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Trace formulae and principal functions of Hilbert
space operators

£ i (Muneo Cho)
IR FE T
Department of Mathematics
Kanagawa University

This paper is the results of [13], [14] and [15]. Let H be a complex separable Hilbert
space and B(#) be the set of all bounded linear operators on ‘H. About the trace
formula, we have the following:

Theorem 1 (M. Krein, 1953). Let A be a self-adjoint operator on H and K be a
trace class self-adjoint operator on H. Then there exists a unique function §(t) such
that

(s + 1) -pl)) = [ #0304
where p is a polynomial.

Let C; be the trace class and A be the set of all Laurent polynomials; P(r,z) =
Sy pe(r)2*. Let J(P, Q) be the Jacobian of P, Q.

Theorem 2 (Carey-Pincus [8], Helton-Howe [19]). Let T = X+i¥ be an operator

on H with trace class self-commutator ([T*,T] € Cy). Then there ezists a function
g(z,y) such that

(Va7 = 5 [ [ 9000 sta)ids

where p and g are polynomials of two variables.

Functions 6(¢) and g(z,y) in Theorems 1 and 2 are called the phase shift of the
perturbation problem A — A + K, and the (Cartesian) principal function of T, re-
spectively, Let T be hyponormal and satisfy [T*,T] € C;. For operators A and K of
Theorem 1, let A =TT* and K = T*T — TT*(=[I*,T] € C1). Then Theorem 1 is

T (p(rT) —p(rr)) = [ Foeod
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And
27
8(t) = -2—1—/ g(vtcos,vtsinf)dd a.e. t>0.
&7 Jo ‘

Let A be the linear space of all Laurent polynomials P(r, z) with polynomial coefficients
such that P(r,z) = S _y Pr(r)2*, where N is a non-negative integer and every pi(r)
is a polynomial of one variable. For T = U|T| with unitary U, put P(|T|,U) =

Cie-n (I THU*.

For the polar decomposition T" = U|T'|, we have the following:

Theorem 3 ([8],[11],[25]). Let T = U|T| be semi-hyponormal operator satisfying
[|T|, U] € C, with unitary U. Then there ezists a function gr such that, for P,Q € A,

T(P(T,V), QUTLVN) = o [ [ 7P Q) e)er(e, ryards.

Definition 1. T is p-hyponormal if (T*T)? > (TT*)?. Especially, T is called hyponor-
mal and semi-hyponormal if p = 1 and p = 1/2, respectively. It holds

hyponormal == semi-hyponormal == p-hyponormal.

(1) If T = U|T| is semi-hyponormal, then § =U [T[% is hyponormal.

(2) If T = U|T| is semi-hyponormal with 1 &€ o(U), then R = L™(U) + i[T| is
hyponormal, where L=}(U) = 4(U + 1)(U — 1)~L.

(3)If T = U|T| is p-hyponormal, then T; = |{T['U|T|'~* is g-hyponormal (Aluthge
transformation), where ¢ = min{p +¢,p+ 1 —¢,1}. Hence, if T' is semi-hyponormal,
then T; is hyponormal.

Spectral mapping theorem holds for these transformations; i.e.,
if T'= U|T| be semi-hyponormal, then

(1) o(S) = {v/re? : re® € o(T)};

(2) o(R) = {L7Ye®) +ir : re® € o(T)};

(3) o(T2) = o(T).

Functions g and g7 of Theorems 2 and 3 are called the principal functions of T related
to the Cartesian decomposition T = X + 1Y and the polar decomposition T' = U|T],
respectively. For a hyponormal operator T = X + Y, the principal function of T' is
defined by the mosaic 0 0 B(z,y) O I as follows;

9(z,y) = Te(B(z,y)).
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For a semi-hyponormal operator T' = U|T)|, the principal function of T" is defined by
the mosaic 0 O BF(e®,r) O I as follows;

gr(e?,r) = Te(B"(e”,r))-

For an operator T = U|T| let T} = |T|'U|T|*™* (0 < t < 1) be the Aluthge transfor-
mation of T. Let gr and gr, be the principal functions of T' and T; = |T*U|T[*™* (0 <
t < 1), respectively. Then we have following results ([12]): '

(1) If T is invertible p-hyponormal with [T}, U] € Cy, then gr = gr,.
(2) If T is hyponormal with [|T, U] € C1, then g(z,y) = gr(e®,r) for z + iy = re®.
The following results are important.

Theorem 4 ([12]). If a positive invertible operator A and an operator D satisfy
[A, D] € Cy, then, for any real number ¢, we have

{AG,D] € C.

Theorem 5 ([12]). IfT is an invertible operator such that [T*,T] € Cy, then [T*,T] €
Cy, where T = |T|Y2U|T|/* (Aluthge transform of T).

For an invertible operator T = U|T|, [T*,T] € C: if and only if [T}, U] € C;, because

|T2,U]=[T*,TIU and [T*,T}=|T|IT],UU" + [T, U]ITIU".

1. Trace formula of p~-hyponormal operators II

Let T = {¢?|0 O 6 < 2}, T be the set of all Borel sets in T and m be a measure
on the measure space (T, ¥) such that dm(§) = 5-df. Then we have

Theorem 3’. Let T € B(H) be semi-hyponormal and T' = U|T| be the polar decompo-
sition of T. Assume that U is unitary and [U,|T|] € C1. Then there exists o summable
function g such that, for P(r,z), Q(r,z) € A, it holds

n([v(m, v), T}, U)]) - / f J(P, Q)(r, )6 gr(e?, r)drdm(6).
We denote by C®(R) the set of all smooth functions on R and by C°(R) the set of
all functions in C**(R) with compact support. We denote by B the linear space of all
N
Laurent polynomials ¢(r, z) such that ¢(r, 2) = Z fi(r)2*, where every fi € C° (R).

k=~N
For T = U|T| with unitary U, put ¢(|T},U) = Spe_n fi(|THU* for ¢ € B.
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In [6], Carey and Pincus proved a more general version of Theorem 3. It requires
complicate calculations. Using polynomial approximation, we improve Theorem 3 in
the following form. .

Theorem 1.1. Let T' € B(H) be semi-hyponormal and T = U|T'| be the polar de-
composition of T. Assume that U is unitary and [U,|T|] € C1. Then, for ¢, € B, it
holds

(607100907100 ) = [ [ 76,030, 0r(e",ryirim(@),
For the proof of Theorem 1.1, it needs Theorems 1.2 - 1.5.

Theorem 1.2. Let A,{B;}j=1,- n be operators such that [A, B;] € Cy and ||B;|| O r
forallj (j=1,2,...,n). Then

I[A, B1By -+ B[, O nr™™* mJaXH[A, Billls.

Let T = U|T| € B(H) be the polar decomposition of 7. Assume that U is unitary
and [U, |T|] € C;. Then we have

U, Tl = Z(Zt)n U,iTP").

By Theorem 1.2,

im0 3 EPI iy o e - o, g e,

n=1
Definition 1.1. Under the assumption above, we define a constant cr of an operator
T = U|T| satisfying [U, |T'{] € C; by

er = max |[T el

Proof of the next theorem is based on an idea of the proof of [19, Lemma 3.2].

Theorem 1.3. Let T =U |T| € B(#H) be the polar decomposition of T. Assume that
U is unitary and [U, |T'|] € C1. Then, for f € S and an integer n, it holds

™, £GT) inl;}z——; / Z erlt) + DI 8)dt,

where cr is the constant of Definition 1.1.

Theorem 1.4. Let F be a compact set of R and f € C*(R). Then there ezist a
function fi € C®(R), a sequence {p,} of polynomials and a sequence {v.} in CZ°(R)
such that

f(@) = fi(z), palx) =m(z) for z€F,
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sup|f(y) ~ m@)! = 0 (n — o),
sup | 7W) =W =0 (o),

sup 1fit) =5 =0 (n— ),

and A )
sup P - 1A = )] =0 (n—o0).

Theorem 1.5. Let T = U|T| be the polar decomposition. Assume that U is unitary
and [U,|T]] € Ci. Then, for f,g €S and integers m,n, it holds

FGrho, o T
3ol Allgz [ orliti+ Disth

slmi - llgllig [ er(il + DI
where cp is the constant of Definition 1.1 and |||h||| = sup,eqqry [A()]-

Next we apply this result to p-hyponormal operators (0 <p <1 /2).

Definition 1.2. Let T = U|T| be p-hyponormal with unitary U. Put S = U|T>.
Then S is semi-hyponormal with unitary U. Hence there exists the Pincus principal
function gg of S and we define the principal function gr of T by

gr(e”,1) = gs(e”, 7%)
(see [11, Definition 3}).

The following theorem is a generalization of Theorem 10 of [11].

Theorem 1.6. Let T = U|T| be an invertible p-hyponormal operator. If |\ T —
U\T|?U* € Cy, then for P(r,2), Q(r,z) € A it holds

((p(r, . (11,0) = [ [ 9P, Qe ar(e? rirn(d)
9. Trace formulae associated with the polar decomposition of operators
Let S(R?) be the Schwartz space of rapidly decreasing functions at infinity. For
T = X + 1Y, let £ and F be the spectral measures of self-adjoint operators X and Y,
respectively. We define 7 on S(R?) by

® () = / / o(5,9)E@)IF(Y) (6 € SERY)).
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By a standard argument, we have

/ / XY §(t, s)dtds = / / b(z,y)dE(z)dF (y),
where
9(t,9) :%/ / e V) (g, y)dwdy

is the Fourier transform of the function ¢ (see, for example, [22, p.237]).

Put v(E) = { [ (t, s)dtds for a measurable set E C R?. Since é(t,s) € S(R?), we
have

f ] (1 + [E)(1 + [sDId(, o)\dtds < oo.
Following Carey-Pincus [8], put G(z,y) = [ [ e®**¥du(t, s) and define

6x,v) = [ [ Glonde@)ar ),
Then
(p) = / / XY y(t, s)dtds = G(X,Y).
Note here that we have 7(1)) = 7(¢) for any smooth function ¢(z,y) which coincides
with ¢(z,y) on supp(7).
The map 7 : S(R?) — B(#) has the following properties [22, Chapter X, §2];

(1) 7 is linear, continuous and supp (1) C o(X) x o(Y),
(2) (1) = I, 7(p + q) = p(X) + ¢(Y) for polynomials p and g of one varaible of z
and y, respectively.

(3) r(@)T(¥) — () € C; for ¢, 9 € S(R?),
(4) r(¢)* — 71(¢) € C1.

By (3) we have an important property [1(#),7(%)] € C; for ¢,9 € S(R?).
The following theorem is a basis.
Theorem 6 (Carey-Pincus, [8, Theorem 5.1]). Let T = X +1iY be an operator with

[T*,T] € C;. Let €, F be the spectral measures of X and Y, respectively and T be given
by (). Then there ezists a summable function g such that, for ¢,% € S(R?),

([0} = 517 [ [ I ot ey
Moreover, if T is hyponormal, then g > 0 and g{z,y) = 0 for x4+ iy & o(T).

In this section, the main theorem is Theorem 2.7. We prepare some results.
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Lemma 2.1. Let A be a positive invertible operator and operators D, E, F' satisfying
(4, D], [E, D, [F, D] € Cy. Then for any real number o, we have

[EA®F, D] € Cy.

Lemma 2.2 (cf.p.158 of [8]). Let T = X +iY be an invertible operator such that
[T*,T) € Cy. Let € S(R?), D = 7(¢) and operators E, F satisfy [E,D),[F,D] € (.
Then, for ¢(x,y) = (z° + y*)* with a real number a,

Tr ([ET(QB)F, D]) =Tr ([E[T[z“F, D]) :

Theorem 2.3. Let T = U|T| be an invertible operator with [T*,T] € C; and let g
be the principal function assoicated with the Cartesian decomposition of T' = X +iY.
Then there exists a summable function gr such that, for P,Q € A,

1 e o
T(P(T}D), QTN = 5= [ [ I, e)eor(e, riards,
and gr(€?,r) = g(z,y) almost everywhere z + iy = re? on C.
An invertible operator T is said to be log-hyponormal if log T*T 2 log TT* [17).

For the proof of the next result, we need the following two lemmas. For an operator
T, let 04p(T) and o,(T") be the approximate point spectrum and the point spectrum
of T, respectively. The following lemmas are important for the main theorem.

Lemma 2.4. Let T = U|T| be an invertible semi-hyponormal operator with T,U] €
Ci1. Then the principal function gf’ associated with the polar decomposition T = U|T|
of T satisfies gr(e,r) =0 for re® & o(T).

Lemma 2.5. Let T = U|T| be an operator with unitary U and put § = u(T\+1). If
2 € 80(S), then |z| > 1. Therefore, if z € o(S), then |z 2 1.

By the above lemmas, for the next theorem we can give another proof of 11, Theorem
9.

Theorem 2.6. Let T = U|T| be a semi-hyponormal operator with unitary U and
[[T"), U] € Cy. Then there exists a summable function gr such that, for P,Q € A,

T(P(TL ). QT 0N = 5= [ [ 1P, @)l e)eer(e”, rydrd.

Theorem 2.7. Let T = X +iY = U|T| be a semi-hyponormal operator with unitary U

and [|T|,U] € C1. If g and gr are the principal function associated with the Cartesian

decomposition of T and the summable function in Theorem 2.6, respectively, then
g(z,y) = gr(e”,r)

almost everywhere z + iy = re® on C.
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3. Principal functions for high powers of operators

In this section, we denote gr and g& be the principal functions of the Cartesian
decomposition and the polar decomposition of 7', respectively. C.A. Berger gave the
principal functions grn of powers 7™ of T in terms of gr and proved that for a suffi-
ciently high n, T™ has a non-trivial invariant subspace for a hyponormal operator T
([5]). For a hyponormal operator T with [T*,T] € Cy, it holds that

gr(2) = ZgT(Ck), where (f =2z (k=1,..,n).
k=1

More generally, in [4], for a polynomial p, it holds

gor)(2) = Z{ gr(Q) : p(Q) =2}
¢

Theorem 3.1. Let T = X +iY = U|T| be an operator satisfying the following trace
formula:

(T, 0), 6T, = o= [ [ J@0)(r e of (e, r)drde

for any Laurent polynomials ¢ and 1. Then the principal function gr(z,y) related to the

Cartesian decomposition T = X +iY of T ezists and it is given by gr(z,y) = 9% (%,r),
where © + iy = re¥.

If an operator T = U|T| is invertible and [|T'},U] € Ci, then [T™,T] € C;. So we have
the following

Corollary 3.2. If an invertible operator T = X + 1Y = U|T| satisfies [|T'],U] € (4,
then gr(z,y) = gh(€®,r), where T + iy = re®. '

For a relation between g7 and gf., we need the following Berger’s result:

Theorem 3.3 (Berger, |5, Theorem 4]). For an operator T, if [T*,T] € Cy, then for
- a positive integer n,

g@y)= ), gr(uv).

(utiv)r=o-t+iy
Theorem 3.4. For an operator T with [T™,T) € Cy, if / / g(z,y)dzdy # 0, then
lim ess sup lgmm| = o0.
Applying Corollary 3.2 and Theorem 3.4 to 7", we have the following.

Corollary 3.5. For an operator T = U|T|, let T™ = U,|T™| be the polar decompo-
sition of T™ (n = 1,2,...). If [|T"|,Us] € C;i for every non-negative integer n and
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/ / gh(e®,r)yrdfdr # 0, then
lim ess sup lghn] = oo

Let T = U|T| and T = U,|T™| be the polar decompositions of T" and T™, respec-
tively. Then it holds that if [T*,T] € Cy, then [T™",T"] € C; for any positive integer .
On the other hand, in the polar decomposition case, it is not clear whether [|T,U] € 1
impilies [|T"],Uy] € C; even if n = 2. If T is invertible and [|T1, U] € Cy, then, for every
n, it holds [|T™|, U,] € C1 by [11, Theorem 3].

Next we consider operators with cyclic vectors. First we need the following result.

Theorem 3.6 (Martin and Putinar, Th.X.4.3 [22]). Let gr and gy be the principal
functions of operators T and V such that {T*, T}, [V* V] € Ci, respectively. If there
ezists an operator A € Cy such that AV = TA and ker(4) = ker(4*) = {0}, then

gr U gv.
Proof of the following lemma is based on it of [22, Corollary X.4.4].

Lemma 3.7. Let T be an operator such that [T*,T] € Cy and o(T) is an infinite set.
If T has a cyclic vector, then gr U 1.

Let S be an operator having the principal function gs related to the Cartesian
decomposition S = X + Y. Then gs-(z,y) = —gs(z, —y). Hence, as a corollary of
Lemma 3.7, we have the following.

Lemma 3.8. Let T be an operator such that [T*,T] € Cy and o(T) is an infinite set.
If T* has a cyclic vector, then —1 0 gr.

Theorem 3.9. Let T be an operator such that [T*,T] € C; and o(T) is an infinite set.
If / / gr(z,y)dzdy # 0, then, for a sufficiently high n, T™ has a non-trivial invariant

subspace.
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