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Strong Convergence Theorem
by the Hybrid and Extragradient Methods
for Nonexpansive Nonself-Mappings
and Monotone Mappings

Natalia Nadezhkina and Wataru Takahashi
Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering
Tokyo Institute of Technology

Abstract

In this paper we introduce an iterative process for finding a common element of the set of fixed
points of & nonexpansive nonself-mapping and the set of solutions of the variational inequality problem
for a monotone, Lipschitz continuous mapping, The iterative process is based on two well known
methods - hybrid and extragradient. We obtain a strong convergence theorem for three sequences
generated by this process.

1 Introduction

Let C be 2 closed convex subset of a real Hilbert space H and let Po be the metric projection of H oxnto
C. A mapping § of C into H is called nonezpansive it

5w — Sv|| < flu — vl

for all u,v € €. We denote by F (8) the set of fixed points of 5. A mapping A of H into itself is called
monotone if
(Ay ~ Av,u—v) >0
for all u,v € H. The variational inequality problem is to find some u € C such that
(Auyv —u) >0

for all v € C. The set of solutions of the variational inequality problem is denoted by VI{C,4). A
mapping A of H into itself is called a-inverse-sirongly-monotone if there exists a positive real number o
such that

(Au - Av,u —v) > a||Au — Av|? ,
for all u,v € H; see [1], [5]. It is obvious that any a-inverse-strongly-monotone mapping A is monotone
and Lipschitz-continucus. For finding a common element of VI (C, A) and F (S) under the assumption

that the set C C H is closed and convex and the mapping A of H into itself is a-inverse-strongly-
monotone, Iiduka and Takahashi [2] introduced the following iterative scheme by a hybrid method:

g =ax €C

Yn = Po (Szpn ~ AnASzy)

Co={2€C:l|lyn — 2| < llzn — 2|}

Qn=1{2€C:{zy—2,2~x,) >0}

Tn+1 = Pcﬂnc)nm
for every n = 0,1,2,..., where A, C [a,b] for some a,b € (0,2c). They showed that if F{S) N
VI (C, A) is nonempty, then the sequence {z,}, generated by this iterative process, converges strongly
to Prsynvi(c,4)®-



On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean
space R™ under the assumption that the set C C R™ is closed and convex and the mapping A of C into R”
is monotone and k-Lipschitz-continuous, Korpelevich [4] introduced the following so-called extragradient
method:

gp=ax€eC
Tn = Po (zn — Azy) (1)
Tnt1 = Po (2n — AAT,)

for every n = 0,1,2, ..., where A € (0,1/k). He showed that if VI (C, A) is nonempty, then the sequences
{z,} and {F,}, generated by (1), converge to the same point z € VI (C, 4).

In this paper, by an idea of combining hybrid and extragradient methods, we introduce an iterative
process for finding a common element of the set of fixed points of a nonexpansive nonself-mapping and
the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping
in & real Hilbert space. We obtain a strong convergence theorem for three sequences generated by this
process.

2 Preliminaries

Let H be a real Hilbert space with inner product ( -, -} and norm |-} and let C be a closed convex subset
of H. We write z,, — z to indicate that the sequence {z,} converges weakly to z and z, — « to indicate
that {z,} converges strongly to . For every point € H there exists a unique nearest point in C,
denoted by Pez, such that ||z — Poz| < ||z —yl| for all y € C. Pc is called the metric projection of
H onto €. We know that Po is a nonexpansive mapping of H onto C. 1t is also known that Fp is
characterized by the following properties: Poz € C and

{(z ~ Pox, Pez —y) 20, (2)

Iz - yl* > Iz — Posli® + lly — Pealf? (3)

for all z € H, y € C; see [9] for more details. Let A4 be a monotone mapping of H into H. In the context
of variational inequality problem this implies

ueVI(C,A) & u=Fo{u—AAu), YA>0.

Tt is also known that H satisfies Opial’s condition [7], i.e., for any sequence {r,} with z, — z the
inequality

lim inf ||z, — z|| < liminf lz, — ||

n—oee n—00

holds for every y € H with y # 2.

A set-valued mapping T': H — 2% is called monotone if for all ¢,y € H, f € Tz and g € Ty imply
(x—y,f—g) = 0. A monotone mapping 7' : H — 2" iz magzimal if its graph G (T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping T is
maximal if and only if for (z,f) € H x H, (z —y, f — g) = 0 for every (y,9) € G(T) implies fels.
Let A be a monotone, k—Lipschitz-continuous mapping of C into H and Ngv be the normal cone to C
at veC, e Nov={we€H: (v—uw)>0VucC} Define

Av+ Ngv, fveC,
Ty = .
B, ifvegcC.

Then T is maximal monotone and 0 € T if and only if v € VI (C, A); see [8].

3 Strong Convergence Theorem

In this section we prove a strong convergence theorem by a combined hybrid-extragradient method for
nonexpansive nonself-mappings and monotone, & -Lipshitz-continuous mappings.
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Theorem 3.1. Let C be o closed convez subset of a real Hilbert space H. Let A be a monotone and
k-Lipschitz-continuous mapping of H into itself and S be a nonezpansive mapping of C into H such that
F(S)NVI(C,A) #0. Let {zn}, {yn} and {z,} be sequences generated by

zg=x€C

Yn = Po (Sxn — AnASTn)

2 = Po (Szn - ')‘nAyn)

Cn={2€0C: lzn — 2| < |l2n — ||}

Qn=1{2€C:{zn—2,2—2,) >0}

Tnt1 = Po.n@.T
for every n =0,1,2, ..., where {A\n} C [a,b] for some a,b € (0,1/k). Then the sequences {zn}, {yn} and
{zn} converge strongly to Pr(s)nvri(c,4)%-
Proof. 1t is obvious that Cy, is closed and @, is closed and convex for every n = 0,1,2,... AsC,, =

z2e€C: ||z ~ :r:nH2 +2{2y — Ty, Tn — 2) < 0}, we also have C, is convex for every n = 0,1,2,.... Let

ue F(S)NVI(C,A). From (3), monotonicity of A and u € VI (C, A), we have

flzn — qu < ||Szn — AnAyn — “”2 ~ 8%, — AnAyn — ZnHZ
= {|Szp ~ UH2 ~ ||Szn ZHHZ + 220 (AYn,u — Zn)
< o = ulf” — | San — zall”
+ 2An ((Ayn = AUy u — yn) + (Au,u ~ yn) + (Atn, Un — Zn))

< lon = ull® = [158n — zal* + 20 (Ayn, yn — 2n)

= llzn = ul]” = 120 = yol* =2 (S2n = Y, Yn = 20) ~ Jim = 2"
+ 2A, (Ayn: Un — zn)

= llzn — qu - |Szn — yni!2 — [lyn — anz
+2(Szn — AnAYn ~ Yn, 2n - Yu) -

Further, since yn, = Pc (Szn — AnASz,) and A is k-Lipschitz-continuous, we have

(an ~ A AYn — Yny #n — 'yn>

= (STp — A ASTy — Yn, 2n — Yn) + (AnASTr — A AYn, 2o — Yn)
< (A ASzy, — A AYn, 2n — Yn)

<Ak l|Szn — ynll 120 — ynll-

So, we have

I2n — ulf® < llon — ull* = 1920 — nl® = lln — 2al® + 22k 125 — g} 120 — g
< Jln = ull® = 1580 — gl = llvn — 2l
4 22K 1520 — Yall® + lvn — 2al? 4)
< Jlo — ul® + (N2 — 1) [|Szp — yal? |
< flan —ull®.
So, we have
Hzn —ulf < “zn - u”

for every n = 0,1,2,... and hence 4 € Cp. So, F(S)NVI{(C,A) C Cy for every n = 0,1,2,.... Next,
let us show by mathematical induction that {z,} is well-defined and F (S)NVI(C,A4) C C, N Qy for
every n =0,1,2,.... For n = 0 we have Qp = C. Hence we obtain F (S)NVI(C, A) C CoN Qo. Suppose
that zx is given and F (S)NVI(C, A) C Cp N Qy for some k € N, Since F (S)N VI (C, A) is nonempty,
Cr N Qg is a nonempty closed convex subset of C. So, there exists a unique element zx41 € Cp N Q) such
that zx41 = Poyng, 2. 1t s alsc obvious that there holds {xgq1 — 2,2~ Try1) 2 0 for every z € CxNQy.



Since F (S)NVI(C, A) C CxNQy, we have (Tr41 — 2,2 — Zg41) > 0 for z € F(S)NVI(C, A) and hence
F(8)NVI(C,A) C Qgy1. Therefore, we obtain F (S)NVI(C, A) C Cpi1 N Qpt1. + -
Let tp = PF(s)ﬂV[(C’A).T}. From 41 = PoannfE and g € F (S) nvli (O, A) C Cp NQyp, we have

[Zn+1 — 2l < [[to — =] (5)
for every n =0, 1,2, .... Therefore, {z,} is bounded. We also have
fzn — ulf < [lzn — ull

for some u € F (S)N VI (C, A). So, {z,} is also bounded. Since 511 € Ch N@n C Gy and zn = Py, 7,
we have
e — 2l < {lensr — 2]

for every n = 0,1,2,.... Therefore, there exists ¢ = lim |jz, — |. Since z, = Pg,2 and Zn41 € Qn, We
=00

have
fTatr — xni!z = llzn1 - x“2 + |lzn — :L'Hz +2(Zn41 — T, T — Tn)
= lzns1 —|* = lon ~ 2l° ~ 2(2n ~ Zn41,@ = Zn)

2 2
< llonts =l ~ flan — ol

for every n =0, 1,2,.... This implies that
1im [lenst — ol = 0.
Since Tnq1 € Cn, we have [|zg — Fni1ll < [@n — a4l and hence
flzn — 2nl| < ll&n = Tnt1ll + [[Tas1 — 20l < 22041 — Tnll

for every n =0,1,2,.... From ||Zn41 — Za]| — 0, we have ||z, — 2] — 0.
Foru € F(SYNVI(C,A), from (4) we obtain

20 — ull? < flon —ull® + (A2E? = 1) 182 — vall® .
Therefore, we have

1520 =l < 75z (hon =0l = o~ ")

= s (o =l Yoo — ) (o =l + 20 = )

1
<1z N2 g2 (len = ull + llzn — ull} 2 — zall -

Since ||z, — 2n|| — 0, we obtain Sz, — yn — 0. From (4) we also have
llzn — ““2 < len — “Hz — |Szn — ynl\z = lyn — znnz + 22k 182y — ynll 1z — Yall
< llzn = ull® = 182n — ynll* = livn = 2all®
+ ! Szp — ?/n”z + /\ikz Hyn - zn?lz
<z ~ ullz + (/\%kz - 1) lyn — zn!!2 -

Therefore we have

I = 2ol < Tz (o =0l =l = )

Il

g (e = ull =l =)l = ]+ = )

< b e =l + e ) — 2l
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Since ||Tn, — 23]| — 0, we obtain yn — zn — 0. From [&n — yul] < [|Zn — 2n]| + |20 = ¥al] we also
have z, — ¥, — 0. Since A is k-Lipschitz-continuous, we have Ayn — Az, — 0. From |z, — Sz,] <
l2n — Ynll + |yn — Szx|| we have z, — t, — 0. Since

2 — Sznll = {20 — S2all + [|S2n — Szl < [l2n — Senll + llzn — 2l s

we have ||z, — Sz,|] — 0.
As {z,} is bounded, there is a subsequence {zy, } of {z,} such that {Zn,} converges weakly to some

4. We can obtain that u € F (S) N VI (C, A). First, we show u € VI(C, A). Since 2, — 2, — 0 and
Zn — yn — 0, we have {z,,} — v and {yn,} — u. Let

Ty = Av 4+ Ngv, ifv e,
1, ifvgC.

Then 7T is maximal monotone and 0 € T if and only if v € VI (C, A); see [8]. Let (v,w) € G(T). Then,
we have w € Tv = Av + Ngv and hence w — Av € Ngv. So, we have (v —z,w — Av) > 0 for all z € C.
On the other hand, from 2z, = Pg Sz, — AnAyy) and v € C we have

(8%, — ApAYn — 2n,2p —v) 2 0

and hence g
<v — o, T 20 +Ayn> > 0.

An
Therefore from w — Av € Nov and z,, € C' , we have
(v — zp,, w) > (U — 2y, AV)
. Zn; — .
> (v -z, Avy — <'U -y, T

= (U = Zn,, AV — Az} + (U — 2y A2, — Atn,)

Zn, — ST,
—{v— 2, S W
Tiy

= STy,
2<v~zn“AzmmAym)—<'u—zn“Zn‘ By m>'
4

Hence, we obtain (v — u,w) > 0 as 1 — oo. Since T is maximal monotone, we have u € 710 and hence
ue VI (C,A).
Let us show u € F (S). Assume u ¢ F (S). From Opial’s condition, we have

liminf ||zn, — u|| < Iminf||zg, — Sul|
=00 [ d )
= liminf ||zn, — Sza, + Szn, — Sul|
=00
< liminf ||Sz,, — Sul|
=0

< liminf |25, — ul].
=00

This is a contradiction. So, we obtain u € F (S). This implies v € F (S)NVI(C, A4).
From 1y = PF(S)F‘!VI(C,A):E ,ueF (S) Nvi (C, A) and (5), we have

lto — 2]l < [lw — 2| <liminf ||z, — || < limsup [|za, — 2zl < [Ito — 2]}
[des] i—00
So, we obtain
lim o, — 2]l = u -]
1—00

From z,, —2 — u — z we have z,, — 2 — u — z and hence z,, — u. Since z, € Py z and #p €
F(SYNVI{C,A) C CoN @y C Qn, we have

2
E = (tﬂ — Tnyy T, —$)+ (tO Hmﬂww—t(ﬂ > (tD '"a:nﬂw_t(])'

- Hto — Tn,

As i — o0, we obtain — H{'D — uHZ > (1;0 — U, T — tg) >0bytyg= Prsinvi(c, A% andu € F{S)NVI (C, A).
Hence we have u = . This implies that @, — #g. It is easy to see y, — &y, 2, — o, O



4 Applications.

Using Theorem 3.1, we prove some theorems in a real Hilbert space.

Theorem 4.1. Let C be a closed conver subset of a real Hilbert space H. Let A be a monotone and
k-Lipschitz-continuous mapping of C into H such that VI (C, A) is nonempty. Let {zn}, {yn} ond {2z}
be sequences generated by :

zn=z€C

yn = Po (wn - )\'n.Axn)

Zn = Po {®n — AnAyn)

Crn={z€C:|2m—2| <|lzn— 2|}

Qn={2€C:{zy—2,z—z,) >0}

Tp+l = Pcannm
for every n = 0,1,2, ..., where {A\,} C {a,b] for some a,b € (0,1/k). Then the sequences {z,}, {yn} and
{zn} comverge strongly to Pyyc, a).

Proof. Putting § = I, by Theorem 3.1, we obtain the desired result. |
Remark 4.1. See liduka, Tokahashi and Toyoda [3] for the case when A is a-inverse-strongly-monotone.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H and S be o nonezpansive mapping
of C into H such that F (S) is nonempty. Let {z,} ond {y,} be sequences generated by

g =T € C

Yn = PgySz,

Co={2€C:|lyn — 2| < ||lzn — 2|}
Qn={2€C:{z,—z,2—2z,) >0}
Zntt = Po,ng,.T

for every n.=0,1,2,.... Then the sequences {zn} and {yn} converge strongly to Pr(s)x.
Proof. Putting A = 0, by Theorem 3.1, we obtain the desired result. 0

Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone, k-Lipschitz-continuous mapping of
H into itself and S be a nonezpansive mapping of H into itself such that F (S) N A™'0 # 0. Let {zn}
and {yn} be sequences generated by

Tg ==& € C

Yn = S%p — A d (Szp — A\ ASzy)
Cn={2€C: |lyn — 2l < [z — 2|}
Qn={2€C:{zn—2,2— 1y >0}
Tn+1 = Po,nQ.®

for every n = 0,1,2, ..., where {M} C [a,b] for some a,b € (0,1/k). Then the sequences {zn} and {ya}
converge strongly to Pr(s)yna-10%-

Proof. We have A~10 = VI (H, A) and Py = I. By Theorem 3.1, we obtain the desired result. O

Remark 4.2, Notice that F(S)NA™0C VI(F(S),A). See also Yamada [10] for the case when A s
a strongly menotone and Lipschitz continuous mapping of a real Hilbert space H into itself and S 15 a
nonezpansive mapping of H info itself.
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