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A geometrical similarity between diffision of biological particles in
mathematical biology and migration of human population in mathematical
sociology

生物学的拡散現象と社会学的人口移動現象の幾何学的相似性について

大阪府立大学大学院工学研究科 田畑 稔 (Minoru Tabata)

Department ofMathematical Sciences, Graduate School ofEngineering,
Osaka Prefecture University

Introduction
Since 1990’s, many free trade areas have been established and planned such as
CEFTA$\mathrm{A}(’93)$ , AFTA $(’93)$ , NAFTA $(’94)$ , SADC $(’94)$ , ANCOM $(’95)$ , and

FTAA (2005). Within such free trade areas, goods and services are traded

freely, but geographic population mobility is strictly restricted. However, there
is a new move to entirely abolish the restriction. For example, the EU has been
moving toward an economic integration of 15 countries, and it plans to

remove the restriction in the near future. If the restriction is abolished, then

population will move to more desirable locations. Such a socioeconomic
phenomenon is an example of interregional migration, and has been studied

fully in various articles (see, e.g., Andersson & Philipov (1982), Haag &

Weidlich (1986), and Zhang (1989) $)$ . In particular it is known in quantitative
sociodynamics that the interregional migration is described by a system of

nonlinear differential equations, which is called the master equation (see, e.g.,
Helbing (1995), Weidlich (2000), and Weidlich & Haag $(1983,1988))$ .

In the present paper, we take a master-equation approach to the

interregional migration. We consider that each agent of the model represents

an individual. We assume that each agent relocates in a discrete bounded

domain in order to obtain higher utility, where the utility denotes a quantity

representing socioeconomic desirability. In a real world we often observe that

the socioeconomic desirability depends on the population density. Hence, in

数理解析研究所講究録 1474巻 2006年 127-143



128

the present paper we assume that the utility is a function of the density of

agents.
In the real world each individual evaluates the socioeconomic desirability

according to $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ own preference. However, preferences vary a great deal,
and it is almost impossible to explicitly know the preference of each
individual. Hence, the desirability needs to be evaluated statistically.
Moreover, in a real world various unpredictable socioeconomic events occur
stochastically, and have a large influence on each individual in evaluating the

socioeconomic desirability. Hence, we need to assume that the utility changes

stochastically, $\mathrm{i}.\mathrm{e}.$ , that the utility contains a random variable.
We assume that each agent relocates in a discrete domain, i.e., that the

model has a discrete space variable. Moreover we assume that each agent

moves discretely in time, $\mathrm{i}.\mathrm{e}.$ , that the model has a discrete time variable. We
reasonably assume that the least unit of discrete time variable and the least
unit of discrete space variable are sufficiently small in order that the agent-

based model can describe the phenomenon accurately in space and time.
Furthermore, the total number of agents needs to be sufficiently large, since a
large number of individuals relocate in a real world. Therefore we will impose
the following assumption on the stochastic agent-based model:

Assumption 1. (i) The total number of agents is suffiffifficiently large,
(ii) The least unit of discrete time variable is sufficiently small.
(iii) The least unit of discrete space variable is sufficiently small.

In the present paper we will prove that if we describe the interregional
migration in terms of the stochastic agent-based model, then the description is
almost the same as that done by the discrete master equation in quantitative
sociodynamics, $\mathrm{i}.\mathrm{e}.$ , that the agent-based model can accurately describe the
interregional migration in almost the same way as the discrete master equation.
Hence the agent-based approach to the interregional migration is very
effective in almost the same way as the discrete master equation.
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Remark 1. (i) The theory of interregional migration described by the discrete
master equation is based upon macroscopic observations about the mobility of
population, and has few microscopic foundation. However, our agent-based
model is based on microscopic assumptions imposed on each agent. Hence the
agent-based model is more suitable than the discrete master equation when we
investigate the interregional migration with emphasis laid on a microscopic
aspect of the interregional migration. In the present paper, we use the technical
terms “microscopic” and ”macroscopic” in the sense employed in statistical
mechanics in the same way as Tabata et al. ($2002\mathrm{b}$ , Remark 1.1). See, e.g.,
Cercignani (1990) for these technical terms,

(ii) In Helbing (1995, (1.5a), (1.5b)) the discrete master equation is simply
called the master equation. However, in the present paper we call the equation
the discrete master equation, because we need to distinguish the discrete
master equation from the continuous master equation, which is introduced in
Remark 4.

(iii) In the real world, there exist relocation, growth, new entry, and exit of

population. Indeed it is natural to consider these kinds of behavior, but it

makes our model extremely complicated to take all of them into account.
Hence, in the present paper, as a $\mathrm{f}_{1}\mathrm{r}\mathrm{s}\mathrm{t}$ step we consider only relocation of

agents, and we take neither growth, new entry, nor exit into consideration.
(iv) The method of agent-based approach has one of its origins in

computer science (see, e.g., Russell&Norvig (1995)), and now plays a very
important role also in computational social sciences (see, e.g., Epstein&Axtell
(1996) and Tesfatsion $(2002\mathrm{b},)$ .

(v) Assumption 1 has its origin in statistical mechanics. For example, such

an assumption is employed in obtaining the so-called Boltzmann equation (see,

$\mathrm{e}.\mathrm{g}.$ , Bogoljubov (1962) and Lanford (1975) $)$ .
(vi) The discrete master equation has its origin in statistical mechanics. By

making use of the method developed in the theory of nonlinear differential

equations, we can obtain mathematical results on the discrete master equation

(see Tabata et al. (1998, 1999, 2000, $2001\mathrm{a}$ , $2001\mathrm{b}$ , $2002\mathrm{a}$ , $2002\mathrm{b}$ , $2002\mathrm{c}$ ,

$2002\mathrm{d}))$ . In the present paPer, we apply those mathematical results to the
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agent-based model. Hence the subject of the paper is an application of the
methods in statistical mechanics, the theory of nonlinear differential equations,
and computer science to quantitative sociodynamics.

The discrete variables
By $D$ we denote a bounded domain in which the agents relocate. For
simplicity, we assume that the domain $D$ is a rectangle contained in the 2-
dimensional Euclidean space, $\mathrm{i}.\mathrm{e}.$ , that

$D\equiv[0,a)\mathrm{x}[0,b)$ , (1)

where $a$ and $b$ are suffiffifficiently large positive constants. In a real world, it is
impossible to always observe each individual Moreover, each measurement of
the density of individuals is perfomed statistically. Hence, we reasonably
assume that we can discretely (in time) measure only the mean value (in

space) of the density of agents in each small subset of $D$ . This is the reason for
making our model discrete in space and time.

In order to make our model discrete in space, we divide the domain $D$ into
small disjoint rectangles as follows:

$D= \bigcup_{ij=1\ldots.,N}[(\mathrm{i}-1)a/N,\mathrm{i}a/N)\mathrm{x}[(j-1)b/Njb/N)$ , (2)

where $N$ is a $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}_{1\mathrm{C}}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}1\mathrm{y}$ large natural number, and we regard the pair
$(a/N,b/N)$ as the least unit of discrete space variable. If $N$ is $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}_{1\mathrm{C}}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}1\mathrm{y}$ large,
then the agent-based model satisfies Assumption1, (iii). We call these small
rectangles sections. We number the sections from 1 to $N^{2}$ , and we denote them
by $d_{j},j=1,.$ . . ,$N^{2}$ . We have

$D= \bigcup_{j=1,\ldots,N^{2}}d_{j}$ . (3)

We introduce a quantity that represents the influence of one agent on the
whole model, and we call the quantity the size of agents. The product of the
total number of agents and the size of agents can be regarded as the total
amount of influence of all the agents on the whole model. We assume that if
the total number of agents becomes larger and larger, then the size of agents
becomes smaller and smaller with the condition that the product is identically
equal to a positive constant, because if the size of agents is identically equal to
a positive constant independent of the total number of agents, then the total
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amount of influence of all the agents tends to infinity as the total number of
agents tends to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$ . It follows from Assumption 1, (i), that the size of
agents is suffiffifficiently small. We denote by $R$ the total number of agents
contained in $D$. If $R$ is suffiffifficiently large, then the agent-based model satisfies
Assumption 1, (i). We see that the size of agents has the form, $\gamma/R$ , were $\gamma$ is a
positive constant. If $Rarrow+\infty$ , then the total number of agents tends to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$

and the size of agents converges to 0 with the condition that the product of the
total number of agents and the size of agents is identically equal to the positive
constant $\gamma$ (we can regard $\gamma$ as the total amount of influence of all the agents

on the whole model).

We assume that we can measure only the mean value of the density of
agents in each section. Hence, by assuming that agents are distributed
uniformly in each section, we $\mathrm{d}\mathrm{e}\mathrm{f}_{\mathrm{I}}\mathrm{n}\mathrm{e}$ the density of agents $\mathrm{f}=\mathrm{f}(t,x)$ , $(t,x)\in$

$[\mathrm{O},+\infty)\mathrm{x}D$ , as follows:
$\mathrm{f}=\mathrm{f}(t,x)\equiv(\gamma/R)R_{j}(t)/(ab/N^{2})\mathrm{i}\mathrm{f}x\in d_{j},j=1,\ldots,N^{2}$, (4)

where $R_{j}=R_{j}(l)$ denotes the number of agents located in $d_{i}$ at time $t\geq 0$ , $j=$

$1,\ldots,N^{2}$ . Note that the factor $ab/N^{2}$ is equal to the area of each section.
As mentioned in the preceding section, we assume that each agent

relocates stochastically. Hence, we regard $R_{j}=R_{j}(t)$ , $j=1,\ldots,N^{2}$ , as random

variables depending on the time variable $t\geq 0$ . Hence $\mathrm{f}=\mathrm{f}(t,x)$ is a random
variable depending on $(t,x)$ $\in[0,+\infty)\mathrm{x}D$ . We reasonably assume that our
model contains the random variable $\mathrm{f}=\mathrm{f}(t,x)$ as an endogenous variable, since

the purpose of the model is to describe the interregional migration.
We reasonably assume that there exists no error in counting the total

number of agents contained in $D$, because even if each measurement of

population is perfomed statistically, then the measurement of the total

population can be regarded as sufficiently accurate in a real world. Hence, we
treat the total number of agents $R$ not as a random variable but as a positive

constant. From Remark 1, (iii), we obtain the conservation law of total number

of agents. Hence the following condition is imposed on the random variables,

$R_{j}=R_{j}(t),j=1,\ldots,N^{2}$ :
$R=\Sigma_{j=1,\ldots,N^{2}}R_{j}(t)$, for each $t\geq 0$ . (5)
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In order to make our model discrete in time, we assume that each agent

relocates discretely in time, i.e., we make the following assumption;

Assumption 2. (i) No agent relocates at the initial time $t=0$ . At each time $t$ of
the form,

$t=n\Delta t$ , $n\in\ovalbox{\tt\small REJECT}$ , (6)

agents can relocate, where we denote the set of all natural numbers by $\mathbb{R}$ , and
$\Delta t$ is a sufficiently small positive constant representing the least unit of
discrete time variable.

(ii) For each time interval of the form,
$(n\Delta t,(n+1)\Delta t)$ , $n\in\ovalbox{\tt\small REJECT}\cup\{0\}$ , (7)

no agent relocates.

It does not follow from Assumption 2, (i), that each agent relocates at a
time $t$ of the form (6). There exists the possibility that some agents do not

relocate at a time $t$ of the form (6). Whether agents can move or not at the
initial time $t=0$, we can construct almost the same model. Hence, for
simplicity we assume that no agent relocates at $t=0$. If $\Delta t>0$ is sufficiently
small, then the model satisfies Assumption 1, (ii). From Assumption 2 and (4)

we see that $\mathrm{f}=\mathrm{f}(t,x)$ is constant in each subset of the form,
$(n\Delta t,(n+1)\Delta t)\mathrm{x}d_{j}$ , (8)

where $j=1$ , . . . , $N^{2}$ , and $n\in \mathbb{N}\cup\{0\}$ .

The stochastic agent-based model and the continuous model
Let us construct the agent-based model. The following socioeconomic and
economic variables $(u_{i})$ , $\mathrm{i}=1,\ldots,5$ , are introduced in Weidlich&Haag (1988,

(4.15-19), $\mathrm{p}\mathrm{p}$ . 82-83) in order to consider the desirability: $(u_{1})$ unemployment
rate, $(u_{2})$ export structure index (industrial minus agricultural export divided
by the total export), $(u_{3})$ overnight stays per capita, $(u_{4})$ percentage of total
employment in the tertiary sector, and $(u_{5})$ population density. In
Weidlich&Haag (1988) and Helbing (1998), the variable $(u_{5})$ is treated as an
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endogenous variable. However, the relations between the other variables $(u_{1}-$

$u_{4})$ are extremely complicated, and it is almost impossible to investigate the
time evolution of the variables $(u_{1}- u_{4})$ within a simple framework. Hence the

variables $(u_{1}- u_{4})$ are treated as exogenous variables in Weidlich&Haag (1988).

In our agent-based model we introduce four exogenous variables representing
$(u_{i})$ , $\mathrm{i}=1,\ldots,4$, respectively. Noting that the variable $(u_{i})$ , $\mathrm{i}=1,\ldots,4$ , depend on
the time variable and the space variable, we assume that the four exogenous
variables depend on $(t,x)\in[0,+\infty)\mathrm{x}D$ . We denote them by $g_{i}=g_{i}(t,x)$ , $\mathrm{i}=$

$1,\ldots,4$, respectively. We impose the following assumption on $g_{i}=g_{i}(t,x)$ , $\mathrm{i}=$

$1,\ldots,4$ :

Assumption 3. (i) $g_{i}=g_{i}(t,x)$ , $\mathrm{i}=1,\ldots,4$ , are given step functions which are
constant in each subset of the form $[n\Delta t,(n+1)\Delta t)\mathrm{x}d_{j}$ , $n\in \mathrm{j}\mathrm{M}\cup\{0\},j=1,\ldots,N^{2}$ .

(i) $g_{i}=\mathrm{g}\mathrm{t}(\mathrm{t},\mathrm{x})$ , $\mathrm{i}=1,\ldots,4$, are uniformly bounded, $\mathrm{i}.\mathrm{e}.$ , $\sup_{(t_{r}\kappa)\in \mathrm{r}0,+\infty)\mathrm{x}D}1g_{i}(t,x)|$

$<+\infty$ , $\mathrm{i}=1,\ldots,4$ .

In Weidlich&Haag (1988, (4.19)) and Helbing (1998), a quantity is

introduced in order to describe the desirability. The quantity is called utility.

Also in our model we will employ a similar quantity in order to describe the

desirability. We call the quantity utility also in our model; no confusion will

arise. In our model we assume that the utility depends on $\mathrm{f}$ $=\mathrm{f}(t,x)$ and the

exogenous variable $g=g(t,x)$ , where we define
$g=g(t,x)\equiv(g_{1}(t,x),\ldots,g_{4}(t,x))$ . (9)

Recalling that the utility needs to contain a random variable (see Introduction),

we make the following assumption:

Assumption 4. The utility has the following form:
$\mathrm{U}$ $=\mathrm{U}(tj)\overline{\mp}U(\mathrm{f}(tX_{j}),g(t,X_{j}))+S(tj)$, $j=1$ ,.. $.,N^{2}$ , (10)

where we denote the utility of a section $d_{j}$ at time $t$ of the $\mathrm{f}\mathrm{o}\mathrm{m}$ $t=n\Delta t$,

$n\in \mathrm{F}cup\{0\}$ , by $\mathrm{U}=\mathrm{U}(tj),j=1,\ldots,N^{2}$ , $U=U(\mathrm{f},g)$ is a sufficiently smooth given

function of $(\mathrm{f},g)\in[0,+\infty)\mathrm{x}\mathbb{R}^{4}$, and $S=S(tj)$ is a nonnegative-valued random

variable depending on (tj) $\in\{t=n\Delta t;n\in\square \Psi\cup\{0\}\}\mathrm{x}\{1,\ldots,N^{2}\}$ (see
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Assumption 2, (i), for F$). We denote the center of $d_{j}$ by $X_{j},j=1,\ldots,N^{2}$ .

Remark 2. (i) The utility is employed not only in quantitative sociodynamics

but also in economics. However, the $\mathrm{d}\mathrm{e}\mathrm{f}_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of utility in the former is
different from that in the latter. In the present paper we employ the $\mathrm{d}\mathrm{e}\mathrm{f}_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

given in quantitative sociodynamics.
(ii) The utility employed in Weidlich&Haag (1988, (4.19)) is a function of

the exogenous variables $(u_{1}- u_{4})$ , the endogenous variable $(u_{5})$ , and the
remaining residuals of regression analysis. The utility employed in our model
is a given function of $g=g(t,x)$, $\mathrm{f}=\mathrm{f}(t,x)$ , and the random variables $S=S(tJ)$ , $j$

$=1,\ldots,N^{2}$ . However, we do not afford a microscopic foundation to the given
function.

(iii) We have no need to assume that $U=\mathrm{U}(\mathrm{f}9\mathrm{g})$ is uniformly bounded in
$[0,+\infty)\mathrm{x}\mathbb{R}^{4}$ .

(iv) The utility is defined at each time $t$ of the form $t$ $=n\Delta t$ , $n\in \mathrm{I}\Psi\cup\{0\}$ .
However, we can extend the domain of the utility from the discrete set $\{t=$

$n\Delta t;n\in \mathbb{N}\cup\{0\}\}\mathrm{x}\{1,\ldots,N^{2}\}$ to $[0,+\infty)\mathrm{x}\{1,\ldots,N^{2}\}$ by defining $\mathrm{U}(tj)\equiv \mathrm{U}(n\Delta tj)$

if $nlSt\leq t<(n+1)\Delta t$ , $n\in \mathbb{N}\cup\{0\}$ .
(v) Note that $g=g\{tjc$) and $\mathrm{f}=\mathrm{f}(t,x)$ are constant with respect to the space

variable $X$ in each section. $\mathrm{E}\mathrm{y}$ replacing $x\in d_{i}$ by $X_{i}$ , $\mathrm{i}=1,\ldots,N^{2}$ , we can regard
the functions as those defined in $[0,+\infty)\mathrm{x}\mathrm{D}$ , where we define

$\mathrm{D}\equiv\{X_{i};\mathrm{i}=1,\ldots,N^{2}\}$ . (11)

In a real world, there is the possibility that the random variable $S=S(s,\mathrm{i})$

depends on the random variable $S=S(tj)$ for some $s$ , $t$ , $\mathrm{i}$ , andj such that $(s,\mathrm{i})\neq$

$(tj)$ . Furthermore, there is the possibility that the density function of $S=S(s,\mathrm{i})$

is not equal to that of $S=S(tj)$ for some $s$ , $t$ , $\mathrm{i}$ , and $j$ such that $(s,\mathrm{i})\neq(tj)$ .
However, in the present PaPer, for simplicity we assume that the random
variables $S=S(tj)$ , $t=n\Delta t$, $n\in \mathbb{N}\cup\{0\}$ , $j=1,\ldots,N^{2}$ , are independent of each
other, and that the density functions of $S=\mathrm{S}(\mathrm{t}\mathrm{J})$ , $t=n\Delta t$ , $n\in\ovalbox{\tt\small REJECT}\cup\{0\}$, $j=$

$1,\ldots,N^{2}$ , are the same. We denote the density function by $\rho=\rho(S)$ . We easily
see that the agent-based model changes drastically depending on $\rho=\rho(S)$ , i.e.,
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that the density function $\rho=\rho(S)$ determines the model. We reasonably
assume that

$\rho(S)arrow 0$ as $Sarrow+\infty$ . (12)

Noting that the random variables are nonnegative-valued, we will make the
following simple assumption in order that $\rho=\rho(S)$ can satisfy (12):

Assumption 5. $\rho(S)$ ; $\exp(-S)$ for each $S\geq 0$ .

If an individual moves from one section to another in a real world, then
$\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ needs to bear the cost of moving, which increases with the distance
between the sections. Hence we reasonably make the following assumption:

Assumption $\epsilon$. If an agent moves from one section to another, then $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$

needs to bear the cost of moving. The cost incurred in moving from a section
$d_{j}$ to a section $d_{i}$ is equal to $C=C(|X_{i}-X_{j}|)$ , for each $\mathrm{i},j$ $=1,\ldots,N^{2}$ , where $C=$

$C(r)$ is a sufficiently smooth increasing nonnegative-valued given function of $r$

$\geq 0$ (see Assumption 4 for $X_{j},j=1,\ldots,N^{2}$ ).

We make the following assumption, which gives a microscopic foundation

for the relocation of agents:

Assumption 7. (i) At each time $t$ of the form (6) each agent decides whether

or not to attempt to relocate, where the decision is made stochastically under

the following condition:
Pr{an agent determines to attempt to relocate}=kAt, (13)

where we denote the probability of an event $E$ by $\mathrm{P}\mathrm{r}\{E\}$ , and $k$ is a positive

constant such that $k\Delta t<1$ .
(ii) If an agent decides not to attempt to relocate at a time $t=n\Delta t$, $n\in \mathrm{M}$ ,

then $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ stays in the same section in the time interval [$n\Delta t,(n+1)\Delta t)$, but if

an agent detemines to attempt to relocate at a time $t=n\Delta t$, $n\in \mathrm{M}$ , then $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$

chooses one section at random at the time $t$ .
(iii) Assume that an agent contained in a section $d_{j}$ determines to attempt
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to relocate and chooses a section $d_{l}$ at a time $t=\mathrm{n}\mathrm{A}\mathrm{t}$, $n\in \mathbb{N}$ , where $\mathrm{i}$ and $j$ are
such that $\mathrm{i}j\in\{1,\ldots,N^{2}\}$ . The agent contained in $d_{j}$ decides whether or not to

move to the chosen section $d_{i}$ by comparing the utility of $d_{j}$ with that of $d_{i}$ . If
$\mathrm{U}(t,\mathrm{i})$ $-\{\mathrm{U}(tJ)+C(|X_{i}-X_{j}1)\}>A$ , (14)

where $A$ is a certain positive-valued function, then the agent moves from $d_{j}$ to
$d_{i}$ at the time $t$ . If not, i.e., if

$\mathrm{U}(t,\mathrm{i})-\{\mathrm{U}(tj)+C(|X_{i}-X_{j}|)\}\leq A$ , (15)

then the agent does not relocate to $d_{i}$ at the time $t$, and stays in $d_{j}$ in the time
interval $[n\Delta t,(n+1)\Delta t)$ .

By Assumption 7, (i), we see that there exists the possibility that an agent
decides not to attempt to move at a time of the form (6). Moreover, it follows
from Assumption 7, (ii), that even if an agent decides to attempt to move, then
the agent needs to choose one section and to compare the utility of the chosen
section and that of the section containing $\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}/\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}$. Hence, even if an
agent attempts to move, then there is the possibility that the agent fails to
move. In Assumption 7, (iii), we accept the case where $\mathrm{i}=j$, $\mathrm{i}.\mathrm{e}.$ , we allow
each agent to choose the section containing $\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}/\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}$; no contradiction
will arise.

Let us discuss the condition (13). The following lemma will be proved in
the last section:

Lemma 1. If we replace (13) by the following condition in Assumption 7, (i):

Pr{an agent determines to attempt to relocate} $=\kappa$, (16)

where $\kappa$ is a positive constant such that $\kappa<1$ , then in each bounded time
interval an $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ number of times each agent decides to attempt to move
when $\Delta tarrow \mathrm{O}+\mathrm{O}$ .

The phenomenon described in the lemma above is unnatural, since such
an event does not occur in a real world. Hence we need to assume that the
probability in the left-hand side of (16) becomes smaller and smaller as $\Delta t$

becomes smaller and smaller. Hence we make not (16) but (13) in Assumption
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7, (i).

Let us discuss the function $A$. Considering (14-15), we $\mathrm{f}_{1}\mathrm{n}\mathrm{d}$ that the left-

hand sides of (14-15),
$B=B(\mathrm{i}j)\equiv \mathrm{U}(t,\mathrm{i})-\{\mathrm{V}(\mathrm{t}\mathrm{J}) +C(|X_{i}-X_{j}|)\}$ , (17)

can be regarded as a benefit gained in moving from $d_{j}$ to $d_{i}$ , $\mathrm{i}j=1,\ldots,N^{2}$ . It

follows from Assumption 7, (iii), that if an agent contained in $d_{j}$ chooses $d_{i}$ ,

and if the benefit $B=B(\mathrm{i}j)$ is larger than (smaller than or equal to,

respectively) $A$ , then the agent moves (does not move, respectively) from $d_{j}$ to
$d_{i}$ . Hence, we see that $A$ is the threshold of $\mathrm{b}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{f}_{1}\mathrm{t}$ . If the threshold $A$ is small
(large, respectively), then the inequality (14) ((15), respectively) holds easily.
Hence, the activity of agents depends on the threshold $A$ in such a way that the

activity becomes greater and greater (smaller and smaller, respectively) as the

threshold $A$ becomes lower and lower (higher and higher, respectively).
The following socioeconomic and economic variables $(v_{i})$ , $\mathrm{i}=1,\ldots,4$ , are

introduced in Weidlich&Haag $($ 1988, (4.13-14), $\mathrm{p}\mathrm{p}$. 82-83$)$ in order to describe

the activity of population: $(v_{1})$ total job vacancies, $(v_{2})$ total income, $(v_{3})$

investment structure index (expansionary minus rationalizing investment

divided by total investment), and $(v_{4})$ total population, However, the relations

between the variables $(v_{1^{-}}v_{3})$ are extremely complicated, and it is almost

impossible to investigate the time evolution of the variables $(v_{1^{-}}v_{3})$ within $\mathrm{a}$

simple framework. Therefore, the variables $(v_{1^{-}}v_{3})$ are regarded as exogenous
variables in Weidlich&Haag (1988). Moreover, from Remark 1, (iii), we see
that the total population is constant. Hence, in our agent-basecl model we

introduce three exogenous variables which represent $(v_{i})$ , $\mathrm{i}=1,2,3$ . Noting that

the variables $(v_{1}- v_{3})$ depend only on the time variable $t$, we assume that the

three exogenous variables depend only on $t\geq 0$ . We denote them by $h_{i}=h_{i}(t)$ , $\mathrm{i}$

$=1,\ldots,3$ , We make the following assumption:

Assumption 8. (i) $h_{j}=h_{j}(t)$ , $j=1,\ldots,3$ , are known step functions which are

constant in each subset of the form $[n\Delta t,(n+1)\Delta t)$ , $n\in \mathrm{M}\cup\{0\}$ .
(ii) $h_{\tilde{J}}=h_{j}(t)$ , $j=1,\ldots,3$ , are uniformly bounded, $\mathrm{i}.\mathrm{e}.$ , $\sup_{t\geq 0}1h_{j}(t)|<+\infty$, $j=$

$1,\ldots,3$ .
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We reasonably make the activity of agents depend on $h_{i}=h_{i}(t)$ , $\mathrm{i}=1,\ldots,3$ .
In order to do so, we assume that the threshold $A$ is a function of $h=h(t)$ ,

where
$h=h(t)\equiv(h_{1}(t),\ldots,h_{3}(t))$. (19)

Hence we write
$A=A(h(t))$ . (19)

We impose the following assumption on $A=A(\cdot)$ :

Assumption 9. (i) $A=A(z)$ is a sufficiently smooth function of $z\in \mathbb{R}^{3}$ .
(tt) A$-\succ\delta_{+}$, where we define

$A_{-} \equiv\inf_{\triangleright_{-}}\mu(h(t))$ , (20)

$\delta_{+}\equiv\sup_{0\leq y\leq\gamma/(ab/N^{2}),(t,x)\in[0,+\infty]\mathrm{x}D}U(y,g(t,x))$

$- \inf_{0\leq y\leq\gamma/(ab/N^{2}),\zeta t,x)\in \mathrm{r}0,+\infty\rangle \mathrm{x}D}U(y,g(t,x))$. (20)

Making use of Assumptions 3-4, Assumption 8, and Assumption 9, (i), we
see that

$0\leq\delta_{+}$ , $A_{-}<+\infty$ . (22)

Broadly speaking, we can say that if the threshold $A$ is sufficiently large in
comparison with the range of the utility $U=U(y,g(t,x))$ when

$0\leq y\leq\gamma/(ab/N^{2})$ and $(t,x)\in[0,+\infty)\mathrm{x}D$ , (23)

then the inequality of Assumption 9, (ii), holds. In Proof of Lemma 4 we will
explain the reason for restricting $y$ not to $0\leq y<+\infty$ but to $0\leq y\leq\gamma/(ab/N^{2})$ in
(21). We have no need to assume that $A=A(z)$ is auniformly bounded
function of $z$ . We will employ Assumption 9 in the last section.

On the basis of Assumptions 1-9, we can construct a stochastic agent-
based model. We denote the model by M. We can consider that the behavior of
each agent is sufficiently rational, and that the model $\mathrm{M}$ has a microscopic
foundation for the relocation of agents. We see that the model $\mathrm{M}$ can describe
the interregional migration
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Remark 3. (i) We assume that each agent can evaluate the variables $g=g(t,x)$

and $h=h(t)$ . As mentioned above, we treat these variables as exogenous
variables. In the present paper, we do not afford a microscopic foundation to
these exogenous variables (see Remark 2, (ii)).

(ii) If we impose an assumption different from Assumption 5 on $\rho=\mathrm{p}(\mathrm{S})$ ,

e.g., if we assume that $\rho=\rho(S)$ is equal to a norml distribution, then we can
construct a stochastic agent-based model which is very different from M. This
subject will be fully discussed in another paper.

Let us construct a continuous model described by the discrete master

equation, which is the following $N^{2}$-dimensional system of nonlinear ordinary
differential equations:

$dfltX_{i})/dt=-w(flt,\cdot)$ ; $tX_{i}$)$fl_{\backslash }tX_{i}$)

$+\Sigma_{j=1,\ldots,N^{2}}W(flt,\cdot);tX_{i}|X_{j})J\langle t,X_{j}$ ) $(ab/N^{2})$ , $\mathrm{i}=1,\ldots,N^{2}$ , (24)

where $f=f\zeta t,x$) denotes the unknown function of $(t,x)\in[0,+\infty)\mathrm{x}\mathrm{D}$ (see (11) for
$\mathrm{D})$ . The kernel $W=W(flt,\cdot);t,\cdot\chi|y)$ and the coeffiffifficient $w=w(flt,\cdot);t,x)$ are
defined as follows:

$W=W(flt,\cdot);t,\cdot x|y)\equiv v(t)\exp\{U(f(t,x),g(t,x))-U(f(t,y),g(t,y))-C(|x-y1)\},(25)$

$w=w(flt,\cdot);t,x)\equiv\Sigma_{j=1,\ldots,N^{2}}W(flt,\cdot);\mathrm{r}X_{j}|x)(ab/N^{2})$ , (26)

where $\mathrm{v}$ $=v(t)$ is a function of $t\geq 0$ defined as follows (see (18-19) for $A=$

$A(\cdot)$ and $h=h(t))$ :
$\prime \mathrm{v}$ $=\mathrm{v}(t)\equiv(k/2ab)\exp\{-A(h(t))\}$. (27)

See Assumption4 for $U=U(\cdot,\cdot)$ . See Assumption 6 for $C=C(\cdot)$ . See

Assumption 3 and (9) for $g=g(t,x)$ . See (13) for $k$. Note that (24) and (26)

contain the factor $ab/N^{2}$ , which is equal to the area of each section. In

Weidlich&Haag (1988) and Helbing (1998), $\backslash f=\mathrm{v}(t)$ is called the flexibility,

and is employed in order to describe the activity of population. The system of

equations (24) is exactly the same as the master equation treated in Helbing

(1995, (1.5a)) (recall Remark 1, (ii)). Consider the initial value problem for

(24) whose initial function is equal to the initial density of agents of $\mathrm{M}$ , $\mathrm{i}.\mathrm{e}.$ , to
$\mathrm{f}=\mathrm{f}(0,\mathrm{x})$ . It will be proved in the last section that the initial value problem has
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a unique solution for each initial data in each time interval of the form $[\mathrm{O},T]$ , $T$

$>0$ , i.e., that the initial value problem has a unique global solution for each

initial data. Therefore, we see that the discrete master equation can define a
continuous model. We denote the model by $M$. It is known in quantitative
sociodynamics that the model $M$ can describe the interregional migration (see,

$\mathrm{e}.\mathrm{g}.$ , Helbing (1995), Weidlich (2000), and Weidlich&Haag $(1983, 1988))$.

The main result
In the preceding section we construct the stochastic agent-based model $\mathrm{M}$ and
the continuous model $M$. The main result of the present paper is as follows:

Main Result. If we describe the interregional migration in terms of the
stochastic agent-based model $\mathrm{M}$ , then the description is almost the same as
that given by the continuous model $M$.

The following theorem will be proved in the mathematical level of rigor
in the last section:

Theorem 1. If the total number of agents tends to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$ and if the least unit
of discrete time variable converges to 0+0, then the stochastic agent-based
model $\mathrm{M}$ converges to the continuous model $M$ with a probability converging
to 1.

Noting that the probability mentioned in Theorem 1 converges to 1 as the
total number of agents tends to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$ and as the least unit of discrete time
variable converges to 0+0, and combining Assumption 1 and Theorem 1, we
obtain Main Result.

Remark 4. (i) It follows from Main Result that a description given by the
model $\mathrm{M}$ is almost the same as that done by the model $M$. Therefore we see
that the discrete master equation can play the same role in the theory of agent-
based models as that played by replicator dynamics in the theory of
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evolutionary games.
(ii) In the present paper we make the total number of sections sufficiently

large, but we let it be $\mathrm{f}_{1}\mathrm{x}\mathrm{e}\mathrm{d}$. In Theorem 1 we do not make the total number of
sections tend to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$. However, if we investigate the behavior of the agent-
based model $\mathrm{M}$ when the total number of sections becomes larger and larger,
then we need to make the total number of sections tend to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$ . If we make
the total number of sections tend to $\inf_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}$ in Theorem 1, then we can prove
that the stochastic agent-based model $\mathrm{M}$ converges to a continuous model
described by the following nonlinear integro-partial differential equation:

$\partial f(t,x)/\partial t=-w(flt,\cdot);t,x)flt,x)+\int_{y\in D}W(flt,\cdot);t\cdot,x1y)f(t,y)dy$, (28)

where we denote the unknown function by $f=f(t,x)$ . The $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}_{1\mathrm{C}}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}w=$

$w(flt,\cdot);t,x)$ and the kernel $W=W(flt,\cdot);t.,\chi|y)$ are the same as (25-26). The
equation (28) is called the continuous master equation, and is exactly the same
as the master equation treated in Helbing (1995, (1.5b)). However, this subject

is too mathematical. Hence, we will discuss it in another paper. In the present
paper we do not treat the case where the total number of sections tends to

infinity.
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