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ON THE STRONG CONVERGENCE OF MODIFIED ISHIKAWA
ITERATES WITH ERRORS FOR ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

Hafiz Fukhar-ud-din and Wataru Takahashi
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
O-okayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail: hfdin@yahoo.com , wataru@is.titech.ac.jp

Abstract: Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space and let T': C — C be a completely continuous asymptotically
nonexpansive mapping with sequence {k, > 1} such that lim,_o ks = 1. We prove
that modified Mann and modified Ishikawa iterative schemes with errors converge
strongly to a fixed point of T' without assuming Y o, (kf, — 1) < oo for some r > 1.

1. INTRODUCTION

Let C be a nonempty subset of a normed space E. A mapping T:C — C is an
asymptotically nonexpansive if there exists a sequence {k, > 1} with imp—00 kn =
1 such that

Tz - Tyl < knllz—yll, 2,y €C,n2 L

In particular, if &, = 1 for all n > 1, it becomes nonexpansive.

The class of asymptotically nonexpansive mappings which is a natural general-
ization of the important class of nonexpansive mappings, was introduced by Goebel
and Kirk[2] in 1972 and they proved that if C'is a nonempty bounded closed convex
subset of a uniformly convex Banach space, then every asymptotically nonexpan-
sive mapping on C has a fixed point. In 1978, Bose[l] obtained the first weak
convergence result of Picard iterations of asymptotically nonexpansive mappings.
Later, Gérniki[3] improved the Bose’s result. Schu[11] also introduced the following

iterative schemes:
Let C be a nonempty convex.subset of a normed space E and let T : C — C be

a given mapping. Then

(1) {zn} given by:
{ml € C, (1.1)

Tng1 = (1 — @p)p + € T"2n, 021,

where {a,} is an appropriate sequence in [0, 1], is known as a modified Mann
iterative scheme.
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(2) {zn} obtained by:

T1 € O,
yn = (1= Bn)%n + BrT" T, (1.2)
Tnti = (1 - Gjﬂ)mn + anTnym nz 1,

where {a,} and {,} are some suitable sequences in [0, 1], is known as a modified

Ishikawa iterative scheme.

Using (1.1), Schu[11] proved the following convergence theorem for asymptoti-
cally nonexpansive mappings.
Theorem S(Theorem 1.5[11]). Let C be a nonempty bounded closed convex
subset of a Hilbert space H. Let T : C — C be a completely continuocus asymp-
totically nonexpansive mapping with {k, > 1} such that lim, 4o kn = 1 and
% (k2 —1) < oo. Let {an} be a real sequence in [0, 1] such that e San < 1€

n=1

for all n > 1 and for some € > 0. Then the modified Mann iterative scheme {Zn}

converges strongly to a fixed point of 7.

Later, Rhoades [10] extended Theorem $ to a uniformly convex Banach space
and to the modified Ishikawa iterative scheme. In 1995, Liu [8] introduced the
following modified Ishikawa iterative scheme {z,} with errors in C defined by:

z; € C,
Yn = (1— Br)zn + B, T7Tn + Un, (1.3)
Tpt1 = (1 - an)azn + anTnyn + Un, n21,

where{u,} and {v,} are two summable sequences in F and {an} and {8, } are
real sequences in the interval [0, 1] with appropriate conditions. In particular, if
we choose B, = 0 and v, = 0 in (1.3), it reduces to the modified Mann iterative
scheme with errors.

In 1999, Huang[4] studied the modified Mann and the modified Ishikawa iterative
schemes with errors introduced by Liu[8] and extended Theorems 1 and 2 of Rhoades
[10].

Theorem H1(Theorem 1[4]). Let C be a nonempty bounded closed convex
subset of a uniformly convex Banach space E. Let T' be a completely continuous
asymptotically nonexpansive selfmapping of C with {k,,} > 1 such that Y .o, (k] -
1) < oo for some r > 1. Define {an} satisfying 0 < a; < an <1~ ay for all n and
some ay,az € (0,1). For any z; € C, Zpt1 = (1 — an)n +0nT @y +u, forn > 1
where {u,} is a sequence in C satisfying Y .- ; [lta]] < 00. Then {2,} converges
strongly to some fixed point of T

Theorem H2(Theorem 2[4]). Let C be a nonempty bounded closed convex
subset of a uniformly convex Banach space £. Let T be a completely continuous
asymptotically nonexpansive selfmapping of C with {k,} > 1 such that > oo, (k% —
1) < oo for some r > 1. Let {x,,} be as given in (1.3) with {a, }, {8,} satisfying 0 <
a; < o, <1—agforalln>1 and limsup,,_, B, < b for some constants a;,az €
(0,1),b € [0,1) and {u,},{vn,} are two sequences in C satisfying > o, |lun]| < o0
and Y o7 |lvn]l < co. Then {z,,} converges strongly to some fixed point of T

In [13], Xu also introduced error terms in the Mann and Ishikawa iterative
schemes which appear to be more satisfactory. For the nonempty convex sub-
set C of a normed space F, and a given mapping T : C — C, the modified Ishikawa



iterative scheme {z,} with errors in the sense of Xu is given by:

T € C,
Yn = @ Tp + 0, T™%0 + Cpn, (1.4)
:I"TL+1 = anwn + bnT'nyn + Cn_'u‘n, n 2 1,

where {an},{bn}, {cn}, {a,},{b,} and {c,} are sequences in [0, 1] such that a, +
bp+cn =0, +b,+c, =1fralln>1and {u,} and {v,} are bounded sequences
in € with the gua1a,ntee that it always lies in C. It becomes the Mann iterative
scheme with errors, if we choose b, =0 = c,.

Xu'’s iterative schemes with errors are always well-defined and the occurence of

errors is also in random.
Moreover observe that if b, + ¢ = @n and b, + ¢, = B, Uy, = Cn{tn — TYn)

and v,, = ¢, (vn — T"z,) in {1.4), we obtain

Z1 € C',
Un = (1 - 57&)"6“- + ﬁnTnm” + fU‘n’
Tnt1 = (1 — 0n)Tn + T yn + u,, n>1Ll

Thus, if {T"z,} and {T"yn} are bounded (in particular if C' is bounded) and
S L Cn < 00,302 ¢, < oo, then (1.4) takes the form of (1.3). In this paper, C
will be taken bounded so that (1.3) is contained in (1.4).

Recently, Theorem S, Theorem H1, Theorem H2 and the results of Rhoades in
[10], have been obtained for unbounded domain C provided that F(T) = {z € C':
Tz = z} # ¢ (for example, see [9]). Some authors have also extended these results

for the mappings including asymptotically nonexpansive mappings as a subclass.
For details; see [5-7].

In this paper, we extend and improve Theorem S, Theorem H1, Theorem H2
and the results of Rhoades[10] and Xu and Noor[12], by showing that condition
S22 (k7 — 1) < oo for some r > 1 is superfluous in these and hence, in similar

type results in the literature.
It is also worth mentioning that our calculations of the proof are comparatively

simple and shorter than those done by Huang[4], Rhoades{10] and Schu [11].

In the sequel, we shall need the following lemma.
Lemma L([14]). Let p > 1 and r > 0 be two fixed real numbers. Then a Banach
space E is uniformly convex if and only if there is a continuous strictly increasing
convex function g : [0, 00) — [0, 00) satisfying g(0) = O such that

Az + (1= Nyll” < AlfzlP + @ = N llyll” — wp(Vg(llz = yi)
for all 2,y € B,[0], where B,[0] = {z € E : |ja|| < 7} and wp(A) = AP(1—A) +
AL = X)P for all A € [0,1]. ‘

2. STRONG CONVERGENCE

We begin with the following lemma.
Lemma 2.1. Let C be a nonempty bounded closed convex subset of a normed space
E and let T : C — C be a uniformly A-Lipschitzian mapping. Define a sequence
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{z,} asin (1.4) with {u,}, {vn} sequences in C and {an }, {bn}, {ca }, {an}, {02}, {ch}
are sequences in [0, 1] satisfying
{ Gn 4+ bp+Cn=a,+b,+c, =1 foralln>1,

lim ¢, =0= lim d,.
n— 00 n—o0

Then
HiMposeo |[Tn — T3, l] = 0 implies limp_yo0 |[#n — Tz,|| = 0.

Proof. Since C is bounded, we can choose A/ > 0 such that

M = max {sup,>1 [|Tn — unH ,SUD> 1 [|Zn — |} < 0.
Denote ||#n, — Ty, || by dn. Then we have

|Tn = Ens1ll = |Zn ~ (an%n + bnT"yn + Cntin)]|
[bn (0 = T"Yn) + ca(Tn ~ un)l|

i

< o = T"2a|| + 1 T7@n — T"Ynll + €n [[Tn — tn|]

< dp+ Alzn — yull + e

= dp+ A0 (@0 = T7%n) + € (Tn — va)|| + cn M

< dp F A, |20 = T2, + (cp +cn) M

< (14 XNdn + (Ac, +cn) M. (2.1)

We also have

ltny1 = TZppa|] < ”mn+1 o ST “ + ”Tzn+1 ! i S H
< dnpr+ A Zngr — T Tnga ]
= dny1+ )‘”(mn+l - &p) + (Tn ~ T"zp) + (T2 — ann-i-l)”
s + AlZass = Tl + lon — T2+ Allon = 2ns1]]

A

d’n+1 + /\d'n + )\()\ + 1)”.’017,.}_1 - :z:nH (22)

Substituting (2.1) into (2.2) and then applying lim sup on both sides of the new
inequality, we obtain that

limsup |[Tp11 ~ TTpaa|l <0

n—o0
and hence

im {lz, — Tz,]| = 0.
n— oo

This completes the proof.

Now we prove our main theorem.

Theorem 2.1. Suppose that E is a uniformly convex Banach space and let C be
a nonempty bounded closed convex subset of E. Let T : C — C be completely
continuous and asymptotically nonexpansive mapping with sequence {k,, > 1} such
that imp_oo kn = 1. Let {'z,n} be the iterative scheme given in (1.4) where the
sequences {an}, {bn},{cn}, {a,},{b,} and {c,} satisfy an + b, +c, =1 =a, +
b, +c, foralln>1, 0<8<b, <14 for some d € (0,1), limsup, o b, < 1,
Zn_ Cn < 00,3 00 ¢, < 00 and {u,},{v,} are sequences in C. Then {rcn} and
{yn} converge strongly to the same fixed point of 7.



Proof. Let F(T) denote the set of fixed points of T. By Goebel and Kirk[2], we
have F(T) # ¢. Since C is bounded, for any p € F(T'), we have that { 2, —p,T"yn—
p} C B,[0]NC for some r > 0. We denote by M, the maximum of sup,,», llzm - 2l%,

SUPy>1 (H'“'n - mn”z + 2 [[bp(T™yn = p) + (1 = bu)(zn — P) | ln — an) and

SuanI(”'Un - -’Iin”2 +2 ”b'n(Tnmn —-p)+(1- b'n)(mn - p)“ fvn — zull)-
From Lemma L and (1.4), we have

[2 [bn(T™yn = 1) + (1 = bn)(@n — p) + Cnlun = mn)!lz

[ba(T ™ = 5) + (1 = ba) (@0 ~ DI’ + cald

b (T4 i + (1= Ba) 2 = I

~w3 (b} g (|20 — T"Ynl) + cn M

bk [[ym “P”z + (1 =by) flzn - p”2

—w3 (bn)g (1T — T7Ynll) + cnMM

= bkl Hb’n(Tn'Tn -p)+(1- bp)(@n — ) + Cp (U = 'Tn)nz

+(1 = bn) lon — pI* — wa(bn)g (flon — T"ynll) + cnld

Toabokl + bak2(1 = B,) + (1 = b)) llzn — 2l

—wy (bp)g (lzn — T"ynll) + cn M + c kM

(BBl + bk (L = b,) + KA (L = bn)] [l — o

—wy (br)g (l2n — T"Ynll) + cnM + c}tkiM
2

o — Bl + M [ (K~ 1) = 29 (2 — Tl

Hmn-{—l _p[

IAIA

IA

IA

1A

IA

62 )
-39 (| — T ynll) + caM + c kiM . (2.3)

Transposing the terms in (2.3), we have

5 '.
59 (lon = T™yall) < lon — p”2 — lZnts — pH2 + (en + c. ko) M
82 n
#2404 - - grzolan - Tl |- (24

Denote o = inf,>; ||, — Ty, || and claim o = 0. If ¢ > 0, then by the definition
of g, we have g (||zn — T"ynll) 2 g(o) > 0. From (2.4), it follows that

2
L00) < llom =9l ~ owss = I + (en + ELEDIM
| .

Si;lce liMmpe0 kn = 1 and -2%9(0) > 0, there exists ng > 1 such that kj — 1 <
5%75](0) for all n > ng. Hence (2.5) reduces to
(52

—é—g(g) <lzn —pHZ ~ g1 - pHZ +enM + e k2 M, n > ng.
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Let m > ng be any positive integer. Summing up the terms from ng to m in the
above inequality, we have

> %9(0)

n=ng

[2ny — DI = ll2mis = PI° + 24 D (en+ cok7)

n=ng

Nzn, — PlI> + M i (cn + K2C,). (2.6)

Nn=T1g

IA

IA

When m - oo in (2.6), we get
00 < [[@ng — PI* + MY (ca+kic,) < 00
=70

This is a contradiction. Hence o = 0.
By the definition of o, there exists a subsequence {xn,} of {z,} such that

nii_r)noo [, = T ym, || = 0.

From |
(&, = T @n || < [lan; = T™yn, || + [T 2n; = Ty, |
[zn; = T ym; ” + kn; ||Tn; = Yn; ”

H"”"-:' — T yn, “ + b;z-j K, ”‘L’m —T™an, ” + CpyFin,g ”z":' — Un; ” J

IA A IA

we have

: 1
n; = T 2n, ]| < 18 k.. (“wﬂj = Ty || + Fony Oy [|2ms Unn‘“) :
n;Ponj

Taking lim sup on both sides, we have

Lim H'Ln — T g, H = (.
;00

Using Lemma 2.1, we have

lim H’cn T:vnj” = Q. (2.7)

;=00

Since T is completely continuous and {zn; } is bounded, there exists a subsequence
{zn;} of {xn,} such that {Tz,} converges. Thus from (2.7), {zn, } converges. Let
limp, 00 Zn; = g. Now from continuity of 7" and (2.7) we have Tg = q.

From (1.4), it follows that

”ym - QH S (a‘n; + bn, kﬂvi) ”"Eni - QH + c,'n,- Uny — (_[” -0 (2'8)

as n; — 00. Further, this implies that

™y, —qll — 0 (2.9)



as n; — 0o. Using (2.8) and (2.9) in inequality (2.3) with z, = 2, and p =g, we

have
2

fnn = el S len ol + 3 (5, =) = g lm = T0n )]

2
—%—9 (Nn; = T™Yme|l) + oM + K2 c, M = 0

as n; — 0o and hence
Tp;41 — g @S Ny — O0.

Inductively, we obtain Zn,+m — ¢ 8s n; — oo for m = (,1,2,3,..., which gives

that {z,} converges to g.

Finally from the inequality

llym = all < (ap + bokn) [l2n = gll + ¢, llvn — gl

we deduce that y, — g as n — 0o. This completes the proof.

Taking b, = 0 = ¢, in Theorem 2.2, we have the following result for the modified
Mann iterative scheme with errors.
Corollary 2.1. Suppose that F is a uniformly convex Banach space and let C' be
a nonempty bounded closed convex subset of E. Let T : C — C be a completely
continuous asymptotically nonexpansive mapping with sequence {k,}, &, > 1 such
that liMp—oo kn = 1. Let {an},{bn},{cn} be real sequences in [0,1] such that
Qn +0n+en=1 foralln>1,3>" c,<ooand 0<d<bh, <1~4 for some

n=1

8 € (0,1). For an initial value z; € C, define
Tpt1 = GnTp + 0. T7T + CpUn, n 21,

where {u,} is a sequence in C. Then {z,} converges strongly to a fixed point of T.
Remark 2.1. Theorem 2.1 unifies the proofs of Mann-type and Ishikawa-type
convergence results in the current literature.

Remark 2.2. Theorem 2.1 extends and improve Theorem H1 and Theorem H2,
Theorems 1 and 2 in [10], Theorem S, Theorems 2.2 and 2.3 in [12] in the following
different ways:

(i) Mann and Ishikawa iteration schemes in [10-12],Mann and Ishikawa iterative
scheme with errors (in the sense of Liu[8]) used by Huang [4] are extended to the
Mann and Ishikawa. iterative scheme with errors in the sense of Xu[13].

(i) The assumption Y.~ (k, — 1) < oo imposed on the sequence {kn}tkn 21,
in [10-12] is removed.

(iii) The Hilbert space in [11] is replaced by a uniformly convex Banach space.

Finally, we state the following open question.
Open Question: Can we remove Y .o (k] — 1) < oo for some r > 1 for the
weak convergence of Ishikawa iterates of an asymptotically nonexpansive mapping
T with associated sequence k, > 1 such that lim, 00 kn = 1 and under the same

iteration parameters used in Theorem 2.2.
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