

Kyoto University Research Information Repository	
Title	Integer-valued and almost integer-valued functions(Algebraic combinatorics and the related areas of research)
Author(s)	Hirata-Kohno, Noriko
Citation	数理解析研究所講究録 (2006), 1476: 78-87
Issue Date	2006-03
URL	http://hdl.handle.net/2433/48207
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Integer-valued and almost integer-valued functions

Noriko Hirata-Kohno

日本大学理工学部数学科 平田典子

Dept. of Mathematics College of Science and Technology NIHON University Kanda, Chiyoda, Tokyo 101-8308, JAPAN email: hirata at math.cst.nihon-u.ac.jp

October 4, 2005

Abstract

In this article, we discuss conditions so that complex entire functions are integer-valued, by means of methods based on Diophantine problems. We also describe how are deduced conditions to be "almost" integer-valued.

Keywords: Integer-valued functions, Almost integer-valued functions, Lattice, Geometry of numbers, Transcendence method.

1 Introduction

We first consider a naive question as follows. Denote by $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in \mathbb{C} . Let F(z) be a complex function in one variable which satisfies $F(u) \in \overline{\mathbb{Q}}$ for any $u \in \overline{\mathbb{Q}}$.

Could we specify any properties for the function F(z)?

We know that such F(z) is NOT necessarily algebraic function; we had examples in 1894 due to P. Stäckel of a transcendental function taking algebraic values at all algebraic points. In fact, Stäckel's showed a more general statement: for any countable set S, and for any set T being dense in the complex plane, there exists an entire function $F(z) = \sum_{n=0}^{\infty} f_n z^n$ with rational f_n , satisfying $F(u) \in T$ for any $u \in S$. Thus we have $F(\overline{\mathbb{Q}}) \subset \overline{\mathbb{Q}}$ for $S = T = \overline{\mathbb{Q}}$. Moreover he constructed in 1902 a transcendental function $F(z) = \sum_{n=0}^{\infty} f_n z^n$ with rational f_n , analytic in a neighbourfood of the origin, with the property that the both F(z) and its inverse function take algebraic values at all algebraic points $\overline{\mathbb{Q}}$ in the neighbourfood.

We also recall that the Hermite-Lindemann theorem shows $\exp(\alpha) \notin \overline{\mathbb{Q}}$ for any $\alpha \in \overline{\mathbb{Q}}$, $\alpha \neq 0$, which says, such transcendental function always takes transcendental values at any non-trivial algebraic point. Stäckel's result notices that this is not true for all transcendental functions. F. Beukers and J. Wolfart gave in 1988 a condition for the algebraicity of the values of Gauss' hypergeometric function F(z) and Wolfart made a criterion to distinguish whether a Gauss' hypergeometric function takes algebraic values at algebraic points or not [Be-Wo]: if Gauss' hypergeometric function F(z) is algebraic over $\mathbb{C}(z)$, then $F(\overline{\mathbb{Q}}) \subset \overline{\mathbb{Q}}$, otherwise there are hypergeometric functions, either F(z) with $F(\xi) \in \overline{\mathbb{Q}}$ for only finitely many $\xi \in \overline{\mathbb{Q}}$, or, F(z) such that there is a subset $E \subset \overline{\mathbb{Q}}$ which is dence in \mathbb{C} satisfying $F(\xi) \in \overline{\mathbb{Q}}$ whenever $\xi \in E$.

On the other hand, there are many examples of transcendental functions such that $F(\mathbb{N}) \subset \mathbb{Z}$, or $F(\mathbb{Q}) \subset \overline{\mathbb{Q}}$ e. g. $F(z) = 2^z$.

Now we ask, what it is, the function F(z) with $F(\mathbb{N}) \subset \mathbb{Z}$ or $F(\mathbb{Z}) \subset \mathbb{Z}$. We have the following fundamental result due to G. Pólya [Po] in 1915 (see also [Ha]).

Definition 1 Let F(z) be an entire function in \mathbb{C} . Write $|F|_r = \sup_{|z| \le r} |F(z)|$ and define $\tau(F)$ the order of exponential type of F(z); $\tau(F) = \limsup_{r \to +\infty} \frac{\log |F|_r}{r}$.

Theorem A (Pólya) Let F(z) be an entire function in \mathbb{C} with $F(\mathbb{N}) \subset \mathbb{Z}$. Suppose $\tau(F) < \log 2$. Then F(z) is a polynomial.

Pólya considered also the case $F(\mathbb{Z}) \subset \mathbb{Z}$ (see also [Ca]).

Theorem B (Pólya) Let F(z) be an entire function in $\mathbb C$ with $F(\mathbb Z) \subset \mathbb Z$. Suppose $\tau(F) < \log(\frac{3+\sqrt{5}}{2})$. Then F(z) is a polynomial.

In Theorem A and B, we see that F(z) is necessarily a polynomial in $\mathbb{Q}[z]$, but not in $\mathbb{Z}[z]$ (consider for example, $\frac{1}{2}z(z+1)$).

The bounds $\log 2$ and $\log(\frac{3+\sqrt{5}}{2})$ are optimal because of 2^z and $\left(\frac{3+\sqrt{5}}{2}\right)^z + \left(\frac{3-\sqrt{5}}{2}\right)^z$.

2 Results

We see, F(z) is a polynomial with coefficients in \mathbb{Q} , which is equivalent to say the functions $z^h F(z)^k (h, k \in \mathbb{N} \cup \{0\})$ are linearly dependent over \mathbb{Q} . Then a natural generalization of works of Pólya is to seek a sufficient condition such that several functions f_1, \dots, f_L are linearly dependent over \mathbb{Q} .

For
$$\zeta_1, \zeta_2, \dots \in \mathbb{C}$$
 denote by $r(N) := \max_{1 \le n \le N} |\zeta_n|$.

We then show

Theorem 1 Let L and N₀ be rational integers with $1 < N_0 < L$. There are constants $C_1 > 0$ and $C_2 > 0$ depending only on L, N₀ satisfying the following. Let $\zeta_1, \zeta_2, \dots \in \mathbb{C}$ be infinite complex points pairwise distinct. Let f_1, \dots, f_L be entire functions in \mathbb{C} . Suppose $f_j(\zeta_n) \in \mathbb{Z}$ for any j, n with $1 \le j \le L$ and $n \ge 1$. If we have $\max_{1 \le j \le L} \log |f_j|_{C_1 r(N)} \le C_2 N$ for any $N \ge N_0$, then the functions f_1, \dots, f_L are linearly dependent over \mathbb{Q} .

We are able to calculate $C_1 > 0$ and $C_2 > 0$ in an explicit manner. Several consequences of Theorem 1 are, for instance, as follows:

Corollary 2 Let F(z) be an entire function in \mathbb{C} with $F(\mathbb{N}) \subset \mathbb{Z}$. Suppose $\tau(F) \leq \frac{1}{40}$. Then F(z) is a polynomial over \mathbb{Q} .

Proof We consider
$$f_1, \dots, f_L$$
 as $\frac{z(z-1)\cdots(z-h+1)}{h!} \cdot F(z)^k \ (h, k \in \mathbb{N} \cup \{0\}).$

Corollary 3 Let F be an entire function with $F(\mathbb{N}) \subset \mathbb{Z}$ with $\tau(F) \leq \frac{11}{14}$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that F satisfies the functional equation

$$\sum_{h=0}^{N_1} \sum_{k=0}^{N_2} a_{hk} z^h F(z+k) = 0$$

with $a_{hk} \in \mathbb{Q}$ not all zero.

3 Almost integer-valued functions

Let us try to relax our condition in Theorem 1. We still want as consequence the functions to be polynomials over \mathbb{Q} or linearly dependent over \mathbb{Q} , however we DOUBT if we really need the functions are integer-valued in the sufficient condition. Indeed we succeeded in proving the following.

Put
$$\delta(N) := \min_{\substack{1 \le h < k \le N \\ m \in \mathbb{Z}}} |\zeta_h - \zeta_k|$$
 for $N \ge 2$ and $\zeta_1, \zeta_2, \dots \zeta_N \in \mathbb{C}$ distinct.
Set also $\parallel z \parallel := \min_{m \in \mathbb{Z}} |z - m|$.

Theorem 4 Let L and N_0 be rational integers with $1 < N_0 < L$. There are constants $C_1 > 19$, $C_2 > 0$ and $C_3 > 0$ depending only on L, N_0 satisfying the following. Let $\zeta_1, \zeta_2, \dots \in \mathbb{C}$ be infinite complex points pairwise distinct. Let f_1, \dots, f_L be entire functions in \mathbb{C} . Assume

$$\max_{1 \le j \le L} \log |f_j|_{C_1 r(N)} \le C_2 N$$

for any $N \ge N_0, 1 \le j \le L$. For $1 \le \forall j \le L, \ \forall n \ge 1$ assume also

$$|| f_j(\zeta_n) || \le C_3 e^{-3n} n^{\frac{n}{20}} \left(\frac{\delta(2n+1)}{r(2n+1)} \right)^{n+1}.$$

Then the functions f_1, \dots, f_L are linearly dependent over \mathbb{Q} .

We may explicitly calculate C_1 , C_2 and C_3 . We present consequences of Theorem 4:

Corollary 5 Let F(z) be an entire function in \mathbb{C} . Suppose $\tau(F) \leq \frac{1}{451}$ and $||F(n)|| \leq e^{-5n}$ for any $n \in \mathbb{N}$. Then F(z) is a polynomial over \mathbb{Q} .

4 Outline of the proof of theorems

We prove the theorems by Schneider's method which is one of main transcendence methods to deal with Diophantine problems.

Proof of Theorem 1

[First step]: construction of an auxiliary function

We may suppose that each $f_j(z)$, $(1 \le j \le L)$ is not identically zero. Then we know that the

zeroes of the functions are isolated. We start to construct the function $F(z) := \sum_{j=1}^{L} p_j f_j(z)$

such that the coefficients $p_j \in \mathbb{Z}$ $(1 \leq j \leq L)$ are not all zero and that, for any $n, 1 \leq n \leq N_0$, $F(\zeta_n) = 0$. This requires to solve a system in unknowns $\in \mathbb{Z}$ by Siegel's Lemma (the algebraic one, see [Da-Hi] and [Hi]). We use the Lemma to conclude that there exist $p_j \in \mathbb{Z}$ $(1 \leq j \leq L)$ not all zero such that

$$\max_{1 \le j \le L} \log |p_j| \le \frac{1}{L - N_0} \log L + \frac{N_0(N_0 - 1)}{L} \log \frac{C_1}{2}.$$

[Second step]: extrapolation

We consider for each $N \geq N_0$ the following properties:

$$A(N): F(\zeta_n) = 0 \text{ for } 1 \le \forall n \le N$$

$$B(N): |F|_{r(N+1)} < 1.$$

We shall show
$$A(N) \Longrightarrow B(N)$$
 and $B(N) \Longrightarrow A(N+1)$.

[Proof of $A(N) \Longrightarrow B(N)$]:

By the hypothesis A(N), we see that the function F has at least N zeroes in the set $\{z \in \mathbb{C} : |z| \le r(N+1)\}$. The Lemma of Schwarz (in fact the residue formula; see [Gr] and [Gr-Mi-Wa]) shows

$$\log |F|_{r(N+1)} \le \log |F|_{C_1 r(N+1)} - N \log \frac{C}{2}$$

then we have

$$\log |F|_{r(N+1)} \le \frac{1}{L - N_0} \log L - \frac{N_0}{L} \log \frac{C_1}{2}.$$

The suitable choice of C_1 allows us conclude.

[Proof of $B(N) \Longrightarrow A(N+1)$]:

The property B(N) implies $|F(\zeta_n)| < 1$ for any $1 \le n \le N+1$. Since $f_j(\zeta_n) \in \mathbb{Z}$ then we obtain $F(\zeta_n) \in \mathbb{Z}$ namely $F(\zeta_n) = 0$.

[Third step]: conclusion

The property $A(N_0)$ holds by the construction of F in the First step. Therefore by the Second and the Third steps we see that A(N) and B(N) are true for any $N \geq N_0$. If F is not identically zero, the zeroes are isolated, which implies $r(N) \to \infty$, thus by Liouville's theorem $|F|_{r(N)} \to \infty$ for $N \to \infty$, that contradicts with B(N). Then F is identically zero.

Proof of Theorem 4

[First step] : construction of an auxiliary function We choose the constants C_1,C_2 so as to satisfy the both :

$$\frac{1}{4}\log\frac{C_1-1}{2}-\frac{1}{2}\log 3-\frac{L}{L-N_0}\log L-\frac{N_0}{2(L-N_0)}-\log\frac{C_1}{C_1-1}>0,$$

$$C_2 N \leq \frac{(L-N_0)(N-1)}{L} \left(\frac{1}{2} \log \frac{C_1-1}{2} - \log 3\right) - \log L - \frac{N_0}{2L} - \frac{L-N_0}{L} \log \frac{C_1}{C_1-1}.$$

By hypothesis, there are integers a_{jn} such that for each $1 \le j \le L, 1 \le n \le N_0$:

$$||f_j(\zeta_n)|| = |f_j(\zeta_n) - a_{jn}|.$$

The obvious inequality

$$\log|a_{jn}| \le \log\left(\frac{1}{2} + |f_j(\zeta_n)|\right) \le \max\left(\frac{1}{2} + \log|f_j(\zeta_n)|, \log\frac{3}{2}\right)$$

and the assumption of Theorem 4 give us for any $1 \le j \le L, 1 \le n \le N_0$:

$$\log|a_{jn}|\leq \frac{1}{2}+C_2N_0.$$

We construct the function $F(z):=\sum_{j=1}^L p_j f_j(z)$ such that the coefficients $p_j\in\mathbb{Z}$ $(1\leq j\leq L)$ are not all zero and for any $n,\frac{N_0}{2}\leq n\leq N_0$ that

$$\sum_{j=1}^{L} p_j a_{jn} = 0.$$

Since $L > [N_0/2 + 1]$ we may solve the system again by Siegel's Lemma to get $p_j \in \mathbb{Z}$ ($1 \le j \le L$) not all zero with

$$\max_{1 \le j \le L} \log |p_j| \le \frac{N_0}{L - N_0} \left(\log L + \frac{1}{2} + C_2 N_0 \right).$$

We then have

$$\log |F|_{C_1r(N)} \leq \frac{L}{L-N_0} \left(\log L + C_2N + \frac{N_0}{2L} \right).$$

[Second step]: extrapolation

We consider for each $N \geq N_0$ the following properties:

$$A(N): \sum_{j=1}^{L} p_j a_{jn} = 0 \text{ for } \frac{N}{2} \le n \le N$$

$$B(N): |F|_{r(N+1)} < 3^{-N} + 3^{-1}.$$

We shall show that $A(N) \Longrightarrow B(N)$ and $B(N) \Longrightarrow A(N+1)$.

 $[Proof of A(N) \Longrightarrow B(N)] : Put$

$$C_3 = e^{-3} \left(L^{\frac{L}{L-N_0}} \cdot \exp\left(\frac{N_0}{L-N_0} \left(\frac{1}{2} + C_2 N_0 \right) \right) \right)^{-1}.$$

By the hypothesis A(N), we see

$$|F(\zeta_n)| = |\sum_{j=1}^{L} p_j(f_j(\zeta_n) - a_{jn})| \le C_3^{-1} e^{-3} \max_{1 \le j \le L} \|f_j(\zeta_n)\|$$

which shows under the assumption of $||f_j(\zeta_n)||$:

$$|F(\zeta_n)| \le n^{\frac{n}{20}} \left(\frac{\delta(2n+1)}{e^3 r(2n+1)} \right)^{n+1}.$$

Because of

$$\frac{\delta(2n+1)}{e^3r(2n+1)}<1,\quad \frac{\delta(n)}{r(n)}\geq \frac{\delta(n+1)}{r(n+1)}$$

we have

$$\max_{\frac{N}{2} \le n \le N} |F'(\zeta_n)| \le e^{-3 - \frac{3N}{2}} N^{\frac{N}{20}} \frac{\delta(N+1)}{r(N+1)}^{\frac{N}{2}+1}.$$

On the other hand, use the inequality from the residue formula:

Let f be a function analytic in $|z| \leq R$ in $\mathbb C$ and be $\zeta_0, \zeta_1, \dots, \zeta_l \in \mathbb C$ in $|z| \leq R$. Then we have

$$|f(\zeta_0)| \le E_1 + E_2$$

where

$$E_{1} = |f|_{R} \cdot \frac{R}{R - |\zeta_{0}|} \prod_{n=1}^{l} \frac{|\zeta_{0} - \zeta_{n}|}{R - |\zeta_{n}|},$$

$$E_{2} = \prod_{k=1}^{l} |\zeta_{0} - \zeta_{k}| \sum_{n=1}^{l} \left(\frac{|f(\zeta_{n})|}{|\zeta_{0} - \zeta_{n}|} \cdot \prod_{i=1, i \neq n}^{l} \frac{1}{|\zeta_{i} - \zeta_{n}|} \right).$$

Take $\zeta_0 \in \mathbb{C}$ with $|\zeta_0| = r = r(N+1)$ and $\zeta_0 \neq \zeta_i(\frac{N}{2} \leq i \leq N)$. We now get thanks to the above inequality:

$$|F|_r \leq |F|_R \cdot \frac{R}{R-r} \prod_{\frac{N}{2} \leq n \leq N} \frac{|\zeta_0 - \zeta_n|}{R - |\zeta_n|} + \prod_{\frac{N}{2} \leq k \leq N} |\zeta_0 - \zeta_k| \sum_{\frac{N}{2} \leq n \leq N} \left(\frac{|F(\zeta_n)|}{|\zeta_0 - \zeta_n|} \cdot \prod_{i \neq n} \frac{1}{|\zeta_i - \zeta_n|} \right).$$

For $R = C_1 r$, this implies $|F|_r \leq T_1 + T_2$ where

$$T_1 = |F|_R \cdot \frac{C_1}{C_1 - 1} \cdot \left(\frac{C_1 - 1}{2}\right)^{-M},$$

$$T_2 = M \max_{\frac{N}{2} \leq n \leq N} |F(\zeta_n)| 6^{M-1} \left(\frac{3}{M}\right)^{\frac{M}{2}} \cdot \left(\frac{r(N+1)}{\delta(N)}\right)^{M-1}$$

with M = [N/2 + 1].

The choice of C_2 and the construction of the auxiliary function let us obtain

$$\log |T_1| \le -N \log 3.$$

Next, we see that the disc of radius $r(N) + \delta(N)/2$ contains N disjoint discs of radius $\delta(N)/2$ thus we have $N\left(\frac{\delta(N)}{2}\right)^2 \leq \left(r(N) + \frac{\delta(N)}{2}\right)^2$, therefore putting $\sigma(N) := \frac{\delta(N)}{r(N)}$ we obtain $\sigma(N)\sqrt{N} \leq 2 + \sigma(N)$ then

$$\sigma(N+1) \le \frac{1}{2(\sqrt{2}-1)\sqrt{N}}$$

for $N \geq 1$ and

$$\sigma(N+1) \le \frac{2\sqrt{2}}{(\sqrt{3}-1)\sqrt{N}}$$

for $N \geq 2$. The upper bound for $\max_{\frac{N}{2} \leq n \leq N} |F(\zeta_n)|$ gives us

$$T_2 \le Me^{-3-\frac{3M}{2}}N^{\frac{N}{20}}6^{M-1}\left(\frac{3}{M}\right)^{\frac{M}{2}}\sigma(N+1)^{\frac{N}{2}-1-[N/2]}.$$

Consequently we have $T_2 < \frac{1}{3}$ for $N \geq 2$ and then

$$|F|_{r(N+1)} \le T_1 + T_2 \le 3^{-N} + 3^{-1}$$
.

[Proof of $B(N) \Longrightarrow A(N+1)$]:

By the assumption on $||f_j(\zeta_n)||$ of the theorem and the property on $\sigma(N)$, we see

$$|| f_j(\zeta_{N+1}) || \le C_3 e^{-7}$$

for any $N \geq 2$.

Using the bound for $\log |p_j|$: the coefficient of the auxiliary function, and the choice of

$$|\sum_{j=1}^{L} p_{j} a_{j,N+1}| \leq L \max_{1 \leq j \leq L} (|p_{j}| \parallel f_{j}(\zeta_{N+1}) \parallel) + |F(\zeta_{N+1})| \leq C_{3}^{-1} e^{-3} C_{3} e^{-7} + 3^{-2} + 3^{-1} < 1$$

which implies that the integer vanishes, namely $\sum_{i=1}^{L} p_j a_{j,N+1} = 0$.

[Third step]: conclusion

Since B(N) is true for any $N \ge N_0$, we have

$$|F|_{r(N+1)} < 3^{-N} + 3^{-1}$$

then Liouville's theorem assures us that F is identically zero.

Higher dimensional case

Now we ask to ourselves what happens on \mathbb{C}^m in several variables case, or algebraic integervalued case. Let K be an algebraic number field of degree $[K:\mathbb{Q}]=d$ and \mathcal{O}_K be the integer ring of K. In such cases, we have also a sequence of proven results. The works due to Seigo Fukasama (= Seigo Morimoto) around 1920's together with the related results of A. O. Gel'fond concerning the entire function in \mathbb{C} with $F(\mathbb{Z}[i]) \subset \mathbb{Z}[i]$ consist of some fundamental concept in this area. Daihachiro Sato also investigated integer-valued functions in 1960's. F. Gramain obtained the best possible bound for the order of the entire function in \mathbb{C} with $F(\mathcal{O}_K) \subset \mathcal{O}_K$ to be a polynomial when K is imaginary quadratic [Gr]. For the historical survey we refer his article. C. Pisot dealt with not only integer-valued functions but also almost integer-valued functions by interpolation method. A version in characteristic p > 0 is studied by M. Car and D. Adam.

Definition 2 Let $\delta = d$ if $K \subset \mathbb{R}$ and $\delta = \frac{d}{2}$ otherwise.

We claim that the highly important fact

$$a \in \mathbb{Z}, |a| < 1 \Longrightarrow a = 0$$

is not true in the case of algebraic integers, so we use instead, the following Size Inequality:

$$a \in \mathcal{O}_K, a \neq 0 \Longrightarrow \log |\overline{a}| \ge -(\delta - 1) \log |\overline{a}|$$

where $|\overline{a}|$ denotes the maximum of absolute values of all the conjugates of a over \mathbb{Q} .

Definition 3 Let F(z) be an entire function in \mathbb{C}^m and |z| denotes Euclidean norm in \mathbb{C}^m . Write $|F|_r = \sup_{z \in \mathbb{C}^m, |z| \le r} |F(z)|$ and define $\tau(F)$ the order of exponential type of F(z) by $\tau(F) = \limsup_{r \to +\infty} \frac{\log |F|_r}{r}$.

of
$$F(z)$$
 by $\tau(F) = \limsup_{r \to +\infty} \frac{\log |F|_r}{r}$

We then quote a theorem due to Gramain:

Theorem C (Gramain) Let K be an algebraic number field of degree $[K:\mathbb{Q}]=d$ and \mathcal{O}_K be the integer ring of K. Let F(z) be an entire function in \mathbb{C}^m of $\tau(F) \leq \alpha$. Suppose $F(\mathbb{N}^m) \subset \mathcal{O}_K$. Assume further there exists a constant c > 0 such that for $n \in \mathbb{N}^m$ we have

$$\limsup_{|n|\to\infty}\frac{\log|\overline{F(n)}|}{|n|}\leq c.$$

Then under the condition $\log(e^{\alpha}-1) < -(\delta-1)\log(1+e^{c})$ the function F is a polynomial with coefficients in K.

We collect the results as follows by Pólya, G. H. Hardy, Pisot, Gramain, V. Avanissian & R. Gay, A. Baker and A. Martineau. Below assume the function F(z) is entire.

- (1) $F'(\mathbb{N}) \subset \mathbb{Z}$, $\tau(F') < \log 2 \Longrightarrow F'(z)$ is a polynomial.
- (2) $F(\mathbb{Z}) \subset \mathbb{Z}$, $\tau(F) < \log \frac{3+\sqrt{5}}{2} \Longrightarrow F(z)$ is a polynomial.
- (3) $F(\mathbb{N}) \subset \mathcal{O}_K$, $\log(e^{\alpha} 1) < -(\delta 1)\log(1 + e^{c}) \Longrightarrow F(z)$ is a polynomial.
- (4) $F(\mathbb{Z}) \subset \mathcal{O}_K$, $\log(2\sinh(\frac{\alpha}{2})) < -\frac{\delta-1}{2}\log(2+e^c+e^{-c}) \Longrightarrow F(z)$ is a polynomial.
- (5) $F(\mathbb{N}^m) \subset \mathbb{Z}$, $\tau(F) < \log 2 \Longrightarrow F(z)$ is a polynomial.
- (6) $F(\mathbb{Z}^m) \subset Z$, $\tau(F) < \log \frac{3+\sqrt{5}}{2} \Longrightarrow F(z)$ is a polynomial.
- (7) $F(\mathbb{N}^m) \subset \mathcal{O}_K$, $\log(e^{\alpha} 1) < -(\delta 1)\log(1 + e^c) \Longrightarrow F(z)$ is a polynomial.
- $(8) \ F'(\mathbb{Z}^m) \subset \mathcal{O}_K, \ \log(2\sinh(\tfrac{\alpha}{2})) < -\tfrac{\delta-1}{2}\log(2+e^c+e^{-c}) \Longrightarrow F'(z) \ \text{is a polynomial}.$

The upper bounds $\log 2$ and $\log \frac{3+\sqrt{5}}{2}$ are only optimal.

We get the following in the case where we consider several variables and algebraic integers:

Theorem 6 Let K be an algebraic number field of degree $[K:\mathbb{Q}]=d$ and \mathcal{O}_K be the integer ring of K. Let L and N_0 be rational integers with $1 < N_0 < L$. Let $m \in \mathbb{N}$. Then there are constants $C_1 > 0$ and $C_2 > 0$ depending on L, N_0, m satisfying the following. Let ζ_1, ζ_2, \cdots be infinite points in \mathbb{C}^m pairwise distinct. Let f_1, \cdots, f_L be entire functions in \mathbb{C}^m with $f_j(\zeta_n) \in \mathcal{O}_K$ $(1 \leq \forall j \leq L, \forall n \geq 1)$. Suppose

$$\frac{\max\limits_{1\leq j\leq L}\log|f_j|_{C_1r(N)}}{N}\leq C_2 \ \ \forall N\geq N_0.$$

Assume further that there exist $C_3 > 0$ and $C_4 > 0$ such that

$$\frac{\max\limits_{1\leq j\leq L}\log|\overline{f_{j}(\zeta_{N})}|}{N}\leq C_{3},\ |\zeta_{N}|< C_{4}N\ \forall N\geq N_{0}.$$

Then under the condition $\log(e^{C_2}-1+m) < -(\delta-1)\log(1+e^{C_4})$ we have that the functions f_1, \dots, f_L are linearly dependent over K.

References

- [Be-Wo] F. Beukers and J. Wolfart, Algebraic Values of hypergeometric functions, in New advances in Transcendence Theory (ed. A. Baker), Cambridge Univ. Press, pages 68-81, 1988.
- [Ca] F. CARLSON, Über ganzwerige Funktionen, Math. Z., 11, 1921, 1-23.
- [Da-Hi] S. DAVID and N. HIRATA-KOHNO, Linear Forms in Eliptic Logarithms, sibmitted.
- [Gr] F. GRAMAIN, Sur le thérorème de Fukasawa-Gel'fond, Invent. Math. 63, 1981, 495-506.
- [Gr-Mi-Wa] F. GRAMAIN, M. MIGNOTTE and M. WALDSCHMIDT, Valeurs algébrique de fonctions analytiques, Acta Arith. 47, 1986, 97-121.
- [Ha] G. H. HARDY, On a theorem of G. Pólya, Proc. Cambridge Phil.Soc., 19, 1916-1919, 60-63.
- [Hi] N. HIRATA-KOHNO, Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Invent. Math. 104, 1991, 401-433.
- [Po] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Math. Palermo, 40, 1915, 1-16.