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A Tabu Search Algorithm for Fuzzy Random
Minimum Spanning Tree Problems

広島大学大学院・工学研究科 片桐 英樹 (Hideki KATAGIRI)
坂和 正敏 (Masatoshi SAKAWA)
Graduate School of Engineering

Hiroshima University

1 Introduction
The Minimum Spanning Tree (MST) problem is to find a least cost spanning tree in an
edge weighted graph. The efficient polynomial-time algorithms to solve MST problems
have been developed by [11] and [14]. In the real world, MST problems are usually seen
in network optimization. For instance, when designing a layout for telecommunication
systems, if a decision maker wishes to minimize the cost for connection between cities, it
is formulated as an MST problem. As other examples, the objective is to minimize the
time for construction or to maximize the reliability.

Most research papers with respect to MST problems have been dealt with the case
where each weight is constant. However, in order to investigate more realistic cases, it
is necessary to consider the situation that one makes a decision on the basis of data
involving randomness and fuzziness simultaneously. For instance, the cost for connection
or construction often depends on economical environments which vary randomly, and
experts often estimate the value of the cost not as a constant but as an ambiguous value.
In order to take account of such situations, we shall deal with minimum spanning tree
problems where each edge weight is a fuzzy random variable. We call it a Fuzzy Random
Minimum Spanning Tree (FRMST) problerrt

A fuzzy random variable was first defined by [12]. Recently, some researchers $[9, 15]$

considered fuzzy random linear programming problems. We could take various approaches
to an FRMST problem according to the interpretations of the problem.

In this paper, we take a possibilistic and stochastic programming approach, which
is based on the idea provided in [9], As it is shown later, the formulated problem is

transformed into the deterministic equivalent nonlinear maximum ratio spanning tree
problem, which is generally an $\mathrm{N}\mathrm{P}$-hard problem.

In order to obtain an approximate optimal solution, we employ a solution method
through TS $[7, 8]$ .

2 MST problem with fuzzy random edge costs

Consider a connected undirected graph $\mathcal{G}=(V, E)$ , where $V=\{v_{1},v_{2}, \ldots, v_{n}\}$ is $\mathrm{a}$

finite set of vertices representing terminals or telecommunication stations etc., and $E=$
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$\{e_{1},e_{2}, \ldots, e_{m}\}$ is a finite set of edges representing connections between these terminals
or stations. Let $x$ $=$ $(x_{1}, x_{2}, \ldots, x_{m})$ be a vector defined by

$x_{*}$
. $=\{$

1if edge $e_{\overline{l}}$ is selected
0otherwise.

In the present paper, we consider a minimum spanning tree problem involving fuzzy
random weights as follows:

$\min_{\mathrm{s}.\mathrm{t}}$

.
$x\in XCx\simeq$

, } (1)

where $x$ $=$
$(x_{1}, \ldots,x_{m})^{t}$ is a decision variable column vector, $C=\simeq(C_{1}\simeq, \ldots, C_{m})\simeq$ is a each

ficient vector and $X$ stands for the collection of $m$-dimensional 0-1 vectors corresponding
to all possible spanning trees of the given graph $\mathcal{G}$ . Each $C_{j}\simeq$ is a fuzzy random variable
taking a fuzzy number $C_{j}(\omega)\simeq$ as a realization for each $\omega$ where $\omega$ is an elementary event of

the universal event $\Omega$ . The following is the membership function characterizing $C_{j}(\omega):\simeq$

$\mu_{C_{\dot{\mathrm{J}}}(\iota v)}\simeq(t)$
$=$ $\{$

$L( \frac{\overline{d}_{j}(\omega)-t}{\alpha_{j}})$ ( $t\leq\overline{d}_{j}(\omega)$ , Vw)

$R( \frac{t-\overline{d}_{j}(\omega)}{\sqrt i})$ $(t>\overline{d}_{j}(\omega), \forall\omega)$ ,

where $L(t)= \triangle\max\{0, l(t)\}$ and $R(t)= \triangle\max\{0, r(t)\}$ . The functions $l(t)$ and $r(t)$ are
strictly decreasing functions on $[0, +\infty)$ , satisfying (i) $l(0)$ $=r(0)=1$ , (ii) $l(1)=r(1)=0$,
(iii) $\mathrm{L}(\mathrm{t})=l(-t)$ , $r(t)=r(-t)$ for any $t$ .

The parameters $\overline{d}_{j}$ , $i=1$ , $\ldots$ , $m$ are normal random variables with mean $m_{j}^{d}$ and the
variance-covariance matrix $V$

By applying the calculation formula [5] with respect to L-R fuzzy numbers based on
the extension principle [16] to the fuzzy number $\mathrm{Y}(\omega)\simeq$ for each $\omega$ , it is easily shown that
$\mathrm{Y}\simeq$ is a fuzzy random variable with the following membership function:

$\mu_{\mathrm{Y}}\simeq(y)$ $=$ $\{$

$L( \frac{\overline{d}x-y}{\alpha x})$ $(y\leq\overline{d}xx)$

$R( \frac{y-\overline{d}x}{\beta xx})$ $(y>\overline{d}x)$

3 Possibilistic program ming approach
In problem (1), the total edge weights represented by a fuzzy random variable cannot be
minimized in the deterministic sense. Katagiri et al. [9] considered a linear programming
problem where the right-hand side of a constraint is a fuzzy random variable. They
first introduced a possibilistic and stochastic programming approach to fuzzy random
programming problems by noting that the degree of possibility that the constraint is
satisfied varies randomly. In this paper, we shall develop the idea to the case where
the coefficients of an objective function are fuzzy random variables. Considering the
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vagueness of the decision maker’s judgment, the fuzzy goal $\tilde{G}$ such that the objective
function value is substantially sm aller than some value is introduced. If a decision maker
wishes to maximize a degree of possibility that the fuzzy goal is satisfied, problem (1) is
reformulated as the following problem:

$\max_{\mathrm{s}.\mathrm{t}}.\prod_{X}\simeq(Y\tilde{G})\in X$

.
$\}$ (2)

where

$\Pi_{\overline{\overline{Y}}}(\tilde{G})=\sup_{y}\min\{\mu_{\overline{\overline{Y}}}(y), \mu_{\overline{G}}(y)\}$ . (3)

Since the value of $\Pi_{\overline{Y}}(\tilde{G})$ varies randomly due to the randomness of $\mu_{Y}\simeq\langle y$ ), we regard
problem (2) as a stochastic programming problem. In stochastic programming $[1, 4]$

introduced two-stage problems [3] introduced several stochastic programming model such
as the expected optimization model, the variance minimization model and the probability
maximization model. Another stochastic programming model, which is to optimize a
satisficing level under the condition that the objective function value is better than the
satisficing level, are considered [10] and [6].

In this paper, we consider the following problem which is based on the probability
maximization model:

$\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{s}$

. $\mathrm{t}$ .
$x\in XPr(\omega|,\Pi_{\tilde{Y}\langle\omega)}-(\tilde{G})\geq h)\}$ (4)

where $h$ is a satisficing level for the degree of possibility with respect to a fuzzy goal. This
problem is to maximize the probability that the degree of possibility is greater than or
equal to a satisficing level $h$ .

For any elementary event, $\Pi_{\overline{\overline{Y}}(\omega)}(\tilde{G})\geq h$ is transformed as follows:

$\sup_{y}\min\{\mu_{Y(\omega)}\simeq(y)$ , $\mu_{\overline{G}}(y)\}\geq h$

$\Leftrightarrow$ $\exists y$ $\leq\overline{d}(w)x$ : $\{\overline{d}(\omega)-L^{*}(h)\alpha\}x\leq y\leq\mu_{\tilde{G}}^{*}(h)$

$\Leftrightarrow$ $\{\overline{d}(\omega)-L^{*}(h)\alpha\}x\leq\mu_{\overline{G}}^{*}(h)$ , (5)

provided $h>0$ where $L^{*}(h)$ and $\mu_{\overline{G}}^{*}(h)$ are pseudo inverse functions defined as follows:

$L^{*}(h)$ $= \sup\{r|L(r)>h, r\geq 0\}$

$\mu_{\tilde{G}}^{*}(h)$ $= \sup\{r|\mu_{\overline{G}}(r)\geq h\}$ .

Subtract

divide all

$Pr($

$=$ $Pr\{$

$\Pi_{\overline{\overline{\mathrm{Y}}}}(\tilde{G})\geq h)$

$\frac{\{\overline{d}-L^{*}(h)\alpha\}x-\{m^{d}-L^{*}(h)\alpha\}xx}{\sqrt{x^{t}Vx}}\leq\frac{-\{m^{d}-L^{*}(h)\alpha\}x+\mu_{\tilde{G}}^{*}(h)}{\sqrt{x^{t}Vx}})$ .
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By noting that the left-hand side of the above inequality becomes a standard normal
random variable, problem (4) is transformed into the following deterministic equivalent
problem:

$\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{s}$

. $\mathrm{t}$ .
$\}$ (6)

4 Tabu search algorithm
In this section, we shall construct a solution algorithm based on TS incorporating strate-
gic oscillation and path-relinking method. Starting from an initial spanning tree, the
improvement strategy, which consists of exchanging a pair of edges, generates the neigh-
borhood of the current solution. In order to prevent cycling between the same solutions,
certain exchanges which are call “moves” can be forbidden, earning them the status of
“tabu mov\"e. The set of tabu moves defines the tabu list. Tabu moves are not permanent;
a short-term memory function enables them to leave the tabu list. The use of aspiration
criterion permits certain moves on the tabu list to overcome any tabu status. Strategic
oscillation was originally introduced to provide an effective interplay between intensifica-
tion and diversification over the intermediate to long term. In the proposed algorithm,
we used strategic oscillation to intensively explore the region around the current neigh-
borhood. In addition to a short-term memory, we use a residence frequency memory as
a long-term memory. A diversification procedure, using the residence frequency memory
function, will lead to the exploration of region of the solution space not previously visited.
On the other hand, an intensification produce undertakes to create solutions aggressively
encouraging the incorporating of solutions from an elite solution set. The process goes on
until the termination criterion is satisfied.

We recall that problems (6) can be written on the following form:

$. \max_{\mathrm{S}}z(x)=\frac{ax+g}{\sqrt{x^{t}Vx}}\mathrm{t}.x\in X,\}$ (7)

Let $x^{\mathrm{c}}$ be the current solution and $T^{c}$ its corresponding spanning tree, and let $x^{b}$

and $T^{b}$ be the best solution and its corresponding spanning tree, respectively, We denote
by $z(x)$ the objective function value of (6) at an element $x$ . Then, a TS algorithm for
solving fuzzy random minimum spanning tree problem is given as follows. In the proposed
algorithm, we use the following parameters:

Small: Number of iterations in the small depth procedure.
$MAX$ Small: Threshold of the counter NISmall.
NILarge: Number of iterations in the large depth procedure.
$MAX_{-}$Large: Threshold of the counter NISmall.
UNRIter: Counts the iterations where the best solution is unrenewed.
$MAX$-Iter: Threshold of the counter UN list.
Max-k: Threshold of the counter, $k$ , of the oscillation strategy.

Step 0 (Initial solution)
Set NISmall $=$ NILarge $=$ UNRIter $=k=0$. Generate an initial solution $x^{0}$

corresponding to an initial spanning tree $T^{0}$ Set $x^{c}:=x^{0}$ and $x^{b}:=x^{0}$ .
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Step 1 (Improvement)
Improve the obtained solution by the improvement strategy. Set $x^{b}:=x^{c}$ .

Step 2 (Strategic oscillation, small depth
Set $k:=k+1$ . If $N$ISmall $>MAX$ Small, then go to step 4. Otherwise, add $a_{1}$

edges among $N(T^{c})$ by using the edge addition rule and continue to remove one of
the edges in a cycle by using the edge remove rule until a spanning tree is formed.

Step 3 If $z(x^{c})>z(x^{b})$ , then set NISmall $=0$ and return to step 2. Otherwise, set
NlSmall $=$ NlSmall +1 and return to step 2.

Step 4 (Strategic oscillation, large depth)
If NILarge $>MAX$-Large, then go to step 6. Otherwise, add $a_{2}(a_{1}<a_{2})$ edges
among $N(T^{c})$ by the edge addition rule and continue to remove one of the edges in
a cycle by the edge remove rule until a spanning tree is formed. Improve the current
solution by the improvement strategy.

Step 5 If $z(x^{c})>z(x^{b})$ , then set NILarge $=$ NlSmall $=0$ and return to step 2.
Otherwise, set NILarge $=$ NILarge +1 and return to step 4.

Step 6 If k $>{\rm Max}_{-}k$ , then go to step 8. Otherwise, go to step 7.

Step 7 (Diversification)
Remove $a_{3}$ edges in $T^{c}$ that are resident for a long time in spanning trees. Slap a
long tabu tenure to the removed edges. Add the edges whose resident time are short
so as not to make a cycle until a spanning tree is formed. Return to step 1.

Step 8 (Intensification by elite solutions)
Set $k=0$. Construct a set of connected components by adding edges that are in
most of elite solutions. Add edges, except for the edges that are not in most of elite
solutions, by the edge addition rule until a spanning tree is formed. Improve the
obtained solution by the improvement strategy. If $z(x^{c})>z(x^{b})$ , then set $x^{b}:=x^{c}$ ,
$k=$ UNRIter $=0$ and return to step 2. Otherwise, set UNRlter $=$ UNRIter +1
and go to step 9.

Step 9 (Path relinking method)
If UNRIter $>{\rm Max}_{\sim}Iter$ , then terminate. Otherwise, generate an initial solution
by the path relinking method and return to step 1.

The essential features that have been considered in building a TS algorithm for solving
a fuzzy random minimum spanning tree problem are: generating an initial solution, the
neighborhood structure, the improvement strategies, short-term and long-term memo-
ries, oscillation strategy, intensification by an elite solution set, diversification procedure,
termination criterion. The detail of those features is as follows:

Initial solution
Let $SCC(\mathrm{i})$ denote a Set of Connected Component that consists of $\mathrm{i}$ edges. To
construct a spanning tree $T$ , first, an edge $e\in E$ is chosen uniformly at random.
With this edge, a subtree $SCC(1)$ which consists of only one edge is created. Then,

a set of connected component $SCC(k+1)$ is constructed by adding an edge $earrow$
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$\mathrm{a}\mathrm{r}_{\mathfrak{M}}\mathrm{i}\mathrm{n}\{z(SCC(k)+e’)-z(SCC(k))|e’\in ENC(SCC(k))\}$ to the current $SCC(k)$

under construction, where $E_{NC}(SCC(k))$ is defined as follows:

$E_{NC}(SCC(k))\succ$ { $e\in$ $SCC(k)+e$ has no cycle}.

Neighborhood structure
Let $T$ be a set of edges which forms a spanning tree, and let $\mathcal{T}$ be a class of all
possible spanning trees in a given graph. The neighborhood $N(T)$ consists of all
spanning trees which can be generated by removing an edge $e\in T$ and by adding
an edge from the set $ENH\{T-e$ ) $\backslash \{e\}$ , where $E_{NH}(T-e)$ is defined as follows:

$ENH\{T-e)$ $=\triangle\{e’\in E|T-e+e’\in \mathcal{T}\}$ .

Improvement strategy
In order to improve the current solution $x^{\mathrm{c}}$ , here are two major improvement strate-
gies. One is a first improvement, which scans the neighborhood $N(T^{c})$ of a current
spanning tree $T^{c}$ and chooses the first spanning tree $T^{f}$ corresponding to the solution
$x^{f}$ such that $z(x^{f})>z(x^{\mathrm{c}})$ . The other is a best improvement, which exhaustively
explores the neighborhood and returns one of the solutions with the lowest objective
function value.

At the beginning, we use the first improvement strategy. If a better solution cannot
be found, we switch to the best improvement strategy.

Edge addition rule
Again, we use $SCC(\mathrm{i})$ , a set of connected component that consists of $\mathrm{i}$ edges, defined
in the previous section. Then, by the edge addition rule, $SCC(k+1)$ is constructed
by adding an edge $earrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{z(SCC(k)+e’)-z(SCC(k))|e’\in E_{NC}(SCC(k))\}$

to the current $SCC(k)$ under construction.

Edge remove rule
By the edge remove rule, $SCC(k-1)$ is constructed by removing an edge $earrow$

argmin{z(SCC(fc) $-e’$ ) $-z(SCC(k))|e’\in CY(k)$ } from a cycle in the current
$SCC(k)$ under construction, where $CY(k)$ denotes the set of element $e’\in SCC(k)$

which are parts of cycles in the component $SCC(k)$ .

Diversification procedure
The diversification procedure begins at the situation that some spanning tree is
formed. Then it removes from the spanning tree $a_{3}$ edges which have been a part
of spanning trees for a long time. Next, a spanning tree is again formed with the
edges which have not been added so far by the edge addition rule. The diversification
derives the search into a new region. Then, the strategic oscillation procedure begins
at the new search region. If the strategic oscillation procedure is iterated in Max-k
times, then the intensification procedure is started.

Intensification procedure using an elite solution set
The intensification procedure begins at the condition that no edge is selected. First,
a connected component is constructed by continuing to selecting the edges that
occur frequently in the elite solutions. The selected edges are never removed durin$\mathrm{g}$
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the procedure. After constructing a connected component, the process of adding
edges, except ones that are not in most of elite solutions, are continued by the edge
addition rule until a spanning tree is formed.

Path relinking method
Path relinking is initiated by selecting two solutions $x’$ and $x’$ from a collection of
elite solutions produced during previous search phases. A path is then generated
from $x’$ to $x’$ , producing a solution sequence $x’=x’(1),x’(2)$ , $\ldots$ , $x’(r)=x’$ ,
where $x’(\mathrm{i}+1)$ is created from $x’(\mathrm{i})$ at each step by choosing a move that leaves the
fewest number of moves remaining to reach $x’$ . Finally, once the path is completed,
one or more of the solutions $x’(\mathrm{i})$ is selected as a solution to initiate a new search
phase.

Aspiration criterion
An aspiration criterion is activated to overcome the tabu status of a move whenever
the solution then produced is better than the best historical solution achieved. This
criterion will be effective only after a local optimum is reached.

Termination criterion
The counter UNRlter counts the iterations where the best solution $T^{b}$ is unre-
newed. The proposed algorithm terminates if UNRIter is greater than the thresh-
old $Max_{\sim}Iter$ . The quality of the final solution and the computer running time are
both influenced by the termination criterion

5 Conclusion
In this paper, we have considered fuzzy random spanning tree problems. Introducing
a fuzzy goaj we formulated the problem to maxim ize the probability that the degree
of possibility or necessity that an objective function satisfies the fuzzy goal. It has been
shown that the problem was transformed into the deterministic equivalent nonlinear max-
imization ratio spanning programming problem. In order to solve the problem, we have
constructed aTS algorithm based on oscillation strategy, intensification by a elite solution
set and diversification by residence frequency and so on.

In the future, we will try to extend and apply this method to the problems to minimize
the variance of the degree of possibility. Since the problems include the constraint with
respect to the expected degree of possibility, we need to extend our method in order to
deal with a constraint by changing a part of the oscillation strategy.
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