

Title	Strong Convergence Theorem by the Hybrid and Extragradient Methods for Nonexpansive Nonself-Mappings and Monotone Mappings (Advanced Study of Applied Functional Analysis and Information Sciences)
Author(s)	Nadezhkina, Natalia; Takahashi, Wataru
Citation	数理解析研究所講究録 (2005), 1452: 38-44
Issue Date	2005-10
URL	http://hdl.handle.net/2433/47775
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Strong Convergence Theorem by the Hybrid and Extragradient Methods for Nonexpansive Nonself-Mappings and Monotone Mappings

Natalia Nadezhkina and Wataru Takahashi Department of Mathematical and Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology

Abstract

In this paper we introduce an iterative process for finding a common element of the set of fixed points of a nonexpansive nonself-mapping and the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping. The iterative process is based on two well known methods - hybrid and extragradient. We obtain a strong convergence theorem for three sequences generated by this process.

1 Introduction

Let C be a closed convex subset of a real Hilbert space H and let P_C be the metric projection of H onto C. A mapping S of C into H is called *nonexpansive* if

$$||Su - Sv|| \le ||u - v||$$

for all $u, v \in C$. We denote by F(S) the set of fixed points of S. A mapping A of H into itself is called monotone if

$$\langle Au - Av, u - v \rangle \ge 0$$

for all $u, v \in H$. The variational inequality problem is to find some $u \in C$ such that

$$\langle Au, v-u \rangle \geq 0$$

for all $v \in C$. The set of solutions of the variational inequality problem is denoted by VI(C, A). A mapping A of H into itself is called α -inverse-strongly-monotone if there exists a positive real number α such that

$$\langle Au - Av, u - v \rangle \ge \alpha \|Au - Av\|^2$$

for all $u,v\in H$; see [1], [5]. It is obvious that any α -inverse-strongly-monotone mapping A is monotone and Lipschitz-continuous. For finding a common element of VI(C,A) and F(S) under the assumption that the set $C\subset H$ is closed and convex and the mapping A of H into itself is α -inverse-strongly-monotone, Iiduka and Takahashi [2] introduced the following iterative scheme by a hybrid method:

$$\begin{cases} x_0 = x \in C \\ y_n = P_C (Sx_n - \lambda_n A Sx_n) \\ C_n = \{ z \in C : ||y_n - z|| \le ||x_n - z|| \} \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for every n=0,1,2,..., where $\lambda_n\subset [a,b]$ for some $a,b\in (0,2\alpha)$. They showed that if $F(S)\cap VI(C,A)$ is nonempty, then the sequence $\{x_n\}$, generated by this iterative process, converges strongly to $P_{F(S)\cap VI(C,A)}x$.

On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space \mathbb{R}^n under the assumption that the set $C \subset \mathbb{R}^n$ is closed and convex and the mapping A of C into \mathbb{R}^n is monotone and k-Lipschitz-continuous, Korpelevich [4] introduced the following so-called extragradient method:

$$\begin{cases} x_0 = x \in C \\ \overline{x}_n = P_C (x_n - \lambda A x_n) \\ x_{n+1} = P_C (x_n - \lambda A \overline{x}_n) \end{cases}$$
 (1)

for every n=0,1,2,..., where $\lambda\in(0,1/k)$. He showed that if $VI\left(C,A\right)$ is nonempty, then the sequences $\{x_{n}\}$ and $\{\overline{x}_{n}\}$, generated by (1), converge to the same point $z\in VI\left(C,A\right)$.

In this paper, by an idea of combining hybrid and extragradient methods, we introduce an iterative process for finding a common element of the set of fixed points of a nonexpansive nonself-mapping and the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping in a real Hilbert space. We obtain a strong convergence theorem for three sequences generated by this process.

2 Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and let C be a closed convex subset of H. We write $x_n \to x$ to indicate that the sequence $\{x_n\}$ converges weakly to x and $x_n \to x$ to indicate that $\{x_n\}$ converges strongly to x. For every point $x \in H$ there exists a unique nearest point in C, denoted by $P_C x$, such that $\|x - P_C x\| \le \|x - y\|$ for all $y \in C$. P_C is called the metric projection of H onto C. We know that P_C is a nonexpansive mapping of H onto C. It is also known that P_C is characterized by the following properties: $P_C x \in C$ and

$$\langle x - P_C x, P_C x - y \rangle \ge 0; \tag{2}$$

$$||x - y||^2 \ge ||x - P_C x||^2 + ||y - P_C x||^2$$
(3)

for all $x \in H$, $y \in C$; see [9] for more details. Let A be a monotone mapping of H into H. In the context of variational inequality problem this implies

$$u \in VI(C, A) \Leftrightarrow u = P_C(u - \lambda Au), \quad \forall \lambda > 0.$$

It is also known that H satisfies Opial's condition [7], i.e., for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$ the inequality

$$\liminf_{n\to\infty} \|x_n - x\| < \liminf_{n\to\infty} \|x_n - y\|$$

holds for every $y \in H$ with $y \neq x$.

A set-valued mapping $T: H \to 2^H$ is called *monotone* if for all $x, y \in H$, $f \in Tx$ and $g \in Ty$ imply $\langle x-y, f-g \rangle \geq 0$. A monotone mapping $T: H \to 2^H$ is maximal if its graph G(T) is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H$, $\langle x-y, f-g \rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in Tx$. Let A be a monotone, k-Lipschitz-continuous mapping of C into H and N_Cv be the normal cone to C at $v \in C$, i.e. $N_Cv = \{w \in H : \langle v-u, w \rangle \geq 0, \forall u \in C\}$. Define

$$Tv = \begin{cases} Av + N_C v, & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

Then T is maximal monotone and $0 \in Tv$ if and only if $v \in VI(C, A)$; see [8].

3 Strong Convergence Theorem

In this section we prove a strong convergence theorem by a combined hybrid-extragradient method for nonexpansive nonself-mappings and monotone, k-Lipshitz-continuous mappings.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of H into itself and S be a nonexpansive mapping of C into H such that $F(S) \cap VI(C,A) \neq \emptyset$. Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be sequences generated by

$$\begin{cases} x_0 = x \in C \\ y_n = P_C (Sx_n - \lambda_n A Sx_n) \\ z_n = P_C (Sx_n - \lambda_n A y_n) \\ C_n = \{z \in C : ||z_n - z|| \le ||x_n - z||\} \\ Q_n = \{z \in C : \langle x_n - z, x - x_n \rangle \ge 0\} \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for every n=0,1,2,..., where $\{\lambda_n\}\subset [a,b]$ for some $a,b\in (0,1/k)$. Then the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to $P_{F(S)\cap VI(C,A)}x$.

Proof. It is obvious that C_n is closed and Q_n is closed and convex for every n=0,1,2,... As $C_n=\left\{z\in C:\|z_n-x_n\|^2+2\left\langle z_n-x_n,x_n-z\right\rangle\leq 0\right\}$, we also have C_n is convex for every n=0,1,2,... Let $u\in F(S)\cap VI(C,A)$. From (3), monotonicity of A and $u\in VI(C,A)$, we have

$$||z_{n} - u||^{2} \leq ||Sx_{n} - \lambda_{n}Ay_{n} - u||^{2} - ||Sx_{n} - \lambda_{n}Ay_{n} - z_{n}||^{2}$$

$$= ||Sx_{n} - u||^{2} - ||Sx_{n} - z_{n}||^{2} + 2\lambda_{n} \langle Ay_{n}, u - z_{n} \rangle$$

$$\leq ||x_{n} - u||^{2} - ||Sx_{n} - z_{n}||^{2}$$

$$+ 2\lambda_{n} (\langle Ay_{n} - Au, u - y_{n} \rangle + \langle Au, u - y_{n} \rangle + \langle Ay_{n}, y_{n} - z_{n} \rangle)$$

$$\leq ||x_{n} - u||^{2} - ||Sx_{n} - z_{n}||^{2} + 2\lambda_{n} \langle Ay_{n}, y_{n} - z_{n} \rangle$$

$$= ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - 2\langle Sx_{n} - y_{n}, y_{n} - z_{n} \rangle - ||y_{n} - z_{n}||^{2}$$

$$+ 2\lambda_{n} \langle Ay_{n}, y_{n} - z_{n} \rangle$$

$$= ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - ||y_{n} - z_{n}||^{2}$$

$$+ 2\langle Sx_{n} - \lambda_{n}Ay_{n} - y_{n}, z_{n} - y_{n} \rangle$$

Further, since $y_n = P_C(Sx_n - \lambda_n ASx_n)$ and A is k-Lipschitz-continuous, we have

$$\begin{split} &\langle Sx_n - \lambda_n Ay_n - y_n, z_n - y_n \rangle \\ &= \langle Sx_n - \lambda_n ASx_n - y_n, z_n - y_n \rangle + \langle \lambda_n ASx_n - \lambda_n Ay_n, z_n - y_n \rangle \\ &\leq \langle \lambda_n ASx_n - \lambda_n Ay_n, z_n - y_n \rangle \\ &\leq \lambda_n k \left\| Sx_n - y_n \right\| \left\| z_n - y_n \right\|. \end{split}$$

So, we have

$$||z_{n} - u||^{2} \leq ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - ||y_{n} - z_{n}||^{2} + 2\lambda_{n}k ||Sx_{n} - y_{n}|| ||z_{n} - y_{n}||$$

$$\leq ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - ||y_{n} - z_{n}||^{2}$$

$$+ \lambda_{n}^{2}k^{2} ||Sx_{n} - y_{n}||^{2} + ||y_{n} - z_{n}||^{2}$$

$$\leq ||x_{n} - u||^{2} + (\lambda_{n}^{2}k^{2} - 1) ||Sx_{n} - y_{n}||^{2}$$

$$\leq ||x_{n} - u||^{2}.$$
(4)

So, we have

$$||z_n - u|| \le ||x_n - u||$$

for every n=0,1,2,... and hence $u\in C_n$. So, $F(S)\cap VI(C,A)\subset C_n$ for every n=0,1,2,... Next, let us show by mathematical induction that $\{x_n\}$ is well-defined and $F(S)\cap VI(C,A)\subset C_n\cap Q_n$ for every n=0,1,2,... For n=0 we have $Q_0=C$. Hence we obtain $F(S)\cap VI(C,A)\subset C_0\cap Q_0$. Suppose that x_k is given and $F(S)\cap VI(C,A)\subset C_k\cap Q_k$ for some $k\in N$. Since $F(S)\cap VI(C,A)$ is nonempty, $C_k\cap Q_k$ is a nonempty closed convex subset of C. So, there exists a unique element $x_{k+1}\in C_k\cap Q_k$ such that $x_{k+1}=P_{C_k\cap Q_k}x$. It is also obvious that there holds $\langle x_{k+1}-z,x-x_{k+1}\rangle\geq 0$ for every $z\in C_k\cap Q_k$.

Since $F(S) \cap VI(C, A) \subset C_k \cap Q_k$, we have $\langle x_{k+1} - z, x - x_{k+1} \rangle \geq 0$ for $z \in F(S) \cap VI(C, A)$ and hence $F(S) \cap VI(C, A) \subset Q_{k+1}$. Therefore, we obtain $F(S) \cap VI(C, A) \subset C_{k+1} \cap Q_{k+1}$.

Let $t_0 = P_{F(S) \cap VI(C,A)}x$. From $x_{n+1} = P_{C_n \cap Q_n}x$ and $t_0 \in F(S) \cap VI(C,A) \subset C_n \cap Q_n$, we have

$$||x_{n+1} - x|| \le ||t_0 - x|| \tag{5}$$

for every n = 0, 1, 2, ... Therefore, $\{x_n\}$ is bounded. We also have

$$||z_n-u|| \leq ||x_n-u||$$

for some $u \in F(S) \cap VI(C, A)$. So, $\{z_n\}$ is also bounded. Since $x_{n+1} \in C_n \cap Q_n \subset Q_n$ and $x_n = P_{Q_n}x$, we have

$$||x_n - x|| \le ||x_{n+1} - x||$$

for every n = 0, 1, 2, ... Therefore, there exists $c = \lim_{n \to \infty} ||x_n - x||$. Since $x_n = P_{Q_n}x$ and $x_{n+1} \in Q_n$, we have

$$||x_{n+1} - x_n||^2 = ||x_{n+1} - x||^2 + ||x_n - x||^2 + 2\langle x_{n+1} - x, x - x_n \rangle$$

$$= ||x_{n+1} - x||^2 - ||x_n - x||^2 - 2\langle x_n - x_{n+1}, x - x_n \rangle$$

$$\leq ||x_{n+1} - x||^2 - ||x_n - x||^2$$

for every n = 0, 1, 2, ... This implies that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0.$$

Since $x_{n+1} \in C_n$, we have $||z_n - x_{n+1}|| \le ||x_n - x_{n+1}||$ and hence

$$||x_n - z_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - z_n|| \le 2 ||x_{n+1} - x_n||$$

for every n = 0, 1, 2, ... From $||x_{n+1} - x_n|| \to 0$, we have $||x_n - z_n|| \to 0$. For $u \in F(S) \cap VI(C, A)$, from (4) we obtain

$$||z_n - u||^2 \le ||x_n - u||^2 + (\lambda_n^2 k^2 - 1) ||Sx_n - y_n||^2.$$

Therefore, we have

$$||Sx_{n} - y_{n}||^{2} \leq \frac{1}{1 - \lambda_{n}^{2}k^{2}} (||x_{n} - u||^{2} - ||z_{n} - u||^{2})$$

$$= \frac{1}{1 - \lambda_{n}^{2}k^{2}} (||x_{n} - u|| - ||z_{n} - u||) (||x_{n} - u|| + ||z_{n} - u||)$$

$$\leq \frac{1}{1 - \lambda_{n}^{2}k^{2}} (||x_{n} - u|| + ||z_{n} - u||) ||x_{n} - z_{n}||.$$

Since $||x_n - z_n|| \to 0$, we obtain $Sx_n - y_n \to 0$. From (4) we also have

$$||z_{n} - u||^{2} \leq ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - ||y_{n} - z_{n}||^{2} + 2\lambda_{n}k ||Sx_{n} - y_{n}|| ||z_{n} - y_{n}||$$

$$\leq ||x_{n} - u||^{2} - ||Sx_{n} - y_{n}||^{2} - ||y_{n} - z_{n}||^{2}$$

$$+ ||Sx_{n} - y_{n}||^{2} + \lambda_{n}^{2}k^{2} ||y_{n} - z_{n}||^{2}$$

$$\leq ||x_{n} - u||^{2} + (\lambda_{n}^{2}k^{2} - 1) ||y_{n} - z_{n}||^{2}.$$

Therefore we have

$$\begin{aligned} \|y_n - z_n\|^2 &\leq \frac{1}{1 - \lambda_n^2 k^2} \left(\|x_n - u\|^2 - \|z_n - u\|^2 \right) \\ &= \frac{1}{1 - \lambda_n^2 k^2} \left(\|x_n - u\| - \|z_n - u\| \right) \left(\|x_n - u\| + \|z_n - u\| \right) \\ &\leq \frac{1}{1 - \lambda_n^2 k^2} \left(\|x_n - u\| + \|z_n - u\| \right) \|x_n - z_n\| \, . \end{aligned}$$

Since $||x_n - z_n|| \to 0$, we obtain $y_n - z_n \to 0$. From $||x_n - y_n|| \le ||x_n - z_n|| + ||z_n - y_n||$ we also have $x_n - y_n \to 0$. Since A is k-Lipschitz-continuous, we have $Ay_n - Az_n \to 0$. From $||z_n - Sx_n|| \le ||z_n - y_n|| + ||y_n - Sx_n||$ we have $x_n - t_n \to 0$. Since

$$||z_n - Sz_n|| = ||z_n - Sx_n|| + ||Sx_n - Sz_n|| \le ||z_n - Sx_n|| + ||x_n - z_n||,$$

we have $||z_n - Sz_n|| \to 0$.

As $\{x_n\}$ is bounded, there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges weakly to some u. We can obtain that $u \in F(S) \cap VI(C, A)$. First, we show $u \in VI(C, A)$. Since $z_n - x_n \to 0$ and $x_n - y_n \to 0$, we have $\{z_{n_i}\} \to u$ and $\{y_{n_i}\} \to u$. Let

$$Tv = \begin{cases} Av + N_C v, & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

Then T is maximal monotone and $0 \in Tv$ if and only if $v \in VI(C, A)$; see [8]. Let $(v, w) \in G(T)$. Then, we have $w \in Tv = Av + N_Cv$ and hence $w - Av \in N_Cv$. So, we have $\langle v - z, w - Av \rangle \geq 0$ for all $z \in C$. On the other hand, from $z_n = P_C(Sx_n - \lambda_n Ay_n)$ and $v \in C$ we have

$$\langle Sx_n - \lambda_n Ay_n - z_n, z_n - v \rangle \ge 0$$

and hence

$$\left\langle v - z_n, \frac{z_n - Sx_n}{\lambda_n} + Ay_n \right\rangle \ge 0.$$

Therefore from $w - Av \in N_C v$ and $z_{n_i} \in C$, we have

$$\begin{split} \langle v-z_{n_i},w\rangle &\geq \langle v-z_{n_i},Av\rangle \\ &\geq \langle v-z_{n_i},Av\rangle - \left\langle v-z_{n_i},\frac{z_{n_i}-Sx_{n_i}}{\lambda_{n_i}} + Ay_{n_i}\right\rangle \\ &= \langle v-z_{n_i},Av-Az_{n_i}\rangle + \langle v-z_{n_i},Az_{n_i}-Ay_{n_i}\rangle \\ &- \left\langle v-z_{n_i},\frac{z_{n_i}-Sx_{n_i}}{\lambda_{n_i}}\right\rangle \\ &\geq \langle v-z_{n_i},Az_{n_i}-Ay_{n_i}\rangle - \left\langle v-z_{n_i},\frac{z_{n_i}-Sx_{n_i}}{\lambda_{n_i}}\right\rangle. \end{split}$$

Hence, we obtain $\langle v-u,w\rangle\geq 0$ as $i\to\infty$. Since T is maximal monotone, we have $u\in T^{-1}0$ and hence $u\in VI(C,A)$.

Let us show $u \in F(S)$. Assume $u \notin F(S)$. From Opial's condition, we have

$$\lim_{i \to \infty} \inf \|z_{n_i} - u\| < \liminf_{i \to \infty} \|z_{n_i} - Su\|$$

$$= \lim_{i \to \infty} \inf \|z_{n_i} - Sz_{n_i} + Sz_{n_i} - Su\|$$

$$\leq \lim_{i \to \infty} \inf \|Sz_{n_i} - Su\|$$

$$\leq \lim_{i \to \infty} \inf \|z_{n_i} - u\|.$$

This is a contradiction. So, we obtain $u \in F(S)$. This implies $u \in F(S) \cap VI(C, A)$.

From $t_0 = P_{F(S) \cap VI(C,A)}x$, $u \in F(S) \cap VI(C,A)$ and (5), we have

$$\left\|t_0-x\right\|\leq \left\|u-x\right\|\leq \liminf_{i\to\infty}\left\|x_{n_i}-x\right\|\leq \limsup_{i\to\infty}\left\|x_{n_i}-x\right\|\leq \left\|t_0-x\right\|.$$

So, we obtain

$$\lim_{i\to\infty}\|x_{n_i}-x\|=\|u-x\|.$$

From $x_{n_i}-x \to u-x$ we have $x_{n_i}-x \to u-x$ and hence $x_{n_i}\to u$. Since $x_n\in P_{Q_n}x$ and $t_0\in F(S)\cap VI(C,A)\subset C_n\cap Q_n\subset Q_n$, we have

$$-\|t_0 - x_{n_i}\|^2 = \langle t_0 - x_{n_i}, x_{n_i} - x \rangle + \langle t_0 - x_{n_i}, x - t_0 \rangle \ge \langle t_0 - x_{n_i}, x - t_0 \rangle.$$

As $i \to \infty$, we obtain $-\|t_0 - u\|^2 \ge \langle t_0 - u, x - t_0 \rangle \ge 0$ by $t_0 = P_{F(S) \cap VI(C,A)}x$ and $u \in F(S) \cap VI(C,A)$. Hence we have $u = t_0$. This implies that $x_n \to t_0$. It is easy to see $y_n \to t_0$, $z_n \to t_0$.

4 Applications.

Using Theorem 3.1, we prove some theorems in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H such that VI(C,A) is nonempty. Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be sequences generated by

$$\begin{cases} x_0 = x \in C \\ y_n = P_C (x_n - \lambda_n A x_n) \\ z_n = P_C (x_n - \lambda_n A y_n) \\ C_n = \{ z \in C : ||z_n - z|| \le ||x_n - z|| \} \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for every n = 0, 1, 2, ..., where $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 1/k)$. Then the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to $P_{VI(C,A)}x$.

Proof. Putting S = I, by Theorem 3.1, we obtain the desired result.

Remark 4.1. See Iiduka, Takahashi and Toyoda [3] for the case when A is α -inverse-strongly-monotone.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H and S be a nonexpansive mapping of C into H such that F(S) is nonempty. Let $\{x_n\}$ and $\{y_n\}$ be sequences generated by

$$\begin{cases} x_0 = x \in C \\ y_n = P_C S x_n \\ C_n = \{ z \in C : ||y_n - z|| \le ||x_n - z|| \} \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for every n=0,1,2,... Then the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to $P_{F(S)}x$.

Proof. Putting A = 0, by Theorem 3.1, we obtain the desired result.

Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone, k-Lipschitz-continuous mapping of H into itself and S be a nonexpansive mapping of H into itself such that $F(S) \cap A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ and $\{y_n\}$ be sequences generated by

$$\begin{cases} x_0 = x \in C \\ y_n = Sx_n - \lambda_n A (Sx_n - \lambda_n A Sx_n) \\ C_n = \{ z \in C : ||y_n - z|| \le ||x_n - z|| \} \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for every n=0,1,2,..., where $\{\lambda_n\}\subset [a,b]$ for some $a,b\in (0,1/k)$. Then the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to $P_{F(S)\cap A^{-1}0}x$.

Proof. We have $A^{-1}0 = VI(H, A)$ and $P_H = I$. By Theorem 3.1, we obtain the desired result.

Remark 4.2. Notice that $F(S) \cap A^{-1}0 \subset VI(F(S), A)$. See also Yamada [10] for the case when A is a strongly monotone and Lipschitz continuous mapping of a real Hilbert space H into itself and S is a nonexpansive mapping of H into itself.

References

[1] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.

- [2] H. Iiduka and W. Takahashi, Strong convergence theorems by a hybrid method for nonexpansive mappings and inverse-strongly-monotone mappings, in Fixed Point Theory and Applications (J.G. Falset, E.L. Fuster and B. Sims Eds.), Yokohama Publishers, Yokohama, Japan, 2004.
- [3] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, PanAmer. Math. J. 11 (2004), 45-55.
- [4] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12 (1976), 747-756.
- [5] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), 313-344.
- [6] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
- [7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [8] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
- [9] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
- [10] I. Yamada, The hybrid steepest-descent method for the variational inequality problem over the intersection of fixed-point sets of nonexpansive mappings, in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (D. Butnariu, Y. Censor and S. Reich Eds.), Kluwer Academic Publishers, Dordrecht, Holland, 2001.