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Symbolic-Numeric Optimization for Kinetic Models

- An application to bioinformatics field -
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Abstract

The sequencing of complete genomes allows analyses of interactions between various biclogical molecules
on a genomic scale, which prompted us to simulate the global behaviors of biclogical phenomena on the
molecular level. One of the basic mathematical problems in the simulation is the parameter optimization
in the kinetic model for complex dynamics, and many optimization methods have been designed. We in-
troduce a new approach to optimize the parameters in biological kinetic models by quantifier elimination
{QE), in combination with numerical simulation methods. We also show an computational example for
the inhibition kinetics of HIV proteinase in order to demonstrate the effectiveness of our method.

1 Introduction

Many methods for local and global optimization have been developed to model and simulate the
global network of biological molecules in a cell [9, 11], and some simulators based on various optimization
methods have also been designed (e.g. [10]). In the optimization methods, the estimation of kinetic
parameters plays a key role in the development of kinetic models, which, in turn, promotes functional
understanding at the system level, for example, in several biological pathways (7, 12]. In addition to the
development of optimization methodology, the high performance of computers for numerical calculations
also supports the optimization of the kinetic parameters in the complex dynamics within a reasonable
amount of computational time. The high computer performance supports not only the numerical calcu-
lations based on calculus, but also the symbolic computations based on computer algebra (CA). Indeed
symbolic computation is popular in software platforms such as Maple [6] and Mathematica [14}, and the

use of symbolic computation is increasing rapidly in biology [2]. The quantifier elimination (QE) is one
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of the main subjects in CA [3]. The QF was originally described in the mathematical proof by Tarski
(1951) [13], which stated that the elementary theory for the reals is decidable. Although the original
algorithm was too complex to solve the problem, a new method by Collins (1975) [5], cylindrical algebraic
decomposition (CAD), allowed efficient implementation. Subsequent improvements in the algorithm pro-
vided feasible software platforms for symbolic computation (e.g., [1]). Although some applications of QE
to biological issues by symbolic computation were reported [4], an amalgam of symbolic computation by
QE and numerical calculation has not been designed. In this paper, we developed a novel optimization
method in combination with symbolic computation and numerical simulation. A procedure for parameter
optimization was designed to solve differential equations by QE in combination with numerical simula-
tion. The performance of our procedure is illustrated by optimizing ten parameters betweeh nine variables
in a model for the inhibition kinetics of HIV proteinase [8]. As for the optimization performance, the
goodness of fit to the observed data and the optimized parameters are compared with those from the
previous studies [8, 9]. Furthermore, some characteristics of the symbolic-numeric method are discussed

with the behaviors of the parameters and the variables in the model.

2 MATERIALS AND METHODS

2.1 Main tool: Quantifier elimination for uncertain input data

Our key tool for realizing symbolic-numeric optimization is quantifier elimination (QE) over the reals
[3]. When we find feasible model parameters according to the observed data, we can solve some con-
straints derived by substituting observed data for the corresponding variables/parameters in the original
constraints. Such constraints have some uncertainty, due to the inexact input data. Henée, if we apply
QE directly to the constraints, then there is a real danger of arriving at an incorrect answer. Actually,
we often obtain a “false” result for feasible cases. In order to extract the nontrivial information of
feasible parameters, even for the incorrect cases, we propose the introduction of new variables into the
constraints (see 2.2). We call them “error variables” , which play a role in absorbing the uncertainty due
to inaccurate input data. If we apply QE for the constraints including error variables, then we obtain
possible ranges of error variables, so that the constraints are feasible. Then we obtain feasible regions of
the model parameters by applying QE again to the constraints, where the error variables are substituted

with the minimum value of their feasible ranges.

2.2 Mathematical Framework

Problem: In this paper, we consider the following fitting problem: the biological kinetic model analyzed

here is of the form:

&; = v (X, K) 1)

where X = {21, -, Zn, } is a set of variables, and K = {k1, -, kn;} is a set of parameters. The problem
is to fit the parameters K of the model to the observed data X ={#}for,i=1,--,ng, t=0,1,---,nz,
under the following additional conditions:

(i} Conservation laws: hs(X) =0

(ii)Variable ranges: z; € D;, where D; = [a,b], a,b € RU {oo}.
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Basic Formula Here we set up the leading formula of this paper. As mentioned above, we have the
following constraints ¥ with error variables ei from kinetic models: ¥= A, 9);, where ¢; = Zi —¥; (X, K)+
e; = 0. For the error variables we introduce a new variable, enaz, which means the magnitude of the
error variables: |e;] < emaz. Moreover, for the variables whose observed data is given, we consider the
following objective conditions: X, l(t) -X ,(t) = (), to achieve fitting. Then the “basic formula” is given as

FX, X, K, emas €5) = (¥ ARi(X) = 0Az; € D; Ales] < €mas A XY = X =0). 2

We apply our symbolic-numeric approach to formulas derived by slightly modifying the basic formula

according to various purposes.

2.3 Optimization Procedure

We explain the concrete procedure of symbolic-numeric optimization, which consists of six parts as

illustrated in Figure 1.

Numerical simulation First we prepare simulation data for ; and x;, for which we lack observed

data, by performing a numerical simulation of the kinetic models.

1. Set initial conditions X(® and starting values for unknown parameters K® a5 follows: X =
(O = 1,---,n,} and K@ = KOUK | where K¥ = {k§°),~-,k§o)} are starting values, and
KZE,O) = {kj(.g,)l, sy kg?} are given fixed parameters.

2. By numerical simulation of the kinetic model (1), we obtain a time series for z; and I;: X,.(t) =

~ (1) -
{x?)ii =1,---,n5t=0,1,---,n;}and X; = {a':?)tal =1,--,m,t=0,1,--+,m}.

—
v {1} Numerical simulation

ot

~
-
»

‘L {2) Formulation

“
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8 @w._@) Qe | "
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Z (4) ~offven
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@

7]

{5) Numerical simuiation

{8} Termination

Figure 1: Flowchart of symbolic-numeric optimization. The variables and values are enclosed by the boxes, and
the procedures are numbered corresponding to the description in the text.
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Formulation After choosing some variables from X, we call them “focusing variables”, Y, and

substitute observed/simulated data into the remaining variables:

1. Choose a subset Y of X : YCX.

. % - . 2 {t) 3
2. Substitute X, X\Y, in F by the values of X, X at a time point ¢&: X; « X, ,X; Xi(t), where
z; € X, X\ Y. Then we denote the new formula as F/(Y, K1, émaa, €;)- We note by performing a QE
computation for the formula, Y 3K Jemq,Je (F'),

Computation of offset by QE Observed data often contain an offset. Therefore, we must first deter-
mine the offset value. Here we consider the case that the offset appears linearly. For the sake of simplicity,
we assume that only #; has an offset. Let Fy; ;,,, be the formula obtained by putting ) —of fset into 5:5”
of F’, where of fset is a variable for offset. By performing QE for 3X 3K 3emnqz3e:(F, £fs et)y We obtain
the quantifier-free formula 7(of fset), which stands for the feasible ranges of of fset. Then we substitute

the minimum value of the offset for the variable offset in F/, and we denote it again by F'(Y, K1, emaz, €:)-

Estimation of emax and K; by QE First, we use QE to make the magnitude of ei as small as

possible, and then we estimate the parameters K; by QE:

1. Compute the feasible range of m(emaz): by computing QE for F/(Y, K1, e;), we obtain a quantifier-
free formula mw{emax) describing the feasible ranges of emax. Next, we put the minimum value of

€maz IO Emaz in F’, and denote the resulting formula as F"(Y, Ky, €;).

2. Compute K;: by computing QE for Y3e;(F"), we obtain a quantifier-free formula 7(K3) describing
the feasible ranges of K) Actually, the feasible ranges of K are usually sufficiently narrow intervals
(e.g., about 107) to choose an appropriate specific value of K.

Computation of sum of squares (SSg) We estimate the goodness-of-fit for the obtained parameter

valuesK; from the feasible ranges of K in terms of §Sg¢.
1. Set initial conditions X(® and K.
2. Perform numerical simulation of kinetic model (1).

3. Compute SSq: 5Sq = Zt(:c?) - igﬂ)? |

Termination If $Sq is smaller than a specific level 8, output K. Otherwise, set new initial values and

go to (1).

2.4 Biological Model

We analyzed a model for the inhibition kinetics of HIV proteinase [8], as shown in Figure 2. The pro-
teinase monomer (M) is inactive, but the enzyme (E) is active in the dimeric form. The dimer catalyzes
the conversion of the substrate (8) to the product (P). The inhibitor (I) is competitive for the sub-
strate and the product, and the inhibitor-binding enzyme is irreversibly deactivated (EJ). In the model,
there are ten parameters and nine variables. According to the previous studies 8, 9], five parameters
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(11, k13, k21, ka1, ks1) are given, and the remaining five unknown parameters (kao, ks, kaz, ks2, ke), two
initial values (Einss, Siniz) and the offset of the fluorimeter are estimated by the present method. The
experimental data of the product [P], which are composed of 300 data points measured from 0 to 3600
seconds, were downloaded from a web site (http://www.gepasi.org/tutorials/opt/hivfit.html).

3 RESULTS

First, we will describe the practical procedure for parameter optimization in the kinetic model for HIV
proteinase, and then we will evaluate the optimized parameters by the goodness of fit to the observed

data.

3.1 Procedure for Optimizing Parameters in HIV inhibition Model

To perform the numerical simulation (in 2.3.1),K;
and Ka, are defined as the five unknown parameters and

M+M f £ %1(_}{)° k() the five given parameters, and the nine variables are allo-

S+ = B R Fm cated to [P), [El, [S], [ES), [M], [EP), [I], [EI], and [E.J].

ES = E+P K .

E+P = EP  Juke Then we set the start value K9 and the initial value
— kL X @ The start values for ten parameters and the initial

E+I 2 E ks ke :

ET — E7 ks values for nine variables are cited from the previous study

[9] (see the legend in Figure 2). Also, the two initial val-
X o o ues, Finit and Sinit, are changed within a limited range
Figure 2: Kinetic model for the inhibitor of HIV )
proteinase. The start values for ten parameters with reference to the previous studies [8, 9]: 31 discrete
and the initial values for nine variables [9] are as  values for ([£] =0.00350, 0.00355, ---, 0.00500) and 9 val-
g%lé?v]::: =k“1 Ofkgilfli 03, Iti_zkzgo(; kls?o’:k”l Oz ues for {[S] =24.0, 24.5, -+, 28.0). The focusing variables
, ksz = 0.1, andks = 0.1:5, = 0,32 = 0.004, 55 = Y (in 2.3.2) are simply obtained by the symbolic compu-
25.0,%4 = 0,85 = 0,6 = 0,Z7 = 0.003,Zs = tation with QF from the relationship between X and X,
0, andfs = 0. in the model. In the inequality v;(X, K)At +xt > 0, the
elimination of At by QE outputs five inequalities includ-
ing five parameters: 100 [E]x [I|—k52x[EI}—k6x[EI] > 0,100 [E]*[I] — k52 [EI] > 0,100 [E]* [P] —
k42x [ EP)~k3x[ES| < 0,100%[E]*[P]|—k42«[EP] > 0, and100%[E]*[S]—k22x[ES|—-k3%[ES] > 0. Among
the five unknown parameters in the above five inequalities, [P] is included in the objective function, and
[S] is a large value relative to the other variables in the reaction molecules. Except for the last three in-
equalities including [P] and [S], only [EI] appears in the terms related to the unknown parameters in the
first two inequalities. Thus, the focusing variables Y are defined as [P}, [S], and [E] in the present model.
All symbolic computations by QE in this study are performed by REDUCE (ver. 3.8) (http://www.uni-
koeln.de/REDUCE/). In addition, the conservation laws in the present model are obtained by Gepasi [10],
a tool for estimating the kinetic flux in a given model, as follows: hq(X) = [S]+[ES]+[P|+{EP]|—-Sinit = 0
and ho(X) = [M} + 2[E] — 2(S} — 2[P] + 2[EI] + 2[EJ] — (2Binit — 2Simat) = 0.

The computation of offset by QE (in 2.3.3) is realized by eliminating all of the variables by QE, except
for of fsetin F. (;f fset- Thenwe obtain u(of fset), depending on %1, and the values of six variables and five
parameters, as the following inequalities: u(of fset) = ¢; + coof fset > 0 and ¢35 + cq0f fset > 0, where
€1, ¢2, c3 and cq are constants., The constants in the above equations are estimated in each optimization.
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Table 1: Goodness of fit with optimized parameters by symbolic-numeric method.

fime e ke s 589 B S affet

336 i 2562 9776 1306 8163 00969 000962 DO0&S Y5 D078

884 i 1555 9982 17T 0ER GOPE0 000825 DOBETD 380 04091

(848 2 1345 8817 IR &5 SO0 0.00953 2.008460 I8¢ 040521

4058 9990 1211 8102 0098 006380 OO@ES IS0 0040591

336,984 1 258 9970 1239 173 1759 000856 DOBESO 375 0028501

336, 1848 1 1919 9980 1304 4% 4991 000666 Q.004TS 275 -0.0285%1

4. 1848 s 2116 9718 1140 0018 100E08 000659 00495 276 -0.016591

‘ 996 9990 1254 1000 1000 00333¢ 000430 275 0023591

Mendes & Kelt - WLL 7352 T IStEM4 3O0E+04 000513 000547 2679 -0.008962
Kazmie - 17 946 M7 0D 0124 - 000337 2483  -001

For reference, the values related to the present optimization are also cited from previous studies (8, 9.

Using F' of Y and the offset obtained above, we can estimate emax andK; by QE (in 2.3.4). Note
that 279 sets of emax and K are obtained by the corresponding sets of Eyuy: and Snsz. Since the fitting
of simulated data strongly depends on the initial values, we further simulate numerically Eyny; and Sins
within the above ranges of Fins: and Sins; by a standard technique of the bisection method, Eini: and
Sinat for each set of emax andK; are estimated to minimize the SSq that is calculated for 300 values of
[P] (in 2.3.5). Finally, we obtain a set of emaz,K1, Biniz and Sinsr by selecting a minimum SS¢q among
the 279 SS¢’s.

To judge whether the loop in Figure 1 terminates or not (in 2.3.6), the minimum of S5¢’s is compared
with the threshold 8. In the present study, the threshold is set to 0.01-to attain the same magnitude as
that in the previous study [9]. If the SSg is smaller than @, then we terminate the optimization process.
If the SS¢ is larger than 8, then we start the loop by substituting 279 sets ofK7 into K©) with the same
initial value sets of 9'3%0)( [Einiz]) and ﬁgo)([Smit]). Although the number of starting values K©) increases
as 279" with the n-th iteration, the restriction of the parameter and the variable spaces prevents multiple
iterations. Indeed, only one or two iterations were sufficient to attain the threshold in the present model.

3.2 Observed Data Fitting with the Optimized Parameters

The optimized parameters with the six sets of observed data are listed in Table 1, together with the
iteration number, the goodness of fit measured by SSq, the initial values of Ejpi: and Sinit, and the offset.
In addition, the fittings of simulated values to the observed data in six cases are described in Figure 3.

One of the remarkable features of the present fitting is that only one or two points of the observed
data are sufficient to fit 300 data points with an SSgq value of less than 0.01. The data point for the
optimization is randomly chosen from 300 points of data, and all fittings attain the threshold by one or
two iterations of the loop. In two of the six cases, two rounds of iterations were required, but the first
fitting in each case agreed well with the observed data. This is partly because QFE powerfully restricts
the possible ranges of the parameters and the variables, and partly because the present model is simpler
than that expected from the complex kinetics of ten parameters and nine variables. These points will be

discussed in the following section.
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Figure 3: [left] Fitting to observed data with optimized parameters. The amount of product [P] is multiplied
by a coefficient (0.024), according to [9]. The experimental data are denoted by the jagged curve. The simulated
curves are denoted by the solid curves (finally optimized) and if the loop iterates twice, by the broken curves
(first optimized): a, ¢t =336; b, t =984; ¢, ¢t =1848; d, £ =336 and 984; e, ¢ =336 and 1848; f, { =984 and 1848.
[right] Relationships between the five optimized parameters. The parameter ranges were estimated by the given
values at ¢t =984. The open circles indicated by arrows are the optimized parameter values at £ =984.

Another feature is that the values of the parameters agree well with those in the previous studies
[8, 9]. In particular, the highlighted parameters in this model, the inhibitor binding constant (ks2) and
the deactivation rate constant (ks), are about 0.10 and 0.097 in three of the six cases, which are similar
values to the constants in one previous study [8]. In contrast, the constants in the three remaining cases
are enormously large, except for ksp at ¢ =984 and 1848, which are also similar to the magnitude of the
rate obtained in the other previous study [9]. In comparison with both cases, the value in the latter case
is unreasonably large for the analysis to be acceptable. Thus, the large dissociation and deactivation rate
constants suggest that the potency of the inhibitor is overestimated in terms of the inhibitor reaction.

Two problems in the present optimization remain: one is the choice of the observed data for the
optimization, and the other is the confidence intervals for the parameters. As for the data choice, the
data showing a flat slope in the kinetic curve seem intuitively inadequate for the simulation. Indeed, by
using the data of more than t =2500 in Figure 3, QE frequently outputs ‘false’; this means no parameter
and variable spaces for the initial conditions in F’. Any data, except for those in the steady states, may
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possibly output ‘ true’ for the optimization by QE. As for the confidence intervals for the parameters,
we will discuss them In terms of the parameters and the variable spaces in the following section.

4 DISCUSSION

4.1 Parameter Spaces Estimated by QE

The relationship between the parameters can be easily estimated by QE. Indeed, the parameter
relationship in arbitrary ranges of variables is obtained by only the exclusion of the object function in F,
and is useful to elucidate visually the parameter optimization by QFE in terms of the confidence intervals
of the optimized parameters.

Figure 4 shows the relationships between five optimized parameters. Given Eins: and Sinig, the F’
obtained by excluding the object function consists of five known and five unknown parameters and three
focusing and six remaining variables. In F”, the three focusing variables and three of the five unknown
parameters can be eliminated by QE, given numerical values at ¢ =984 for six known variables, and then
we can obtain the relationship between the remaining pair of parameters (a quantifier-free formula for
the parameters). '

One of the striking features of the elimination by QE is that the parameter spaces are highly restricted
in all parameter pairs. The parameter space of each pair emerges in a very narrow range between two
boundaries, which is a visual representation of the uncertainty of the parameters. For example, the
narrow range for the parameter space between kgz and kqa is obtained with the following inequalities:
155.49657522< kyz <155.49657525 and 1127.2733904< ks < 1127.2733905. Furthermore, the total
parameter ranges are shown visually in the restricted ranges; the maximum ranges of the parameter pairs
in Fig. 4b are 0< ko < 411 and 0< kyp < 1813, and the dissociation constant of [EP)] (ks2) varies in a
wider range than that of [ES] (k22).

As seen in the figure, the relationships between the two parameters are divided into independent and
dependent relationships. The parameter range with a slope indicates that the two parameters change
mutually, and are dependent on each other, and the range with no slope indicates that the parameters are
independent of each other. Only the relationship between ko2 and kg2 (b in Figure 4) is dependent, and
the remaining relationships are independent. Thus, the present method reveals the mutual dependency

of the parameters with their feasible ranges.

4.2 Concluding Remarks

The present study is the first application of QE to the parameter optimization problem in conjunction
with a numerical simulation. Our symbolic-numeric method by QE shows the same magnitude of goodness
of fit as the previous numerical optimization. Furthermore, the present method has the distinct potential
to elucidate the relationships between the parameters in the kinetic model. Thus, our method provides
a new direction for the analysis of kinetic models in the field of computational biology.
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