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1. Introduction

In this study we will propose framework of data mining based on statistical modeling.
Especially, we focus on knowledge discovery for commerce, marketing and customer sat-
isfaction. In the business scene, questionnaire survey is often used for extracting useful
information. It has, however, been difficult to obtain meaningful rules for Kansei mode4-
ing, because such sampling data involve much ambiguity. We can list rare data, doubtful
data and contradiction data, as main problems which should be careful. From theoretical
view point, these problems should be solved in unified way,

As is often the case, it should be thought that uncertainty is contained in data, there-
fore rules estimated from original data directly are not necessarily reliable. It is widely
known that pre-processing to sampling data is important to extract useful information
in data mining. Thus, we first apply nonlinear method II of quantification[l] to extract
information from data as much as possible. Its optimal mapping can be derived by c.ondi-
tional expectation. We will execute nonlinear method II of quantification by constructing
Gaussian mixture mode1[2]. Gaussian mixture model estimates its parameters by max-
mining $\log$-likelihood function for incomplete data. From the result, it is show$;\mathrm{n}$ that
rare sample data can be detected based on occurrence probability. Detection of doubtful
data is derived by maximizing entropy[3]. Since maximizing entropy is equivalent to min-
imizing free energy, clustering for detecting doubtful sample data is executed by melting
method which is steepest descent method about free energy. After removing rare data and
doubtful data from sampling data, we can try to extract useful rules without contradiction
by using dominance-based rough set approach[4] considering ordinal relation. Proposal
from ework of data mining we will expand can treat sampling data with ambiguity and
uncertain in unified theoretical way.

2. Data Mining from Questionnaire Survey

To begin with, I would like to introduce outline of Kansei modeling[5]. Personal image
from product to Kansei word is collected by questionnaire survey. To obtain useful product
development based on knowledge, this data analysis part zs one of important steps. The
main content I’ $\mathrm{m}$ going to present from now on to construct data rmrnng method in Kansei
engineering. For example, in case of our purpose is to reveal human image received from
front design of car. First, subjets are shown pictures of front design of car. And the$\mathrm{y}$

answer to reply sheet about Kansei words used for semantic differential scale technique [3].
From these two information both a characteristic of objects we consider and the reply
sheet, we can prepare decision table from condition attributes to decision attributes. We
will analyze such decision table.

Fil be rem inding you about subjects which should be solved for data mining. Main 4
problems will be discussed here such as projection of condition attributes, decision pending
for rare data, detection of doubtful data and exclusion of contradiction rules. For exam $\mathrm{p}\mathrm{l}\mathrm{e}$ ,
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when we have such decision table in figure 1, we can obtain these rules describing samples.
However, generally speaking, attributes have meaning. If it is assumed to be Cl: deluxe,
C2: safety, Dl: impression, and 1: low, 2: high, then the data Cl and C2 are high is better
than they are low for Dl and these two rules are regarded as contradiction rules. In this
case, acceptable rules can be obtained by applying dominance-based rough set approach
considering ordinal relation. So in this paper, after applying proposal pre-processing, it
is assumed that we will adopt dominance-based rough set approach.

Decision table Decision nks

IF $\Gamma_{1},-1$ and $C_{2}-2$ THEN $D_{1}-1_{i}arrow$ Contradicting $\ovalbox{\tt\small REJECT} \mathrm{e}$

IF $C_{1}=2$ and $C_{2}=1$ THEN $D_{1}=2$ .
IF $C_{1}=1$ rrrtd$d$ $\mathrm{C}_{2}=1$ THEN $D_{1}=2_{l}.arrow \mathrm{C}\alpha\iota \mathrm{f}\mathrm{I}\mathrm{B}\ \mathrm{c}\mathrm{t}10\underline{\mathrm{e}}$nfie

IF $C_{)-}\mathit{2}$ arud $C_{2}$ $\underline{9}$ THEN $D\mathrm{l}$ $-2_{\iota}$

Figure 1: Acceptable rules obtained by applying dominance-based rough set approach

3.$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{a}\mathrm{l}}$Framework forData Mining
In case the condition attributes are nominal scale, or in case the mapping from condi-

tion attributes to decision attribute is not simple, it is known that projection of condition
attributes to interval works we11[7]. In order to derive interval, interval regression model
for qualitative data is solved by simplex method conventionally. In this paper, we pro-
pose application of Gaussian mixture model to obtain such interval, because we can treat
sampling data with ambiguity and uncertain in unified theoretical way.

Now I would like to focus on proposal framew ork of data mining for Kansei engineering.
Generally, it should be thought that uncertainty is contained in data, therefore the rules
based on reduct are not necessarily rehable. To solve such problem, we propose framework
of data mining for Kansei engineering as figure 2.

Figure 2: Proposal framework of data mining for Kansei engineering

We first apply nonlinear method II of quantification for extracting information from
data as much as possible, secondly, $\log$ likelihood and entropy for decision pending for
rare data and doubtful data, finally, dominance-based rough set approach for excluding
contradiction rules by considering ordinal relation. We treats these processes based on
Gaussian mixture model in a unified way,

4, Data Mining from Questionnaire Survey

4. 1 Outline of Nonlinear method II of quantification

Nonlinear method II of quantification[l] is used for extracting information from data
as much as possible. Squared error function is minimized for condition attributes $\mathrm{x}_{\mathit{8}}$ as
explanatory variables and projection $\mathrm{y}_{s}=$ A $- \frac{1}{2}\mathrm{u}_{s}$ of condition attributes as explained
variables.

$\epsilon^{2}(\mathrm{x}, \mathrm{y})=\mathrm{E}[||\mathrm{y}-\phi(\mathrm{x})||^{2}]$

$= \int\int$ $||\mathrm{y}-\phi(\mathrm{x})||^{2}p(\mathrm{y}|\mathrm{x})d\mathrm{y}p(\mathrm{x})d\mathrm{x}$, (1)
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where A$- \frac{1}{2}$ is defined by

$\Lambda^{-\frac{1}{2}}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\ovalbox{\tt\small REJECT}\frac{1}{\sqrt{\lambda_{1}}}$ , $\frac{1}{\sqrt{\lambda_{2}}}$ , $\cdots$ , $\frac{1}{\sqrt{\lambda_{M}}}||^{\mathrm{T}}\in\Re^{M}\mathrm{x}$ $\Re^{M}$ . (2)

It satisfies
$[\Gamma-p_{\mathrm{O}-}p\Theta^{\mathrm{T}}]U=P_{\ominus}U\Lambda$ (3)

where
$U=[\mathrm{u}_{1}\mathrm{u}_{2}$ . . . $\mathrm{u}_{s}]^{\Gamma}’\in\Re^{s}\cross$

$\Re^{M}$ , (4)

and $\mathrm{u}_{s}\in\Re^{M}\mathrm{x}$ $\Re^{1}$ . $\Gamma$ is vector which consists of joint probability, $[p(\mathrm{i}, j)]\in\Re^{K}\cross$
$\Re^{1}$ ,

and $P_{\Theta}$ is matrix whose $\mathrm{i}j$ element consists of occurrence probability, $p(k)\sigma_{ij}\in\Re^{K}\mathrm{x}$ $\Re^{K}$ ,

then $p_{\Theta}=P_{\ominus}1_{K}\in\Re^{K}\rangle\langle$ $\Re^{1}$ and $1_{k}=[1, 1, \cdots, 1]^{\mathrm{T}}\in\Re^{K}\mathrm{x}$
$\Re^{1}$ .

The estimated optimal mapping can be given by this conditional expectation,

$\hat{\mathrm{y}}=\phi(\mathrm{x})=\int \mathrm{y}p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ . (5/)

In this paper we apply Gaussian mixture to solve nonlinear method II of quantification.

4. 2 Gaussian Mixture for Nonlinear Regression Analysis

Gaussian mixture[2] for nonlinear regression analysis is used for decision pending for
rare data and derivation of interval of rough set analysis. Gaussian mixture is neural
networks that estimates a probability density function by adding up some radial basis
functions. Normal distribution is used as aradial basis funct1on. Here we describe the
dynamics of Gaussian mixture model with $K$ input neurons and $\mathrm{i}$ output neurons which
is used in this study for estimating the interval efficiency[8] .

$d$ dimensional 5th input vector $\mathrm{Z}_{s}\in\Re_{7}^{d}$ $(s=1,2, \cdots , S)$ is inputted into all input
neurons where $S$ denotes a number of sampling data, $k\mathrm{t}\mathrm{h}$ input neuron $(k=1,2, \cdots, K)$

has parameter $\phi_{k}$ and weight $w_{k}$ . Parameters $\phi_{k}$ represents an average vector and a set of
covariance matrix $\{\mathrm{m}_{k}, \Sigma_{k}\}$ where $\mathrm{m}_{k}=[m_{k}^{1}, m_{k}^{2}, \cdots, m_{k}^{d}]^{\mathrm{T}}\in\Re^{d}$ and $\Sigma_{k}$ is $d\cross$ $d$ matrix
whose iith element is a variance $\sigma_{k}^{ii}$ . $\Sigma_{k}$ is a diagonal matrix and a positive define symmet-
$\mathrm{r}\mathrm{i}\mathrm{c}$ matrix $\mathrm{w}$ represents a set $\{w_{1}, w_{2}, \cdots, w_{K}\}$ and a represents a $\mathrm{s}\mathrm{e}\mathrm{t}\{\phi_{1}, \phi_{2,)}\ldots\phi_{K}\}$ .
Furthermore, a set of $\mathrm{w}$ and $\phi$ is expressed with parameter 0.

An output vector of a system can be given by

$\mathrm{E}[\mathrm{Y}|\mathrm{X}_{s}]=\oint_{\Re^{m}}\mathrm{y}p(\mathrm{Y}|\mathrm{X}_{s}, \theta’)d\mathrm{y}$ (6)

where the parameter 0’ denotes a set of $\mathrm{w}$ and $\phi’$ . The conditional probability density
function in the system is

$p( \mathrm{Y}|\mathrm{X}_{s}, \theta’)=\sum_{k=1}^{K}\alpha(k)p_{k}(\mathrm{Y}|\mathrm{X}_{s}, \phi_{k}’)$ (7)

where

$\alpha(k)=\frac{p(k)p_{k}(\mathrm{X}_{s}|\phi_{k}’)}{\Sigma_{k=1}^{K}p(k)p_{k}(\mathrm{X}_{s}|\phi_{k}’)}$ (8)

and the output vector of a system is rewritten by

$\mathrm{E}[\mathrm{Y}|\mathrm{X}_{s}]=\sum_{k=1}^{K}\alpha(k)\oint_{\Re^{m}}\mathrm{y}p_{k}(\mathrm{Y}|\mathrm{X}_{s}, \phi_{k}’)d\mathrm{y}$

$= \sum_{k=1}^{K}\alpha(k)\mathrm{E}_{k}[\mathrm{Y}|\mathrm{X}_{s}]$ (9)
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Here let $\{\mathrm{C}_{k}^{x}\}^{-1}$ be an inverse matrix of covariance matrix $\mathrm{C}_{k}^{x}$ , and let a matrix $\mathrm{D}_{k}$ be

$\mathrm{D}_{k}=\mathrm{C}_{k}^{yx}\{\mathrm{C}_{k}^{x}\}^{-1}$ (10)

then we have
$\mathrm{E}_{k}[\mathrm{Y}|\mathrm{X}_{s}]=\mathrm{m}_{k}^{\prime y}+\mathrm{D}_{k}(\mathrm{x}_{s}-\mathrm{m}_{k}^{\prime x})$ (11)

and

$\mathrm{E}[\mathrm{Y}|\mathrm{X}_{s}]=\sum_{k=1}^{K}\alpha(k)\{\mathrm{m}_{k}^{\prime y}+\mathrm{D}_{k}(\mathrm{x}_{s}-\mathrm{m}_{k}^{\prime x})\}$ (12)

Moreover, in the $k\mathrm{t}\mathrm{h}$ input neurons, the conditional probability density function $p_{k}(\mathrm{Y}|\mathrm{X}_{s}, \phi_{k}’)$

obeys a probability density function that is $m$ dimensional normal distribution with a
mean vector $\mathrm{E}_{k}[\mathrm{Y}|\mathrm{X}_{s}]\in\Re^{m}$ and a covariance matrix $\mathrm{D}_{k}’\in\Re^{m}\mathrm{x}$ $\Re^{m}$ is given by

$\mathrm{D}_{k}’=\mathrm{C}_{k}^{y}-\mathrm{D}_{k}\mathrm{C}_{k}^{x}\mathrm{D}_{k}^{\mathrm{T}}$ (13)

We can derive the conditional probability density function $p(\mathrm{Y}|\mathrm{X}_{s}, \theta’)$ in total system.
Then each estimator of parar eter $\ominus$ is acquired by maximizing the logarithmic function

$L( \theta)=\sum_{s=1}^{s}\log p(\mathrm{Z}_{s}|\theta)$ (14)

We can obtain these estimators by using iterative calculations derived by Expectation
Maximization algorithm [9].

$w_{k}^{(t+1)}= \frac{1}{S}\sum_{s=1}^{s}h_{k}^{(t)}(\mathrm{Z}_{s})$ (15)

$m_{k}^{(t+1)}= \frac{\Sigma_{s_{-}^{-}1}^{S}\mathrm{Z}_{s}h_{k}^{(t)}(\mathrm{Z}_{s})}{\Sigma_{s=1}^{S}h_{k}^{(t)}(\mathrm{Z}_{s})}$ (16)

$\Sigma_{k}^{(t+1)}=\frac{\Sigma_{s=1}^{S}(\mathrm{Z}_{s}-\mathrm{m}_{k}^{(t)})(\mathrm{Z}_{\mathit{8}}-\mathrm{m}_{k}^{(t)})^{\mathrm{T}}h_{k}^{\{t)}(\mathrm{Z}_{s})}{\Sigma_{s=1k}^{\mathrm{S}}h_{v}^{(t)}(\mathrm{Z}_{s})}$ (i7)

where

$h_{k}^{(t)}( \mathrm{Z}_{s})=\frac{w_{k}^{(t)}N_{d}(\mathrm{Z}_{s},\phi^{(t)})}{\sum_{s=1}^{S}w_{k}^{(t)}N_{d}(\mathrm{Z}_{s},\phi^{\langle t)})}$ (18)

Above update rule about the parameter 0 is derived from condition maximizing a
conditional expectation of $\log$-likelihood function

$Q(\theta|\theta^{(t)})=\mathrm{E}[L(\theta, k)|\mathrm{Z}_{s7}\theta^{(t)}]$

$= \sum_{s=1}^{s}\sum_{k=1}^{K}h_{k}^{(l)}(\mathrm{Z}_{s})\log p(\mathrm{Z}_{s}, k|\theta)$ (19)

We can consider a steepest descent method to acquire the parameter 0 maxim izing

log-likelihood function $L(\theta)$ , however a number of learning might be changed by learning

coefficient. Therefore, we apply EM algorithm to proposed system as learning algorithm.
The reason making a covariance matrix $\Sigma_{k}$ a $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\sigma_{k}^{\mathrm{i}i}.)$ is to avoid to unstability from
non-diagonal element. If we apply the nonlinear regressive analysis to the sampling data
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then we can give the following ranges 3 $[s_{1}, s_{2}]$ as the interval efficiency (see figure 3).

$s_{1}= \sum_{k=1}^{k}\alpha_{k}^{x}\mathrm{m}_{k}^{y}$ (20)

$s_{2}= \sum_{k=1}^{k}\alpha_{k}^{x}\mathrm{m}_{k}^{y}$ (21)

Figure 3: Conceptual figure of interval by nonlinear estimation

We can try to extract useful rules without contradiction by using dominance-based
rough set approach[10] considering ordinal relation and interval.

4. 3 Detection of doubtful data based on entropy for rule selection

Detection of doubtful data based on entropy for rule selection is given by maximizing
entropy

$S( \mathrm{x})=-\int p(\mathrm{y}|\mathrm{x})\log p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ (22)

under the following conditions.

$\epsilon^{2}(\mathrm{x}, \mathrm{y})=\int||\mathrm{y}-\phi(\mathrm{x})||^{2}p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ (23)

is constant and

$\int p(\mathrm{y}|\mathrm{x})d\mathrm{y}=1$ . (24)

Optimal solution is given by

$p(\mathrm{y}|\mathrm{x})=Z_{\beta}^{-1}\exp^{-\beta||\mathrm{y}-\phi(\mathrm{x})||^{2}}$ , (25)

where

$Z_{\beta}( \mathrm{x})=\int\exp^{-\beta||\mathrm{y}-\phi(\mathrm{x})||^{2}}d\mathrm{y}$ . (26)

Since maximizing entropy is equivalent to minimizing free energy

$S_{\beta}(\mathrm{x})=-\mathrm{F}_{\mathrm{P}}$ $(\mathrm{x})$ $+\beta\epsilon^{2}(\mathrm{x})$ , (27)

where

$F_{\beta}( \mathrm{x})=-\frac{1}{\beta}\log Z_{\beta}$ . (28)
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Optimal solution which satisfies

$\frac{\partial F_{\beta}(\mathrm{x})}{\partial \mathrm{y}}=0$ (29)

becomes also the conditional expectation.

$\hat{\mathrm{y}}=\phi(\mathrm{x})=$ ’ $\mathrm{y}p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ . (30)

Melting[3] for detection of doubtful data is executed by applying steepest descent method.

$\hat{\mathrm{y}}\Leftarrow\hat{\mathrm{y}}-\int||\mathrm{y}-\phi(\mathrm{x})||p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ . (31)

In this study we will propose framework of data mining based on statistical model-
ing. From theoretical view point, these problems should be solved in unified way, The
conditional expectation works important role.

$\hat{\mathrm{y}}=\int \mathrm{y}p(\mathrm{y}|\mathrm{x})d\mathrm{y}$ Eqs. (5), (12) and (30). (32)

5. Conclusion
We proposed application of Gaussian mixture to nonlinear method II of quantification

for extracting information from data as much as possible, and to melting for pending
decision for rare data and doubtful data. We can apply dominance-based rough approx-
imation to rule selection for excepting contradicting rules after removing rare data and
doubtful data. Established framework of data mining can unify and deal with nonlinear
method II of quantification and melting through Gaussian mixture for extracting rules.
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