

Title	Trace formulae and principal functions of Hilbert space operators(Recent Developments in Linear Operator Theory and its Applications)
Author(s)	Cho, Muneo
Citation	数理解析研究所講究録 (2005), 1458: 117-126
Issue Date	2005-12
URL	http://hdl.handle.net/2433/47899
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Trace formulae and principal functions of Hilbert space operators

長 宗雄 (Muneo Chō) 神奈川大学工学部 Department of Mathematics Kanagawa University

This paper is the results of [13], [14] and [15]. Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . About the trace formula, we have the following:

Theorem 1 (M. Krein, 1953). Let A be a self-adjoint operator on \mathcal{H} and K be a trace class self-adjoint operator on \mathcal{H} . Then there exists a unique function $\delta(t)$ such that

$$\mathrm{Tr}igg(p(A+K)-p(A)igg)=\int p'(t)\delta(t)dt,$$

where p is a polynomial.

Let C_1 be the trace class and A be the set of all Laurent polynomials; $\mathcal{P}(r,z) = \sum_{k=-N}^{N} p_k(r) z^k$. Let $J(\mathcal{P}, \mathcal{Q})$ be the Jacobian of \mathcal{P}, \mathcal{Q} .

Theorem 2 (Carey-Pincus [8], **Helton-Howe** [19]). Let T = X + iY be an operator on \mathcal{H} with trace class self-commutator ($[T^*, T] \in \mathcal{C}_1$). Then there exists a function g(x, y) such that

$$\operatorname{Tr}igg([p(X,Y),q(X,Y)]igg) = rac{1}{2\pi i}\int\int J(p,q)(x,y)g(x,y)dx\,dy,$$

where p and q are polynomials of two variables.

Functions $\delta(t)$ and g(x,y) in Theorems 1 and 2 are called the phase shift of the perturbation problem $A \to A + K$, and the (Cartesian) principal function of T, respectively. Let T be hyponormal and satisfy $[T^*,T] \in \mathcal{C}_1$. For operators A and K of Theorem 1, let $A = TT^*$ and $K = T^*T - TT^* (= [T^*,T] \in \mathcal{C}_1)$. Then Theorem 1 is

$$\operatorname{Tr}\bigg(p(T^*T)-p(TT^*)\bigg)=\int p'(t)\delta(t)dt.$$

And

$$\delta(t) = \frac{1}{2\pi} \int_0^{2\pi} g(\sqrt{t}\cos\theta, \sqrt{t}\sin\theta) d\theta \quad \text{ a.e. } t > 0.$$

Let $\mathcal A$ be the linear space of all Laurent polynomials $\mathcal P(r,z)$ with polynomial coefficients such that $\mathcal{P}(r,z) = \sum_{k=-N}^{N} p_k(r) z^k$, where N is a non-negative integer and every $p_k(r)$ is a polynomial of one variable. For T = U|T| with unitary U, put $\mathcal{P}(|T|,U) = \sum_{k=-N}^{N} p_k(|T|) U^k$.

For the polar decomposition T = U|T|, we have the following:

Theorem 3 ([8],[11],[25]). Let T = U|T| be semi-hyponormal operator satisfying $[|T|, U] \in \mathcal{C}_1$ with unitary U. Then there exists a function g_T such that, for $\mathcal{P}, \mathcal{Q} \in \mathcal{A}$,

$$ext{Tr}([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]) = rac{1}{2\pi}\int\int J(\mathcal{P},\mathcal{Q})(r,e^{i heta})e^{i heta}g_T(e^{i heta},r)drd heta.$$

Definition 1. T is p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. Especially, T is called hyponormal and semi-hyponormal if p=1 and p=1/2, respectively. It holds

hyponormal \implies semi-hyponormal \implies p-hyponormal.

- (1) If T = U|T| is semi-hyponormal, then $S = U|T|^{\frac{1}{2}}$ is hyponormal.
- (2) If T = U|T| is semi-hyponormal with $1 \notin \sigma(U)$, then $R = L^{-1}(U) + i|T|$ is hyponormal, where $L^{-1}(U) = i(U+1)(U-1)^{-1}$.
- (3) If T = U|T| is p-hyponormal, then $T_t = |T|^t U|T|^{1-t}$ is q-hyponormal (Aluthge transformation), where $q = \min\{p + t, p + 1 - t, 1\}$. Hence, if T is semi-hyponormal, then T_t is hyponormal.

Spectral mapping theorem holds for these transformations; i.e., if T = U|T| be semi-hyponormal, then

- $\begin{array}{l} (1) \ \sigma(S) = \{ \sqrt{r}e^{i\theta} \ : \ re^{i\theta} \in \sigma(T) \}; \\ (2) \ \sigma(R) = \{ L^{-1}(e^{i\theta}) + ir \ : \ re^{i\theta} \in \sigma(T) \}; \end{array}$
- (3) $\sigma(T_t) = \sigma(T)$.

Functions g and g_T of Theorems 2 and 3 are called the principal functions of T related to the Cartesian decomposition T = X + iY and the polar decomposition T = U|T|, respectively. For a hyponormal operator T = X + iY, the principal function of T is defined by the mosaic $0 \square B(x,y) \square I$ as follows;

$$g(x,y) = \text{Tr}(B(x,y)).$$

For a semi-hyponormal operator T = U|T|, the principal function of T is defined by the mosaic $0 \square B^P(e^{i\theta}, r) \square I$ as follows;

$$g_T(e^{i\theta}, r) = \text{Tr}(B^P(e^{i\theta}, r)).$$

For an operator T = U|T| let $T_t = |T|^t U|T|^{1-t}$ (0 < t < 1) be the Aluthge transformation of T. Let g_T and g_{T_t} be the principal functions of T and $T_t = |T|^t U|T|^{1-t}$ (0 < t < 1), respectively. Then we have following results ([12]):

- (1) If T is invertible p-hyponormal with $[|T|, U] \in \mathcal{C}_1$, then $g_T = g_{T_t}$.
- (2) If T is hyponormal with $[|T|, U] \in \mathcal{C}_1$, then $g(x, y) = g_T(e^{i\theta}, r)$ for $x + iy = re^{i\theta}$.

The following results are important.

Theorem 4 ([12]). If a positive invertible operator A and an operator D satisfy $[A, D] \in \mathcal{C}_1$, then, for any real number α , we have

$$[A^{\alpha},D]\in\mathcal{C}_1.$$

Theorem 5 ([12]). If T is an invertible operator such that $[T^*, T] \in C_1$, then $[\tilde{T}^*, \tilde{T}] \in C_1$, where $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ (Aluthge transform of T).

For an invertible operator $T = U|T|, [T^*, T] \in \mathcal{C}_1$ if and only if $[|T|, U] \in \mathcal{C}_1$, because

$$[|T|^2,U]=[T^*,T]U \ \ \text{and} \ \ [T^*,T]=|T|[|T|,U]U^*+[|T|,U]|T|U^*.$$

1. Trace formula of p-hyponormal operators II

Let $\mathbf{T} = \{e^{i\theta} | 0 \square \theta < 2\pi\}$, Σ be the set of all Borel sets in \mathbf{T} and m be a measure on the measure space (\mathbf{T}, Σ) such that $dm(\theta) = \frac{1}{2\pi}d\theta$. Then we have

Theorem 3'. Let $T \in B(\mathcal{H})$ be semi-hyponormal and T = U|T| be the polar decomposition of T. Assume that U is unitary and $[U, |T|] \in \mathcal{C}_1$. Then there exists a summable function g_T such that, for $\mathcal{P}(r, z)$, $\mathcal{Q}(r, z) \in \mathcal{A}$, it holds

$$\operatorname{Tr}\bigg([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]\bigg) = \int \int J(\mathcal{P},\mathcal{Q})(r,e^{i\theta})e^{i\theta}g_T(e^{i\theta},r)drdm(\theta).$$

We denote by $C^{\infty}(\mathbf{R})$ the set of all smooth functions on \mathbf{R} and by $C_c^{\infty}(\mathbf{R})$ the set of all functions in $C^{\infty}(\mathbf{R})$ with compact support. We denote by \mathcal{B} the linear space of all

Laurent polynomials $\phi(r,z)$ such that $\phi(r,z) = \sum_{k=-N}^{N} f_k(r) z^k$, where every $f_k \in C^{\infty}(\mathbf{R})$.

For T = U|T| with unitary U, put $\phi(|T|, U) = \sum_{k=-N}^{N} f_k(|T|)U^k$ for $\phi \in \mathcal{B}$.

In [6], Carey and Pincus proved a more general version of Theorem 3. It requires complicate calculations. Using polynomial approximation, we improve Theorem 3 in the following form.

Theorem 1.1. Let $T \in B(\mathcal{H})$ be semi-hyponormal and T = U|T| be the polar decomposition of T. Assume that U is unitary and $[U, |T|] \in \mathcal{C}_1$. Then, for $\phi, \psi \in \mathcal{B}$, it holds

$$\operatorname{Tr}\bigg([\phi(|T|,U),\psi(|T|,U)]\bigg) = \int \int J(\phi,\psi)(r,e^{i\theta})e^{i\theta}g_T(e^{i\theta},r)drdm(\theta).$$

For the proof of Theorem 1.1, it needs Theorems 1.2 - 1.5.

Theorem 1.2. Let $A, \{B_j\}_{j=1,\dots,n}$ be operators such that $[A, B_j] \in \mathcal{C}_1$ and $||B_j|| \square r$ for all j (j = 1, 2, ..., n). Then

$$||[A, B_1B_2\cdots B_n]||_1 \square nr^{n-1} \max_j ||[A, B_j]||_1.$$

Let $T = U|T| \in B(\mathcal{H})$ be the polar decomposition of T. Assume that U is unitary and $[U, |T|] \in \mathcal{C}_1$. Then we have

$$[U, e^{it|T|}] = \sum_{n=1}^{\infty} \frac{(it)^n}{n!} [U, |T|^n].$$

By Theorem 1.2,

$$||[U,e^{it|T|}]||_1 \; \square \; \sum_{n=1}^{\infty} \frac{|t|^n n||T||^{n-1}}{n!} ||[U,|T|]||_1 \; \square \; |t| \cdot ||[U,|T|]||_1 \; e^{|t| \cdot ||T||}.$$

Definition 1.1. Under the assumption above, we define a constant c_T of an operator T = U|T| satisfying $[U, |T|] \in \mathcal{C}_1$ by

$$c_T = \max_{|t| \square 1} ||[U, e^{it|T|}]||_1.$$

Proof of the next theorem is based on an idea of the proof of [19, Lemma 3.2].

Theorem 1.3. Let $T = U|T| \in B(\mathcal{H})$ be the polar decomposition of T. Assume that U is unitary and $[U, |T|] \in \mathcal{C}_1$. Then, for $f \in \mathcal{S}$ and an integer n, it holds

$$||[U^n,f(|T|)]||_1 \; \Box \; |n| rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c_T(|t|+1) |\hat{f}(t)| dt,$$

where c_T is the constant of Definition 1.1.

Theorem 1.4. Let F be a compact set of \mathbf{R} and $f \in C^{\infty}(\mathbf{R})$. Then there exist a function $f_1 \in C_c^{\infty}(\mathbf{R})$, a sequence $\{p_n\}$ of polynomials and a sequence $\{\gamma_n\}$ in $C_c^{\infty}(\mathbf{R})$ such that

$$f(x) = f_1(x), \quad p_n(x) = \gamma_n(x) \text{ for } x \in F,$$

$$\sup_{y \in F} |f_1(y) - \gamma_n(y)| \to 0 \qquad (n \to \infty),$$

$$\sup_{y \in F} |f_1^{(1)}(y) - \gamma_n^{(1)}(y)| \to 0 \qquad (n \to \infty),$$

$$\sup_{t \in \mathbb{R}} |\hat{f}_1(t) - \hat{\gamma}_n(t)| \to 0 \qquad (n \to \infty),$$

$$\sup_{t \in \mathbb{R}} |t|^3 \cdot |\hat{f}_1(t) - \hat{\gamma}_n(t)| \to 0 \qquad (n \to \infty).$$

and

Theorem 1.5. Let T = U|T| be the polar decomposition. Assume that U is unitary and $[U, |T|] \in \mathcal{C}_1$. Then, for $f, g \in \mathcal{S}$ and integers m, n, it holds

$$||[f(|T|)U^{n},g(|T|)U^{m}]|| \ \Box \ |n| \cdot |||f||| rac{1}{2\pi} \int_{-\infty}^{\infty} c_{T}(|t|+1)|\hat{g}(t)|dt \ + |m| \cdot |||g||| rac{1}{2\pi} \int_{-\infty}^{\infty} c_{T}(|t|+1)|\hat{f}(t)|dt$$

where c_T is the constant of Definition 1.1 and $|||h||| = \sup_{x \in \sigma(|T|)} |h(x)|$.

Next we apply this result to p-hyponormal operators (0 .

Definition 1.2. Let T = U|T| be p-hyponormal with unitary U. Put $S = U|T|^{2p}$. Then S is semi-hyponormal with unitary U. Hence there exists the Pincus principal function g_S of S and we define the principal function g_T of T by

$$g_T(e^{i heta},r)=g_S(e^{i heta},r^{rac{1}{2p}})$$

(see [11, Definition 3]).

The following theorem is a generalization of Theorem 10 of [11].

Theorem 1.6. Let T = U|T| be an invertible p-hyponormal operator. If $|T|^{2p} - U|T|^{2p}U^* \in \mathcal{C}_1$, then for $\mathcal{P}(r,z)$, $\mathcal{Q}(r,z) \in \mathcal{A}$ it holds

$$\operatorname{Tr}igg([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]igg) = \int\int J(\mathcal{P},\mathcal{Q})(r,e^{i heta})e^{i heta}g_T(e^{i heta},r)drdm(heta).$$

2. Trace formulae associated with the polar decomposition of operators

Let $\mathcal{S}(\mathbf{R}^2)$ be the Schwartz space of rapidly decreasing functions at infinity. For T=X+iY, let \mathcal{E} and \mathcal{F} be the spectral measures of self-adjoint operators X and Y, respectively. We define τ on $\mathcal{S}(\mathbf{R}^2)$ by

$$au(st) \qquad au(\phi) = \int \int \phi(x,y) d\mathcal{E}(x) d\mathcal{F}(y) \quad (\phi \in \mathcal{S}(\mathbf{R}^2)).$$

By a standard argument, we have

$$\int \int e^{itX}e^{isY}\hat{\phi}(t,s)dtds = \int \int \phi(x,y)d\mathcal{E}(x)d\mathcal{F}(y),$$

where

$$\hat{\phi}(t,s) = rac{1}{2\pi} \int \int e^{-i(tx+sy)} \phi(x,y) dx dy$$

is the Fourier transform of the function ϕ (see, for example, [22, p.237]).

Put $\nu(E) = \int \int_E \hat{\phi}(t,s) dt ds$ for a measurable set $E \subset \mathbf{R}^2$. Since $\hat{\phi}(t,s) \in \mathcal{S}(\mathbf{R}^2)$, we have

$$\int \int (1+|t|)(1+|s|)|\hat{\phi}(t,s)|dtds < \infty.$$

Following Carey-Pincus [8], put $G(x,y) = \int \int e^{itx+isy} d\nu(t,s)$ and define

$$G(X,Y) = \int \int G(x,y) d\mathcal{E}(x) d\mathcal{F}(y).$$

Then

$$au(\phi) = \int \int e^{itX} e^{isY}
u(t,s) dt ds = G(X,Y).$$

Note here that we have $\tau(\psi) = \tau(\phi)$ for any smooth function $\psi(x,y)$ which coincides with $\phi(x,y)$ on supp (τ) .

The map $\tau: \mathcal{S}(\mathbf{R}^2) \to B(\mathcal{H})$ has the following properties [22, Chapter X, §2];

- (1) τ is linear, continuous and supp $(\tau) \subseteq \sigma(X) \times \sigma(Y)$,
- (2) $\tau(1) = I$, $\tau(p+q) = p(X) + q(Y)$ for polynomials p and q of one variable of x and y, respectively.
 - (3) $\tau(\phi)\tau(\psi) \tau(\phi\psi) \in \mathcal{C}_1$ for $\phi, \psi \in \mathcal{S}(\mathbf{R}^2)$, (4) $\tau(\phi)^* \tau(\bar{\phi}) \in \mathcal{C}_1$.

By (3) we have an important property $[\tau(\phi), \tau(\psi)] \in \mathcal{C}_1$ for $\phi, \psi \in \mathcal{S}(\mathbf{R}^2)$.

The following theorem is a basis.

Theorem 6 (Carey-Pincus, [8, Theorem 5.1]). Let T = X + iY be an operator with $[T^*,T] \in \mathcal{C}_1$. Let \mathcal{E},\mathcal{F} be the spectral measures of X and Y, respectively and τ be given by (*). Then there exists a summable function g such that, for $\phi, \psi \in \mathcal{S}(\mathbb{R}^2)$,

$$\operatorname{Tr}igg([au(\phi), au(\psi)]igg) = rac{1}{2\pi i}\int\int J(\phi,\psi)(x,y)g(x,y)dxdy.$$

Moreover, if T is hyponormal, then $g \ge 0$ and g(x,y) = 0 for $x + iy \not\in \sigma(T)$.

In this section, the main theorem is Theorem 2.7. We prepare some results.

Lemma 2.1. Let A be a positive invertible operator and operators D, E, F satisfying $[A, D], [E, D], [F, D] \in \mathcal{C}_1$. Then for any real number α , we have

$$[EA^{\alpha}F,D]\in\mathcal{C}_1.$$

Lemma 2.2 (cf.p.158 of [8]). Let T = X + iY be an invertible operator such that $[T^*, T] \in \mathcal{C}_1$. Let $\psi \in \mathcal{S}(\mathbf{R}^2)$, $D = \tau(\psi)$ and operators E, F satisfy $[E, D], [F, D] \in \mathcal{C}_1$. Then, for $\phi(x, y) = (x^2 + y^2)^{\alpha}$ with a real number α ,

$$\operatorname{Tr} \Big([E \tau(\phi) F, D] \Big) = \operatorname{Tr} \Big([E |T|^{2\alpha} F, D] \Big).$$

Theorem 2.3. Let T = U|T| be an invertible operator with $[T^*, T] \in C_1$ and let g be the principal function assoicated with the Cartesian decomposition of T = X + iY. Then there exists a summable function g_T such that, for $P, Q \in A$,

$$\operatorname{Tr}([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]) = \frac{1}{2\pi} \int \int J(\mathcal{P},\mathcal{Q})(r,e^{i\theta}) e^{i\theta} g_T(e^{i\theta},r) dr d\theta,$$

and $g_T(e^{i\theta},r)=g(x,y)$ almost everywhere $x+iy=re^{i\theta}$ on ${\bf C}.$

An invertible operator T is said to be log-hyponormal if $\log T^*T \ge \log TT^*$ [17].

For the proof of the next result, we need the following two lemmas. For an operator T, let $\sigma_{ap}(T)$ and $\sigma_p(T)$ be the approximate point spectrum and the point spectrum of T, respectively. The following lemmas are important for the main theorem.

Lemma 2.4. Let T = U|T| be an invertible semi-hyponormal operator with $[|T|, U] \in \mathcal{C}_1$. Then the principal function g^P associated with the polar decomposition T = U|T| of T satisfies $g_T(e^{i\theta}, r) = 0$ for $re^{i\theta} \notin \sigma(T)$.

Lemma 2.5. Let T = U|T| be an operator with unitary U and put S = U(|T| + I). If $z \in \partial \sigma(S)$, then $|z| \geq 1$. Therefore, if $z \in \sigma(S)$, then $|z| \geq 1$.

By the above lemmas, for the next theorem we can give another proof of [11, Theorem 9].

Theorem 2.6. Let T = U|T| be a semi-hyponormal operator with unitary U and $[|T|, U] \in \mathcal{C}_1$. Then there exists a summable function g_T such that, for $\mathcal{P}, \mathcal{Q} \in \mathcal{A}$,

$$\mathrm{Tr}([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]) = rac{1}{2\pi}\int\int J(\mathcal{P},\mathcal{Q})(r,e^{i heta})e^{i heta}g_T(e^{i heta},r)drd heta.$$

Theorem 2.7. Let T = X + iY = U|T| be a semi-hyponormal operator with unitary U and $[|T|, U] \in C_1$. If g and g_T are the principal function associated with the Cartesian decomposition of T and the summable function in Theorem 2.6, respectively, then

$$g(x,y) = g_T(e^{i\theta},r)$$

almost everywhere $x + iy = re^{i\theta}$ on \mathbb{C} .

3. Principal functions for high powers of operators

In this section, we denote g_T and g_T^P be the principal functions of the Cartesian decomposition and the polar decomposition of T, respectively. C.A. Berger gave the principal functions g_{T^n} of powers T^n of T in terms of g_T and proved that for a sufficiently high n, T^n has a non-trivial invariant subspace for a hyponormal operator T ([5]). For a hyponormal operator T with $[T^*, T] \in \mathcal{C}_1$, it holds that

$$g_{T^n}(z) = \sum_{k=1}^n g_T(\zeta_k), \text{ where } \zeta_k^n = z \ (k = 1, ..., n).$$

More generally, in [4], for a polynomial p, it holds

$$g_{p(T)}(z) = \sum_{\zeta} \{ g_T(\zeta) : p(\zeta) = z \}.$$

Theorem 3.1. Let T = X + iY = U|T| be an operator satisfying the following trace formula:

$$\operatorname{Tr}([\phi(|T|,U),\psi(|T|,U)]) = \frac{1}{2\pi} \int \int J(\phi,\psi)(r,e^{i\theta}) e^{i\theta} g_T^P(e^{i\theta},r) dr d\theta$$

for any Laurent polynomials ϕ and ψ . Then the principal function $g_T(x,y)$ related to the Cartesian decomposition T = X + iY of T exists and it is given by $g_T(x,y) = g_T^P(e^{i\theta},r)$, where $x + iy = re^{i\theta}$.

If an operator T = U|T| is invertible and $[|T|, U] \in \mathcal{C}_1$, then $[T^*, T] \in \mathcal{C}_1$. So we have the following

Corollary 3.2. If an invertible operator T = X + iY = U|T| satisfies $[|T|, U] \in \mathcal{C}_1$, then $g_T(x, y) = g_T^P(e^{i\theta}, r)$, where $x + iy = re^{i\theta}$.

For a relation between g_T^P and $g_{T^n}^P$, we need the following Berger's result:

Theorem 3.3 (Berger, [5, Theorem 4]). For an operator T, if $[T^*, T] \in \mathcal{C}_1$, then for a positive integer n,

$$g_{T^n}(x,y) = \sum_{(u+iv)^n = x+iy} g_T(u,v).$$

Theorem 3.4. For an operator T with $[T^*, T] \in \mathcal{C}_1$, if $\int \int g(x, y) dx dy \neq 0$, then

$$\lim_{n\to\infty} \operatorname{ess sup} |g_{T^n}| = \infty.$$

Applying Corollary 3.2 and Theorem 3.4 to T^n , we have the following.

Corollary 3.5. For an operator T = U|T|, let $T^n = U_n|T^n|$ be the polar decomposition of T^n (n = 1, 2, ...). If $[|T^n|, U_n] \in \mathcal{C}_1$ for every non-negative integer n and

$$\int \int g_T^P(e^{i\theta},r)rd\theta dr \neq 0, then$$

$$\lim_{n \to \infty} \operatorname{ess sup} |g_{T^n}^P| = \infty.$$

Let T = U|T| and $T^n = U_n|T^n|$ be the polar decompositions of T and T^n , respectively. Then it holds that if $[T^*, T] \in \mathcal{C}_1$, then $[T^{*n}, T^n] \in \mathcal{C}_1$ for any positive integer n. On the other hand, in the polar decomposition case, it is not clear whether $[|T|, U] \in \mathcal{C}_1$ implies $[|T^n|, U_n] \in \mathcal{C}_1$ even if n = 2. If T is invertible and $[|T|, U] \in \mathcal{C}_1$, then, for every n, it holds $[|T^n|, U_n] \in \mathcal{C}_1$ by [11, Theorem 3].

Next we consider operators with cyclic vectors. First we need the following result.

Theorem 3.6 (Martin and Putinar, Th.X.4.3 [22]). Let g_T and g_V be the principal functions of operators T and V such that $[T^*,T],[V^*,V] \in \mathcal{C}_1$, respectively. If there exists an operator $A \in \mathcal{C}_1$ such that AV = TA and $\ker(A) = \ker(A^*) = \{0\}$, then $g_T \square g_V$.

Proof of the following lemma is based on it of [22, Corollary X.4.4].

Lemma 3.7. Let T be an operator such that $[T^*, T] \in \mathcal{C}_1$ and $\sigma(T)$ is an infinite set. If T has a cyclic vector, then $g_T \square 1$.

Let S be an operator having the principal function g_S related to the Cartesian decomposition S = X + iY. Then $g_{S^*}(x,y) = -g_S(x,-y)$. Hence, as a corollary of Lemma 3.7, we have the following.

Lemma 3.8. Let T be an operator such that $[T^*, T] \in C_1$ and $\sigma(T)$ is an infinite set. If T^* has a cyclic vector, then $-1 \square g_T$.

Theorem 3.9. Let T be an operator such that $[T^*, T] \in \mathcal{C}_1$ and $\sigma(T)$ is an infinite set. If $\int \int g_T(x,y) dxdy \neq 0$, then, for a sufficiently high n, T^n has a non-trivial invariant subspace.

REFERENCES

- 1. A. Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Th. 13(1990), 307-315.
- 2. A. Aluthge and D. Wang, w-hyponormal operators II, Integr. Equat. Oper. Th. 37(2000), 324-331.
- 3. S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13(1062), 111-114.
- 4. C.A. Berger, Sufficiently high power of hyponormal operators have rationally invariant subspaces, Integr. Equat. Oper. Th. 1/3(1978), 444-447.
- 5. C.A. Berger, Intertwined operators and the Pincus principal function, Integr. Equat. Oper. Th. 4(1981), 1-9.
- R.W. Carey and J.D. Pincus, Almost commuting algebras, Lecture Notes in Math., 574 Springer-Verlag, Belrin (1973), 19-43.

- R.W. Carey and J.D. Pincus, An invariant for certain operator algebras, Proc. Nat. Acad. Sci. U.S.A. 71(1974), 1952-1956.
- 8. R.W. Carey and J.D. Pincus, Mosaics, principal functions, and mean motion in von-Neumann algebras, Acta Math. 138(1977), 153-218.
- 9. M. Chō and M. Itoh, Putnam's Inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435-2440.
- M. Chō and T. Huruya, Aluthge transformations and invariant subspaces of p-hyponormal operators, Hokkaido Math. J. 32 (2003), 445-450.
- 11. M. Chō and T. Huruya, Trace formulae of p-hyponormal operators, Studia Math. 161(2004), 1-18.
- 12. M. Chō and T. Huruya, Relation between principal functions of p-hyponormal operators, J. Math. Soc. Japan 57(2005), 605-618.
- 13. M. Chō and T. Huruya, Trace formulae of p-hyponormal operators II, Hokkaido Math. J. to appear.
- 14. M. Chō, T. Huruya and C. Li, Trace formulae associated with the polar decompositions of operators, Math. Proc. Royal Irish Acad. to appear.
- 15. M. Chō, T. Huruya, C. Li and A-H. Kim, Principal functions for high powers of operators, Tokyo J. Math. to appear.
- 16. K.F. Clancey, Seminormal operators, Springer Verlag Lecture Notes No. 742, Berlin-Heidelberg-New York, 1979.
- 17. T. Furuta, Invitation to linear operators, Taylor & Francis Inc, London and New York, 2001.
- 18. I. C. Gorberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translation Math. Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I., 1969.
- J.W. Helton and R. Howe, Integral operators, commutator traces, index and homology, Proceedings of a conference on operator theory, Springer Verlag Lecture Notes No. 345, Berlin-Heidelberg-New York, 1973.
- 20. I.B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integr. Equat. Oper. Th. 37(2000), 437-448.
- 21. I.B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integr. Equat. Oper. Th. 40(2001), 52-60.
- 22. M. Martin and M. Putinar, Lectures on hyponormal operators, Birkhäuser Verlag, Basel, 1989.
- 23. J.D. Pincus and D. Xia, Mosaic and principal function of hyponormal and semi-hyponormal operators, Integr. Equat. Oper. Th. 4(1981), 134-150.
- 24. K. Tanahashi, On log-hyponormal operators, Integr. Equat. Oper. Th. 34(1999), 364-372.
- 25. D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.