,
by means of methods based on Diophantine problems. We also describe how are deduced
conditions to be “almost” integer-valued.

Keywords: Integer-valued functions, Almost integer-valued functions, Lattice, Geometry of numbers,
Transcendence method.

1 Introduction

We first consider a naive question as follows. Denote by Q the algebraiﬁ closure of E_n C.
Let F(z) be a complex function in one variable which satisfies F'(u) € Q for any u € Q.

Could we specify any properties for the function #'(z)7

We know that such F'(2) is NOT necessarily algebraic function ; we had examples in 1894

due to P. Stickel of a transcendental function taking algebraic values at all algebraic points.

In fact, Stackel’s showed a more general statement : for any countable set S, and for any
o

setl’ being dense in the complez plane, there exists an entire function F(z) = Z fn2™ with
n={)

rational fn, satisfying F'(u) € I for any u € S. Thus we have F@Q) cQforS=1=0q.
(s 5]

Moreover he constructed in 1902 a transcendental function F(z) = Z fa2™ with rational
n=0

fn, analytic in a neighbourfood of the origin, with the property that the both F'(z) and its

inverse function take algebraic values at all algebraic points€ Q in the neighbourfood.



19

We also recall that the Hermite-Lindemann theorem shows exp(a) ¢ Q for any a €
Q, o # 0, which says, such transcendental function always takes transcendental values at
any non-trivial algebraic point. Stickel’s result notices that this is not true for all transcen-
dental functions. F. Beukers and J. Wolfart gave in 1988 a condition for the algebraicity
of the values of Gauss’ hypergeometric function F(z) and Wolfart made a criterion to
distinguish whether a Gauss’ hypergeometric function takes algebraic values at algebraic
points or not {Be-Wo) : if Gauss’ hypergeometric function F(z) is algebraic over C(z), then
F(Q) ¢ Q, otherwise there are hypergeometric functions, either F(2) with F(£) € Q for
only finitely many & € Q, or, F(z) such that there is o subset E C Q which is dence in C
satisfying F(¢) € Q whenever § € E.

On the other hanc}_,_ there are many examples of transcendental functions such that
FNYCZ,or FQ)CQe g F(z) = 2%.

Now we ask, what it is, the function F(z) with F(N) C Z or F(Z) C Z. We have the
following fundamental result due to G. Pélya [Po] in 1915 (see also [Hal).

Definition 1 Let F(z) be an eniire function in C. Write |F|, = sup |F(z)| and define
fel<r

7(F) the order of exponential type of F(z); 7(F) = limsup ———— log IF}'

r—400
Theorem A (Pdlya) Let F(z) be an entire function in C with F(N) C Z.
Suppose T(F') < log2. Then F(z) is a polynomial.
Pélya considered also the case F(Z) C Z (see also [Cal).

Theorem B (Pélya) Let #(z) be an entire function in C with F(Z) C Z.
3 + V5

Suppose T(F) < log( }. Then F(z) is a polynomial.

In Theorem A and B, we see that '(z) is necessarily a polynomial in Q[z], but not in Z{z]
(consider for example, 12(z + 1))

z
The bounds log 2 and log(%@) are optimal because of 2* and (%) +

2 Results

We see, F(z) is a polynomial with coefficients in Q, which is equivalent to say the functions

ZPF(2)* (h,k € NU {0}) are linearly dependent over Q. Then a natural generalization of
works of Pélya is to seek a sufficient condition such that several functions fi,---, fr are
linearly dependent over Q.

For Cl»(’b"' S C denote by T(N): 1<n <N]Cni

We then show
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Theorem 1 Let L and Ny be rational integers with 1 < Ny < L. There are constanis
Cy > 0 and Ca > 0 depending only on L, Ny satisfying the following. Let {1,(2, -+ € C be

infinite complex points pasrwise distinct. Let fi,--- , fr be entire functions in C. Suppose

fi(¢r) € Z for any 3,n with 1 < j < L andn 2> 1. If we have 1r<1r1§3,<x[110g [fileyry < CoN
<<

for any N > Ny, then the functions fi, -, fr are lincarly dependent over Q.

We are able to calculate C; > 0 and C3 > 0 in an explicit manner. Several consequences of
Theorem 1 are, for instance, as follows :

Corollary 2 Let F(z) be an entire function in C with P(N) C Z. Suppose 7(F) < .
Then F(z) is a polynomial over Q.

()% (h,k e NU {0}). O

—1 . {z—h
Proof We consider fl,-u,fLasz(z ) hgz +1)-F

Corollary 3 Let F be an entire function with F(N) C Z with 7(F) < %. Then there exist
N1, N5 € N such that F satisfies the functional equation

N1 Ng
Z Z ahkth(z +k)=0

h=0 k=0
with apy € Q not all zero.

3 Almost integer-valued functions

Let us try to relax our condition in Theorem 1. We still want as consequence the functions
to be polynomials over QQ or linearly dependent over Q, however we DOUBT if we really
need the functions are integer-valued in the sufficient condition. Indeed we succeeded in
proving the following.

Put 6(N) := 1<}rzr§1?<1\? [Ch — ¢k} for N > 2 and ¢3,{, - - ¢{n € C distinct.

Set also || z ||:= min |z — m)|.
mel

Theorem 4  Let L and Ny be rational integers with 1 < Ny < L. There are constants
Ci > 19, Cy > 0 and C3 > 0 depending only on L,Ny satisfying the following. Let
{1,(a,++ € C be infinite complex points pasrwise distinct. Let fi,---, fr be entire func-
tions in C. Assume

max, log | filo,r(vy < CaN

forany N > Ng,1<j7< L. For 1 <Vj <L, ¥Yn > 1 assume also

n+l
I £5(Gn) IS Cae™®"nds (5533—13) ‘

Then the functions fi,- -, fr. are linearly dependent over Q.
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We may explicitly calculate C1, Cy and C3. We present consequences of Theorem 4 :

Corollary 5 Let F(z) be an entire function in C. Suppose 7(F) < = and || F(n) [|[< e™®"
for any n € N. Then F(z) is a polynomial over Q.

4 Qutline of the proof of theorems

We prove the theorems by Schneider’s method which is one of main transcendence methods
to deal with Diophantine problems.

Proof of Theorem 1

[First step| : construction of an auxiliary function

We may suppose that each f;(2), (1 <4 < L) is not identically zero. Then we know that the
L

zeroes of the functions are isolated. We start to construct the function F(z) := Epj fi(2)
i=1

such that the coefficients p; € Z (1 < j < L) are not all zero and that, foranyn,1 <n < Ny,

F(¢n) = 0. This requires to solve a system in unknowns € Z by Siegel's Lemma (the

algebraic one, see [Da-Hi] and [Hi]). We use the Lemma to conclude that there exist

p;j € Z (1 £ j < L) not all zero such that

No(No—1), . C1

T log 5

log L +

1
4 <
m_aé(Llog [pji =T _ND

1<5

[Second step] : extrapolation
We consider for each N > Ny the following properties :

AN) : F((p)=0for1<Vn <N
B(N) : [Flywsn < L

We shall show A(N) == B(N) and B(N) = A(N + 1).

[Proof of A(N) = B(N)] :
By the hypothesis A(N), we see that the function F has at least N zeroes in the set
{z € C:|z| < (N +1)}. The Lemma of Schwarz (in fact the residue formula ; see [Gr] and
[Gr-Mi-Wa)) shows o
log {Fls(w-+1y < log |Fleyr(n 1) — Nlog &
then we have ) . No 1 o
log |[Flr(nt1) € -7, log L — — log 5=
The suitable choice of C; allows us conclude.
[Proof of B(N) = A(N +1)] :

The property B(IV) implies |F(¢)| < 1 for any 1 <n < N + 1. Since f;(¢n) € Z then we
obtain F({,) € Z namely F(¢(,) = 0.
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[Third step] : conclusion

The property A(No) holds by the construction of F' in the First step. Therefore by the
Second and the Third steps we see that A(N) and B(N) are true for any N > Np. If F'is
not identically zero, the zeroes are isolated, which implies r(N) — oo, thus by Liouville’s
theorem | F|,(yy — oo for N — oo, that contradicts with B(N). Then F is identically zero.

(]
Proof of Theorem 4
[First step] : construction of an auxiliary function

We choose the constants Cy, Cs so as to satisfy the both :

110 Ci—1 -—1~0 _ L _ Ny _ Cq
1% 72 T3RTT NG

(L — No)(N = 1) (1]gcl—1_10g3>_logL__z_\r_O_L—No o

C,N < .
2= L 2% oL L B

By hypothesis, there are integers a;, such that for each 1 <j < L,1 <n < Np:

| £5(6n) 1= 1£5(Cn) — ajml-

The obvious inequality
1 1 3
log |ajn| <log { 5 +[fi($n)] | < max | 5 +log|fi(6a)l, log
and the assumption of Theorem 4 give us forany 1 < j < L,1<n < Ny :
1
3og {a;'nl < 5 + C';No.
L
We construct the function F(z) := Z p; f;(2) such that the coefficients p; € Z (1 < j < L)

i=1
are not all zero and for any n, Nf <n < Np that

L
Z Piljn = 0.
=1

Since L > [Ny/2 + 1} we may solve the system again by Siegel’s Lemma to get p; € Z (1 <
j < L) not all zero with

No 1
Je M z
lrél%xL log |p;| < A (logL + 5 + CZN[)) .

We then have

L Ng
log [Floy-(vy < =N, (logL +CyN + _2_5) .



[Second step] : extrapolation
We consider for each N > Ny the following properties :

L
A(N) :ijajnzt)for % <n<N
=1
B(N) : |Flynsn <3V +37L
We shall show that A(N) = B(N) and B(N) == A(N +1).
{Proof of A(N) == B(N)]: Put

P g Ny (1 -
Cs=¢e 3 (LL' 0 «exXp (L—Of\fg (§+G2No>)) .

By the hypothesis A(N), we see

L
[F(Gn) = 1 pi(fi(Gn) — agn)| < C5le™® max || f5(Ga) |
j—1

1<5<L
3= S5

which shows under the assumption of || f;(¢n) | :

52n+1) )"H

PG < b (o

Because of
§(2n + 1)

3(n) S é(n+1)
er(2n + 1)

<L I ZrhEl)

we have

N
.oy o NO(N4+1)TT
. < o8- N
e el s N

2

On the other hand, use the inequality from the residue formula :

Let f be a function analytic in |z| < R in C and be (5,(y,+ -G € C in |z| < R. Then
we have

If(Co)] S Ev+ B

where

R 1%~
Elz'flR'R_‘CoigRﬂ_Knls
i

! l
_ _ FiD) 1
Ey = glgo Cklngl (KO Gl H T Cn]) .

i=1i#n

Take ¢p € C with |[(p] =r=7(N +1) and (o # Gi(¥ < < N). We now get thanks to
the above inequality :

83
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Pesiin gty TRy I a3 ('gf’?i‘ e )

H<n<N <k<N T <n< i#n

oz

For R = Cyr, this implies |#], <1} 413 where

o Cy Ci-1 -M
=1 gy (F)

I :M%I;?;‘NIF(%)IEM_I (%)éﬁ ‘ (Z._%VC%,SL))Mﬂ

with M = [N/2 + 1.
The choice of Cy and the construction of the auxiliary function let us obtain

log|T1] € —Nlog3.

Next, we see that the disc of radius r(N) + §(N )/ 2 contains N disjoint discs of radius
5 §(N)\2 S(N) §(N)
(N)/2 thus we have N T) < (T(N) + T) therefore putting o(N) = Ny we
obtain o(N)VN <2+ o(N) then

1
for N > 1 and 7
2v2

J(N-{-I)Sm

for N > 2. The upper bound for MaxXy cney |F'(¢n)] gives us

Ty < Me 32 N2ogM 1 (3

M
M) " o(NV + 1) F1-v,

Consequently we have Ty < % for N > 2 and then
|Flywany STi+Tp <37V 4371
[Proof of B(N) = A(N + 1)} :
By the assumption on || f;(¢n) || of the theorem and the property on o(NN}, we see

| filwsr) IS Cse™"

forany N > 2.



Using the bound for log |p;| : the coefficient of the auxiliary function, and the choice of
Cs, we get

L
1Y piajnal < Llfglj?g(LUPjJ I £5Cnan) )+ 1FPCns1)| < C5le®Coe™ +372 4371 <1
=1 %

L
which implies that the integer vanishes, namely ijaj, N+t =0,
j=1

[Third step] : conclusion
Since B(N) is true for any N > Ny, we have

|Floviy <37V +371

then Liouville’s theorem assures us that F' is identically zero. O

5 Higher dimensional case

Now we ask to ourselves what happens on C™ in several variables case, or algebraic integer-
valued case. Let K be an algebaic number field of degree (K : Q] = d and Og be the
integer ring of K. In such cases, we have also a sequence of proven results. The works
due to Seigo Fukasama (= Seigo Morimoto) around 1920’s together with the related results
of A. O. Gel’'fond concerning the entire function in C with F(Z[:]) C Z[i] consist of some
fundamental concept in this area. Daihachiro Sato also investigated integer-valued functions
in 1960's. F. Gramain obtained the best possible bound for the order of the entire function
in C with F(Ok) C Og to be a polynomial when K is imaginary quadratic [Gr]. For the
historical survey we refer his article. C. Pisot dealt with not only integer-valued functions
but also almost integer-valued functions by interpolation method. A version in characteristic
p > 0 is studied by M. Car and D. Adam.

Definition 2 Letd=d if K CR and é = % otherwise.

We claim that the highly important fact
» a€Z,a]<l=a=0
is not true in the case of algebraic integers, so we use instead, the following Size Inequality:
a€Og,a#0=logla > —(6 —1)loglal

where [@] denotes the maximum of absolute values of all the conjugates of a over Q.

Definition 3 Let £'(z) be an entire function in C™ and |z| denotes Euclidean norm in C™.

Write |[F|, = sup |F(2)| and define T(F') the order of exponential type
zecm’ Jz{<r
of F(z) by 7(F)=limsup log—lF{r_'
r—+00

85
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We then quote a theorem due to Gramain :

Theorem C (Gramain) Let K be an algebaic number field of degree [K : Q] = d and Ok
be the integer ring of K. Let F(z) be an entire function in C™ of 7(F) < a. Suppose
F(N™) C Ok. Assume further there exists a constant ¢ > 0 such that for n € N™ we have

limsup —---—~—-10g F(n)]

{nj—oo ]’fb]

<e.

Then under the condition log(e® — 1) < —(8 — 1) log(1 + €°) the function F is a polynomial
with coefficients in K.

We collect the results as follows by Pélya, G. H. Hardy, Pisot, Gramain, V. Avanissian &
R. Gay, A. Baker and A. Martineau. Below assume the function F(z) is entire.

(1) F(N) C Z, 7(¥') < log2 == F(z) is a polynomial.

(2) F(Z) C Z, 7(F) < log 3—*:2@ =3 F(z) is a polynomial.

(3) F(N) C Ok, log(e® — 1) < —(0 — 1) log{1 + €°) == F(z) is a polynomial.

(4) P(Z) C Ok, log(2sinh(g)) < ~&L log(2 + €° + €7°) = F(2) is a polynomial.
(6) F(N™) C Z, 7(F) < log2 = F(z) is a polynomial.

(6) F(Z™) C Z, 7(F) < log 3% == F(2) is a polynomial.

(7) F(N™) C Ok, log(e® — 1) < —(8 — 1) log(1 + e°) == F(z) is a polynomial.

(8) F(Z™) C Ok, log(2sinh(§)) < —2Llog(2 + € +e7¢) == F'(2) is a polynomial.

The upper bounds log2 and log 3+2\/g are only optimal.

We get the following in the case where we consider several variables and algebraic integers :

Theorem 6 Lei K be an algebaic number field of degree [K : Q] = d and O be the integer
ring of K. Let L and Ny be rational integers with 1 < Ny < L. Let m € N. Then there are
constants Ct > 0 and Cy > 0 depending on L, Ny, m satisfying the following. Let {1,(z, -
be infinite points in C™ pairwise distinet. Let fi, -+, fi be entire functions in C™ with
f5(G) € Ok (1 <Vj < L,¥n>1). Suppose

za log | filoyrvy
N

Assume further that there exist Cs > 0 and Cyq > 0 such that

<Cy YN 2 Ng.

max log |£5(Cn)]
N

Then under the condition log(e“? —1+m) < —(§—1) log(1+e%*) we have that the functions
f1,0 -, fr are Uinearly dependent over K.

<C3, [Knl <CyN VN > No.



87

References

[Be-Wo| F. Beukers and J . WOLFART, Algebraic Values of hypergeometric functions,
in New advances in Transcendence Theory (ed. A. Baker), Cambridge Univ. Press,
pages 68-81, 1988.

[Ca] F. CARLSON, Uber ganawerige Funktionen, Math. Z., 11, 1921, 1-23.
[Da-Hi] S. DavID and N. HIRATA-KOHNO, Linear Forms in Eliptic Logarithms, sibmitted.

[Gr] F. GRAMAIN, Sur le theéroréme de Fukasawa-Gel’fond, Invent. Math. 63, 1981, 495-
506.

[Gr-Mi-Wa] F. GRAMAIN, M. MIGNOTTE and M . WALDSCHMIDT, Valeurs algébrique de
fonctions analytiques, Acta Arith. 47, 1986, §7-121.

[Ha] G. H. HARDY, On a theorem of G. Pdlya, Proc. Cambridge Phil.Soc., 19, 1916-1919,
60-63.

[Hi] N. HIRATA-KOHNO, Formes linéaires de logarithmes de points algébriques sur les
groupes algébriques, Invent, Math. 104, 1991, 401-433.

[Po] G. POLYA, Uber ganzwertige ganze Funktionen, Rend. Circ. Math. Palermo, 40, 1915,
1-16.



