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Abstract In recent years, considerable attention has been devoted to continuously running software
systems whose performance characteristics are smoothly degrading in time Software aging often affects
the performance of a software system and eventually causes it to fail. A novel approach to handle
transient software failures due to software aging is called software rejuvenation, which can be regarded as
a preventive and proactive solution that is particularly useful for counteracting the aging phenomenon. In
this paper, we focus on a high assurance software system with fault-tolerance and preventive rejuvenation,
and analyze the stochastic behavior of such a highly critical software system. More precisely, we consider
a fault-tolerant software system with two version redundant structure and random rejuvenation schedule,
and evaluate quantitatively a dependability measure like the steady-state system availability based on the
familiar Markovian analysis. In numerical examples, we examine the dependence of two system diversity
techniques; design and environment diversity techniques, on the system dependability measures.

1. Introduction

Present day applications impose stringent require-
ments in terms of software dependability since in
many cases the consequences of software failure
can lead to huge economic losses or risk to hu-
man life. However, these requirements are very
difficult to design for and guarantee, particularly
in applications of nontrivial complexity. In gen-
eral, the software dependability techniques can be
classified into two approaches: design and envi-
ronment diversity techniques. The former corre-
sponds to the redundant-software architecture such
as recovery block, $\mathrm{N}$ version programming and $\mathrm{N}$

self-check programming $[16,23]$ , the latter to diver-
sify the software operating circumstance temporar-
ily. The typical examples of environment diver-
sity technique are progressive retry, rollback rolJ-
forvvard recovery with checkpointing, restart, hard-
ware reboot, etc. In recent years, considerable at-
tention has been devoted to continuously running
software systems whose performance characteris-
tics are smoothly degrading in time. That is to
say, when software application executes continu-
ously for long periods of time, some of the faults
cause software appear to age due to the error con-
ditions that accrue with time $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ load. This
phenomenon is called software aging and can be ob-
served in many real software systems [1,5,7,21,28].

Huang et al. [12] report this phenomenon in the
real telecommunication billing application where
over time the application experiences a crash or
a hang failure. Avritzer and Weyuker [3] discuss

aging in a telecommunication switching software
where the effect manifests as gradual performance
degradation. Software aging has also been $\mathrm{o}\mathrm{b}arrow$

served in widely-used software like Netscape and
xrn [5]. Perhaps the most vivid example of ag-
ing in safety critical systems is the Patriot’s soft-
ware [17], where the accumulated errors led to a
failure that resulted in loss of human lives. Re-
source leaking and other problems causing software
to age are due to the software faults whose fixing
is not always possible because, for exam $\mathrm{p}\mathrm{l}\mathrm{e}$ , the
source code is not always available. Our common
experience suggests that most software failures are
transient in nature $\llcorner\lceil 11$ ] - Since transient failures
will likely not recur even if the operation is retried
later in slightly different context, it is difficult to
characterize their root origin. The time to find and
deploy a fix to such faults can sometimes be intol-
erably long. Therefore, the residual faults are often
tolerated in the operational phase. Usual strategies
to deal with failures in operational phase are reac-
tive in nature; they consist of action taken after
the occurrence of the failure.

A novel approach to handle transient software
failures is called so frware rejuvenation which can
be regarded as a preventive and proactive solu-
tion that is particularly useful for counteracting
the phenomenon of software aging. It involves
stopping the running software occasionally, clean-
ing its internal state and restarting it. Clean-
ing the internal state of a software might involve
garbage collection, flushing operating system ker-
nel tables, reinitializing inter al data structures
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etc. An extreme, but well known example of reju-
venation which has been around as long as comput-
ers themselves is a hardware reboot. Apart from
being used in an ad-hoc manner by almost all com-
puter users, software rejuvenation has been used in
high availability and mission critical systems. The
studies of aging-related fiqilures are based on two
approaches: measurement-based and model-based.
The measurement-based approach concentrates on
tlle detection and validation of the existence of
software aging and estimating its effects on system
resources [10, 13,24,29,30]. On the other hand, the
model-based approach aims at evaluating the effec-
tiveness of software rejuvenation and determining
the optin al schedule to perform it,

Huang, et al. [12] consider a model-based ap-
proach where the degradation is described by a two
step process. Prom the clean state the software sys-
tem makes a transition into a degraded state from
which two actions are possible: rejuvenation with
return to the clean state or transition to the com-
plete failure state. They model the four-state pro
cess as a continuous-time Markov chain (CTMC)
and derive the steady-state availability and the ex-
pected cost per unit time in the steady state. Garg
et $d$. [8] introduce the idea of periodic rejuvenation
into the Huang et at. model [12], and represent
the system behavior through a Markov regenera-
tive stochastic Petri net. Dohi et al. [6], Suzuki
et at. $[25, 26]$ extend the Huang et at. model [12]
to semi-Markov models and further develop non-
paral etric algorithms to estimate the optimal soft-
ware rejuvenation schedule. Tai et al. [27] also dis-
cuss the concept of on-board preventive mainte
nance which is an analogous to software rejuvena-
tion and maximize the mission reliability Garg
et al. [9] develop a preventive maintenance model
with two kinds of environment diversity techniques
and examine the effects of checkpointing and re-
juvenation for the expected completion time of a
software program. Liu et al. [14] and Park and Kim
[22] evaluate the cable modem termination system
and the $\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{b}\mathrm{y}$ cluster systems with reju-
venation, respectively. Aung [2] and Iiu et at. [15]
treat the determination problem of software reju-
venation schedule from the view point of software
survivability. Bao et $al$ , [4] develop an adaptive
software rejuvenation scheme based on the statis-
tical observation of system failure time.

In this paper, we focus on a high assurance soft-
ware system with fault-tolerance and preventive re-
juvenation, and analyze the stochastic behavior of
such a highly critical software system. More pre-
cisely, we consider a fault-tolerant software system
with two version redundant structure and random
rejuvenation schedule, and evaluate quantitatively
a dependability measure like the steady-state sys-

tem availability based on the familiar Markovian
analysis. Two version software system is perhaps
the most popular fault tolerant software system
with redundancy In the hardware fault tolerance
( $e.g$ . see Osaki [19]), two independent components
are assumed in the computer architecture. How-
ever, it is almost impossible to develop statisti-
cally independent software programs. Hence, when
two version software system is modeled mathem at-
ically, the correlation on the failure property be
tween two software systems has to be represented
by bivariate probability distribution. In this pa-
per we develop a CTMC model with redundancy
and rejuvenation, by taking account of the fail-
ure correlation of two software systems. Then,
the bivariate exponential distribution in the sense
of Marshall and Olkin [18] is introduced to repre-
sent the correlation between two software systems.
Also, in order to model the deterioration process
due to software aging, we aPPly the two step fail-
ure model similar to Huang et al. [12]. This point
should be distinguished from the existing result in
the hardware fault tolerant literature ( $e.g$ . Os-
aki [20] $)$ , though this paper is a continuation of
earlier work [12].

The rest of this paper is organized as follows
In Section 2, we describe a Markov software reju-
venation model discussed by Huang et al. [12] and
summarize their results on the steady-state system
availability. In Section 3, we model a two version
software system with rejuvenation and derive ana-
lytically the steady-state system availability. Sec-
tlon 4 is devoted to numerical examples, where we
examine the dependence of two system diversity
techniques; design and environment diversity tech-
niques. on the system dependability measures. Fi-
nally, the paper is concluded with some remarks.

2. Single Version Software
System with Rejuvenation

Suppose that a singte version software system is
started for operation at time $t=0$ with the highly
robust state (normal operation state). The sys
tem can smoothly degrade in time. As assumed
in the existing literature [6, 8, i2, 25, $26|$ , we fo
cus on the two step failure process to model the
telecommunication billing application in AT & $\mathrm{T}$ ,
$\mathrm{i}.e.$ , the highly robust state changes to the failure
probable state at random timing. Just after the
state becomes the failure probable state, a system
failure may occur with a positive probability. If
the system failure occurs before triggering a soft-
ware rejuvenation, then the recovery operation is
started immediately at that time and is completed
with a random recovery overhead. Otherwise, the
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Figure 1: Markovian transition diagram for a sin-
gle version software system with rejuvenation.

software rejuvenation is triggered and the software
system becomes as good as new with the rejuvena-
tion overhead. Then, the software age is initialized
to zero at the beginning of the next highly robust
state. We define the time interval from the begin-
ning of the system operation to the completion of
recovery oPeration or software rejuvenation as one
cycle, and assume that the same cycle is repeated
again and again.

Huang et al. [12] introduce the simple software
rejuvenation model based on the CTM C. Define
the following four states:

State 0: highly robust state (normal operation
state)

State 1: failure probable state

State 2: system failure state

State 3: software rejuvenation state.

Figure 1 depicts the Markovian transition diagram
of Huang et al. model [12], where $\lambda_{11}(>0)$ ,
$\lambda_{12}(>0)$ , pi $(>0)$ , $r_{1}(>0)$ and $r_{3}(>0)$ denote
the transition rates from the highly robust state to
the failure probable state, the system failure rate
from the failure probable state, the transition rate
to trigger the software rejuvenation from the fail-
ure probable state, the recovery rate from the sys-
tem failure state and the recovery rate from the
software rejuvenation state, respectively. In this
model setting, the opportunity to trigger the soft-
ware rejuvenation arrives at the system according
to the homogeneous Poisson process with rate $\mu_{1}$ .
This assumption does not seem to be restrictive,
because the preventive rejuvenation is not always
possible at pre-scheduled time in continuously run-
ning software systems.

Let $\{X(t)=\mathrm{i},t \geq 0\}$ , $(\mathrm{i}=0,1, 2,3)$ be the
system state at time $t$ with the transition prob
ability Qoj(t) $=\mathrm{P}\mathrm{r}\{X(t)=j|X(0)=0\}(t\geq$

$0$ , $j=0$, 1, 2, 3). From an elementary probabilistic
argument, the Kolmogorov’s differential equations
which the transition probabilities have to satisfy
are given by

$\frac{dQ\mathrm{o},\mathrm{o}(\mathrm{f})}{dt}=-\lambda_{11}Q_{0,0}(t)+r_{3}Q_{0,2}(t)+r_{1}Q_{0,3}(t)$ ,

Figure 2: Configuration of two version software
system.

(1)

$\frac{dQ_{0,1}(t)}{dt}=-(\lambda_{1\underline{7}}+\mu_{1})Q_{0,1}(t)+\lambda_{11}Q_{0,0}(t)$ , (2)

$\frac{dQ_{0,2}(t)}{dt}=-r_{3}Q_{0,2}(t)+\lambda_{12}Q_{0_{\rangle}1}(t)$ , (3)

$\frac{dQ_{0,3}(t)}{dt}=-r_{1}Q_{0,3}(t)+\mu_{1}Q_{0,1}(t)$ (4)

with the initial conditions:

$Q_{0,0}$ (0) $=1$ , $Q_{0,1}(0)=Q_{0,2}(0)=Q_{0,3}(0)=0$ .
(5)

Suppose that the limiting transition probability
$p_{j}$ $(j=0,1, 2, 3)$ exists, $\mathrm{i}.e$ .

$pj= \lim_{tarrow\infty}Q\mathrm{o},i(t)$ , $j=0,1,2,3$ . (6)

By taking the limitation, since the Kolmogorov’s
differential equations in Eqs. (1)$-(4)$ are reduced
to the algebraic equations:

$-\lambda_{11}p_{0}+r_{3}p_{2}+r_{1}p_{3}=0$ , (7)
$-(\lambda_{12}+\mu_{1})p_{1}+\lambda_{11}p_{0}=0$ , (8)
$-r_{3}p\underline{\circ}+\lambda_{12}p_{1}=0$ , (9)
$-r_{1}p_{3}+\mu_{1}p_{1}=0$, (10)

$p_{0}+p_{1}+p_{\underline{\mathrm{Q}}}+p_{3}=1$ , (11)

we obtain the steady-state system availability as
follow $\mathrm{s}$ :

A $=$ $Pc$ $+$ $\mathrm{J}\mathrm{t}$

$=$ $\frac{\frac{1}{\lambda_{11}}+\frac{1}{\lambda_{12}+\mu_{1}}}{\frac{1}{\lambda_{11}}+\frac{1}{\lambda_{12}+\mu_{1}}+\ovalbox{\tt\small REJECT}\lambda+\frac{\mu_{1}}{(\lambda_{12}+\mu_{1})r_{1}},(\lambda_{1}\underline{\circ}+\mu_{1})r_{3}}$ .

(12)

3. Fault-Tolerant Software
System with Rejuvenation

3.1 Availability Analysis
Next, we consider a fault-tolerant software sys
tem with redundancy and preventive rejuvenation.
Suppose that two software programs are running
in parallel. Figure 2 indicates the configuration
of two version software system. In a fashion simi-
lar to Huang et al. model [12], it is assumed that
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each software deteriorates and reaches to the sys-
tem failure state if no software rejuvenation is trig-
gered after entering to the failure probable state.
More specifically, consider a two-unit parallel re-
dundant system with deterioration on a lattice. In
the two unit hot-standby parallel redundant $\mathrm{s}\mathrm{y}\mathrm{s}arrow$

$\mathrm{t}\mathrm{e}\mathrm{m}$ , each unit has two stage deterioration levels,
say failure probable state and system failure state,
and the transition from the normal operation (de-
terioration) level to the deterioration (system fail-
ure) level is occurred following an exponential dis-
tribution. Let $X$ and $Y$ be the deterioration times
for Software System 1 and Software System 2, re-
spectively, and denote the non-negative random
variables having the following marginal distribu-
tion functions;

$F\mathrm{x}(x)=1-$ $\exp\{-\lambda_{1}x\}$ , $x>0$ , A $1>0$ , (13)
$F_{Y}(y)=1-\exp\{-\lambda_{2}y\}$ , $y>0$ , $\lambda_{2}>0$ . (14)

If the failure property of two software systems is
statistically independent, then the joint distribu-
tion function is given by

$FxY(x, y)=\mathrm{P}\mathrm{r}\{X\leq x, Y\leq y\}$

$=1-\{1-F_{X}(x)\}\{1-F_{Y}(y)\}(15)$
$=1-\exp\{-\lambda_{1}x-\lambda_{2}y\}$ .

Since it is impossible to develop the completely in-
dependent software systems with same functions,
however, the correlation between the failure ProP-
erties for each software system should be taken into
consideration.

In this paper, we use the bivariate exponential
distribution in the sense of Marshall and Olkin $[1\mathrm{S}|$

to represent both $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{u}\mathrm{r}\mathrm{e}$ phenomena
for two software systems. The main reason to aP-
ply the Marshall and Olkin distribution is that
it is easy to represent the simultaneous deterio-
$\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{u}\mathrm{r}\mathrm{e}$ in the framework and apply it to the
CTMC analysis [20] . For the deterioration times $X$

and $Y$ , the deterioration time distribution is given
by the foliowing bivariate exponential

$F(x, y)$ $=\mathrm{P}\mathrm{r}\{X\leq x, Y\leq y\}$

$=1-\exp${ $-\lambda_{1}x-\lambda_{2}y-$ A3 $\max$ ($x$ , $y$)},
(16)

where $\lambda_{3}(\geq 0)$ denotes the correlation parameter.
When $\lambda_{3}=0$ , then two software systems are inde-
pendent from each other, the system failure time
distribution is given in Eq. (16).

Define the following 15 states:

State 0: Both systems are operating

State 4; Both systems deteriorate

State 8: Both systems are down

State 1 (3): System 1 (2) deteriorates but Sys-
tem 2 (1) is operating

State 5 (7): System 1 (2) fails but System 2 (1)
deteriorat $\mathrm{e}$

State 6 (2): System 2 (1) fails but System 1 (2)
is operating

State 9 (10): System 1 (2) is rejuvenated but
System 2 (1) is operating

State 11 (12): System 1 (2) is rejuvenated but
System 2 (1) deteriorates

State 13 (14): System 1 (2) is rejuvenated but
System 2 (1) fails.

Based on the definition above, the system failure
is corresponding to States 8, 13 and 14,

Figure 3 depicts the Markovian transition dia-
gram for fault-tolerant software system with reju-
venation in renewal case, where $\lambda_{11}$ , A12, $\mu_{1}$ , $r_{1}$ and
$r\mathrm{s}$ (A21, A22, $\mu_{2},$ $r_{2}$ and $\mathrm{r}_{4}$ ) denote the transition
rates from the highly robust state to the failure
probable state, the system failure rate from the
failure probable state, the transition rate to trig-
ger of software rejuvenation from the failure proba-
ble state, the recovery rate from the system failure
state and the recovery rate from the software re-
juvenation state for Software System 1 (Software
System 2), respectively. Further, $\lambda_{31}$ denotes the
transition rate that both software systems deteri-
orate simultaneously, A32 $(\lambda_{33})$ denotes the tran-
sition rate that Software System 1 (2) fails and
Software System 2 (1) deteriorates simultaneously,
and A34 denotes the simultaneous system failure
rate ffom the failure probable state

Let $\{X(t)=\mathrm{i}, t\geq 0\}(\mathrm{i}=0,1, \cdots, 14)$ be the
CTMC to represent the stochastic behavior of the
two version software system with rejuvenation. In
a fashion similar to the Markovian argument in
Section 2, we obtain the pointwise system avail-
ability:

$A(t)$ $=$ $Q_{0,0}(t)+Q_{0,1}(t)+Q_{02}\rangle(t)+Q_{0,3}(t)$

$+Q_{0,4}(t)+Q_{0,5}(t)+Q_{0,6}(t)$

$+Q_{0,7}(t)+Q_{0,9}(t)$ $+Q_{0,10}(t)$

$+Q_{0,11}(t)+Q_{0_{?}12}(t)$ , (17)

where the stationary transition probabilities
$Q_{0,j}(t)$ , $(j=0,1, \cdots, 14)$ are the solutions of the
Kolmogorov’s differential equations in Eqs.(36)-
(50) (see Appendix). If there exist the limiting
probabilities

$p_{j}= \lim_{tarrow\infty}\mathrm{Q}\mathrm{O}\mathrm{j}(\mathrm{t})$ $(j=0,1, \cdots, 14)$ , (18)

then we derive the following simultaneous (alge-
braic) equations:

$-(\lambda_{11}+\lambda_{21}+\lambda_{31})p0+r_{3}p_{2}+r_{4}p_{6}+r_{1}p_{9}$
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Figure 3. Markovian transition diagram for fault-tolerant software system with rejuvenation.

$+r_{2}p_{10}=0$ , (19)
$-(\lambda_{12}+\lambda_{21}+\lambda_{32}+\mu_{1})p_{1}+\lambda_{11}p_{0}+r_{4}p_{7}$

$+r_{2}p_{12}=0$ , (20)
$-(\lambda_{21}+r_{3})p_{2}+\lambda_{12}p_{1}+r_{4}p_{\mathrm{S}}+r_{2}p_{14}=0$ , (21)
$-(\lambda_{11}+\lambda_{22}+\lambda_{33}+\mu_{2})p_{3}+\lambda_{21}p_{0}+r_{3}p_{5}$

$+r_{1}p_{11}=0$ , (22)
$-(\lambda_{12}+\lambda_{22}+\lambda_{34}+\mu_{1}+\mu_{2})p_{4}+\lambda_{31}p_{0}$

$+\lambda_{21}p_{1}+\lambda_{11}p_{3}=0$, $\langle$ 23)
– $(\lambda_{22}+r_{3})p_{5}+\lambda_{32}p_{1}+\lambda_{21}p_{2}+\lambda_{12}p_{4}=0$,

(24)
$-(\lambda_{11}+r_{4})p_{6}+\lambda_{22}p_{3}+r_{3}p_{8}+r_{1}p_{13}=0$ , (25)
$-(\lambda_{12}+r_{4})p_{7}+\lambda_{33}p_{3}+\lambda_{22}p_{4}+\lambda_{11}p_{6}=0$ ,

(26)
$-(r_{3}+r_{4})p_{8}+\lambda_{34}p_{4}+\lambda_{22}p_{5}+\lambda_{12}p_{7}=0,(27)$

– $(\lambda_{21}+r_{1})p_{9}+\mu_{1}p_{1}+r_{4}p_{13}=0$, (28)
$-(\lambda_{11}+r_{2})p_{10}+\mu_{2}p_{3}+r_{3}p_{14}=0$, $\langle$ 29)
$-(\lambda_{22}+r_{1})p_{11}+\mu_{1}p_{4}+\lambda_{21}p_{9}=0$ , (30)
$-(\lambda_{12}+r_{2})p_{12}+\mu_{2}p_{4}+\lambda_{11}p_{10}=0$ , (31)
$-(r_{1}+r_{4})p_{13}+\lambda_{22}p_{11}=0$, (32)
$-(r_{2}+r_{3})p_{14}+\lambda_{12}p_{12}=0$, {33)

$\sum_{j=0}^{14}p_{j}=1$ . (34)

Finally, by solving the above equations numeri-
cally, we can get the steady-state system availabil-
ity:

$A$ $=$ $p_{0}+p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6}+p_{7}$

$+p_{9}+p_{10}+p_{11}+p_{12}$ . (35)

4. Numerical Illustrations
Here, we compare the present model with Huang
et at. [12] and investigate the effect of redundancy
in terms of dependability measures. To simplify
the analysis, it is assumed that A$3=\lambda_{31}=\lambda_{32}=$

$\lambda_{33}=$ A34. Also, we assume the parametric circum-
stance mentioned in Table 1. Figure 4 illustrates
the dependence of software rejuvenation rate $\mu_{1}$ on
the steady-state system availability for Huang et
al. model [12]. From this figure, for a single version
software system, the steady-state system availabil-
ity can be improved from 0.997 to 0.998 (0.1003%)
by adjusting the software rejuvenation rate from
$\mu_{1}=$ 0.0458 to 0.02665. On the other hand, in
Figs. 5 and 6, the behavior of the steady-state sys-
tem availability with varying software rejuvenation
rate $\mu_{1}$ is plotted in two cases: $\lambda_{3}=$ 1/500 and
$\lambda_{3}=0$ , where $\lambda_{3}=0$ implies that two software
system $\mathrm{s}$ are completely independent in terms of
system failure occurrence. Comparing Fig.5 with
Fig.6, it can be observed that the correlation Pa-
rameter $\lambda_{3}$ strongly influences to the steady-state
system availability, $\mathrm{i}.e$ . as A3 increases much more,
two software systems have greater correlation on
the system failure from each other and the system
availability decreases.

Finally, it is concluded that the software de-
pendability can be controlled with two model Pa-
rameters based on design and environment diver-
sity techniques. Namely, if the alternative software
version is designed from the standpoint of depend-
ability measures, the correlation parameters like $\lambda_{3}$
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Table 1: Parameter Values

$\triangleleft D=\mathrm{g}=\alpha>\alpha$

Figure 4: Dependence of software rejuvenation rate
on the steady-state system availability for single
version software system.

plays a significant role to attain the target depend-
ability level. On the other hand, after a sufficient
cost was spent in the design of redundant struc-
ture, the environment diversity technique such as
software rejuvenation should be carried out and the
software rejuvenation rates lke $\mu_{1}$ should be deter-
mined to trigger the preventive maintenance of de-
graded software systems due to aging phenomenon.

5. Conclusion
In this paper we have dealt with a fault-tolerant
software system with alternative redundant ver-
sion and random rejuvenation, and investigated its
stochastic behavior. Based on the simple CTMC
approach, we have numerically derived the steady-
state system availability, and have examine the ef-
fect of two diversity techniques; design and envi-
ronment diversity techniques. In practice, it is well
known that much effort and cost are needed in the
design phase to develop the effective two version
software system with lower correlation. However,
we have shown that by combining two diversity
techniques effectively, the dependability level can
be improved. In the next step, we will consider
the case with the deterministic software rejuvena-
tion schedule and extend the present CTM $\mathrm{C}$ model

$\frac{\mathrm{a}}{<\frac{\overline}{}\frac{\S}{\alpha}>}$

Figure 5. Dependence of software rej uvenation rate
on the steady-state system availability for two ver-
sion software system: $\lambda_{3}^{-1}=500(\mathrm{h}\mathrm{r}\mathrm{s})$ .

$< \frac{\Xi}{B}>\frac{B}{\triangleleft}$

.

Figure 6: Dependence of software rejuvenation rate
on the steady-state system availability for two ver-
sion software system: $\lambda_{3}=0$ .

to the semi-Markov one Then, the other bivari-
ate family e.g. such as bivariate gamma distribu-
tion should be applied to model the system failure
phenomenon for the fault-tolerant software system
under several restrictive assumptions. If two soft-
ware systems are expected to be statistically inde
pendent, it is not so hard to formulate the optimal
software rejuvenation scheduling problem. How-
ever, as tried in this paper, the modeling of corre-
lated software systems will involve several technical
problems to be overcome.

A. Appendix

A.I Stationary transition probabili-
ties

The Kolmogorov differential equations which the
stationary transition probabilities $Qo,j$ (?) $(j$ $=$

$0,1$ , $\cdots$ , 14) satisfy are given by

$\frac{dQ_{0,0}(t)}{dt}$ $=$ $-(\lambda_{11}+\lambda_{21}+\lambda_{31})Q_{0,0}(t)$

$+r_{3}Q_{0,2}(t)+r_{4}Q_{0,6}(t)$

$+r_{1}Q_{0,9}(t)+r_{2}Q_{0_{2}10}(t)$ , (36)
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$\frac{dQ_{0,1}(t)}{dt}$ $=$ $-(\lambda_{12}+\lambda_{21}+\lambda_{32}+\mu_{1})Q_{0,1}(t)$

$+\lambda_{11}Q\mathrm{o},\mathrm{o}(t)+r_{4}Q_{0,7}(t)$

$+r_{2}Q_{0}$ ,s2 (t), (37)

$\frac{dQ_{0,2}(t)}{dt}$ $=$ $-(\lambda_{21}+r_{3})Q_{0,2}(t)+\lambda_{12}Q_{0,1}\langle t)$

$+r_{4}Q_{0,8}(t)+r_{2}Q_{\mathit{0},14}(t)$ , (38)

$\frac{dQ_{0,3}(t)}{dt}$ $=$ $-(\lambda_{11}+\lambda_{22}+\lambda_{33}+\mu_{\underline{9}})Q_{0.3}(t)$

$+\lambda_{21}Qo,o(t)$ $+r_{3}Q_{0,5}(t)$

$+r_{1}Q_{0,11}(t\rangle$ , (39)

$\frac{dQ_{0,4}\langle t)}{dt}$ $=$ $-(\lambda_{12}+\lambda_{22}+\lambda_{34}+\mu_{1}+\mu_{2})$

$\mathrm{x}$ $Q_{0,4}(t)+\lambda_{31}Qo,o(t)$

$+\lambda_{21}Q_{0,1}(t)+\lambda_{11}Q_{0,3}(t)$, (40)

$\frac{dQ_{0,5}(t)}{dt}$ $=$ $-(\lambda_{22}+r_{3})Q_{0,5}(t)+\lambda_{32}Q_{0,1}(t)$

$+\lambda_{21}Q_{0,2}(t)+\lambda_{12}Q_{0,4}(t)$, (41)

$\frac{dQ_{0,6}(t)}{dt}$ $=$ $-(\lambda_{11}+r_{4})Q_{0,6}(t)+\lambda_{22}Q_{0,3}(t)$

$+r_{3}Q_{0,8}(t)+r_{1}Q_{0,13}(t)$ , (42)

$\frac{dQ_{0,7}(t)}{dt}$ $=$ $-(\lambda_{12}+r_{4})Q_{0,7}(t)+\lambda_{33}Q_{0,3}(t)$

$+\lambda_{22}Q_{0,4}(t)+\lambda_{11}Q_{0,6}(t)$, (43)

$\frac{dQ_{0,8}(t)}{dt}$ $=$ $-(r_{3}+r_{4})Q_{0,8}(t)+\lambda_{34}Q_{0,4}(t)$

$+\lambda_{22}Q_{0,5}(t)+\lambda_{12}Q_{0,7}(t)$ , (44)

$\frac{dQ_{0,9}(t)}{dt}$ $=$ $-(\lambda_{21}+r_{1})Q_{0,9}\{t)$ $+\mu_{1}Q_{0,1}(t)$

$+r_{4}Q_{0,13}(t)$ , (45)

$\frac{dQ_{0,10}(t)}{dt}$ $=$ $-(\lambda_{11}+r_{2})Q_{0,10}(t)+\mu_{2}Q_{0,3}(t)$

$+r_{3}Q_{0,14}(t)$ , (46)

$\frac{dQ_{0_{l}11}(t)}{dt}$ $=$ $-(\lambda_{22}+r_{1})Q_{0,11}(t)+\mu_{1}Q_{04}(t)$

$+\lambda_{21}Q_{0,9}\langle t$ ), (47)

$\frac{dQ_{0_{)}1}\underline{\circ}(t)}{dl}$ $=$ $-(\lambda_{12}+r_{2})Q_{0,12}(t)+\mu_{2}Q_{0,4}(t)$

$+\lambda_{11}Q_{0,10}(t)$ , (48)

$\frac{dQ_{0,13}(\ell)}{dt}$ $=$ $-(r_{1}+r_{4})Q_{0,13}(t)+\lambda_{22}Q_{0,11}(t)$ ,

(49)

$\frac{dQ_{0,14}(t)}{dt}$ $=$ $-(r_{2}+r_{3})Q_{0,14}(t)+\lambda_{12}Q_{0,1^{\underline{\eta}}}(t)$

(50)

with the initial conditions:

$Q\mathrm{o},\mathrm{o}(0)$ $=1$ , $Q_{0,j}(0)=0$ j
$=1,2,\cdots,14(.51)$
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