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A MEAN VALUE THEOREM FOR THE SQUARE OF CLASS
NUMBER TIMES REGULATOR OF QUADRATIC EXTENSIONS

TAKASHI TANIGUCHI

ABSTRACT. Let $k$ be a number field, and $\Delta_{k}$ , $h_{k}$ and $R_{k}$ the absolute discriminant, the
class number and the regulator, respectively. In this article we will give a survey of [9]
in which we found the asymptotic behavior of the mean values of $h_{F}^{2}R_{F}^{2}$ with respect to
$|\Delta_{F}|$ for certain families of quadratic extensions $F$ of a fixed number field $k$ . The global
zeta function of prehomogeneous vector space for the space of pairs of quaternions are
used to prove the theorem. Also we give some examples of interpretations of set of
rational orbits in some inner form representations.

1. INTRODUCTION

We start with our main result. We fix an algebraic number field $k$ . Let $\mathfrak{M}$ , $\mathfrak{M}_{\infty}$ , $\mathfrak{M}_{\mathrm{f}}$ ,
$\mathfrak{M}_{1\mathrm{R}}$ and $\mathfrak{M}_{\mathbb{C}}$ denote respectively the set of all places of $k$ , all infinite places, all finite
places, all real places and all complex places. For $v\in \mathfrak{M}$ let $k_{v}$ denotes the completion
of $k$ at $v$ and if $v\in \mathfrak{M}_{\mathrm{f}}$ then let $q_{v}$ denote the order of the residue field of $k_{v}$ . We let
$r_{1}$ , $r_{2}$ , and $e_{k}$ be respectively the number of real places, the number of complex places,
and the number of roots of unity contained in $k$ . We denote by $\zeta_{k}(s)$ the Dedekind zeta
function of $k$ .

To state our result, we classify quadratic extensions of $k$ via the splitting type at
places of $\mathfrak{M}_{\infty}$ . Note that if $[F : k]=2$ , then $F\otimes$ $k_{v}$ is either $\mathbb{R}>\mathrm{e}\mathbb{R}$ or $\mathbb{C}$ for $v\in \mathfrak{M}_{\mathbb{R}}$

and is $\mathbb{C}\mathrm{x}$ $\mathbb{C}$ for $v\in \mathfrak{M}_{\mathbb{C}}$ . We fix a $\mathfrak{M}_{\infty}$-tuple $L_{\infty}=(L_{v})_{v\in \mathfrak{B}\mathrm{t}_{\infty}}$ where $L_{v}\in\{\mathbb{R}\mathrm{x} \mathbb{R}, \mathbb{C}\}$

for $v$ $\in \mathfrak{M}_{\mathbb{R}}$ and $L_{v}=\mathbb{C}\mathrm{x}$ $\mathbb{C}$ for $v\in \mathfrak{M}_{\mathbb{C}}$ . We define
$\Omega(L_{\infty})=$ { $F|[F^{\mathrm{I}}:k]=2$ , $F\otimes$ $k_{v}\cong L_{v}$ for all $v\in \mathfrak{M}_{\infty}$ }.

Let $r_{1}(L_{\infty})$ and $r_{2}(L_{\infty})$ be the number of real places and complex places of $F\in\Omega(L_{\infty})$ ,
respectively. (This does not depend on the choice of $F.$ ) For $v$ $\in \mathfrak{M}_{\mathrm{f}}$ we put

$E_{v}=1-3q_{v}^{-3}+2q_{v}^{-4}+q_{v}^{-5}-q_{v}^{-6}$ , $E_{v}^{f}=2^{-1}(1-q_{v}^{-1})^{3}(1+2q_{v}^{-1}+4q_{v}^{-2}+2q_{v}^{-3})$ .

The following theorem is a special case of [9, Theorem 1012].

Theorem 1.1. Let $n\geq 2$ . We fix an $L_{\infty}$ and$.v_{1}$ , $v_{2}$ , $\ldots$ , $v_{n}\in \mathfrak{M}_{\mathrm{f}}$ . Then the limit

$\lim_{Xarrow\infty}\frac{1}{X^{2}}\sum_{|\Delta_{F/k}|\leq X}h_{F}^{2}R_{F}^{2}F.\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{s}\mathrm{p}1\mathrm{i}\mathrm{b}\mathrm{a}\mathrm{t}v_{1},,v_{n}F\in\Omega(L_{\infty}).$

.

exists, and the value is equal to

$\frac{({\rm Res}_{s=1}\zeta_{k}(s))^{3}\triangle_{k}^{2}e_{k}^{2}\zeta_{k}(2)^{2}}{2^{r_{1}+r\mathrm{z}+1}2^{2r_{1}(L)}\infty(2\pi)^{2r_{2}(L_{\infty})}}$ .
$1 \leq\prod_{i\leq n}E_{v_{i}}’\prod_{v\in \mathfrak{W}_{\mathrm{f}}}.,E_{v}v\neq v_{1},$

$.v_{n}$

.
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Theorems of this kinds are called density theorems. They assert that the arithmetic
objects in the question are distributed regularly in some sense. Today many density
theorems are known. The asymptotic behavior of the number of $\mathrm{S}\mathrm{L}(2, \mathbb{Z})$-equivalence
classes of primitive integral binary quadratic forms conjectured by Gauss and proved by
Lipschitz and Siegel may be one of the most famous examples among them.

One relatively new method to obtain density th eorems is the use of the theory of zeta
functions associated with prehomogeneous vector spaces. This was first carried out by
Shintani [8] to improve the estimate of the Gauss conjecture mentioned above. There
are some advantages to using this theory. For example, at the moment this approach is
the only possible way that allows the ground field to be a general number field rather
than just $\mathbb{Q}$ , as is done in [2], [1], or [4],

Before we indicate our approach, we recall a more famous topic which is on the average
density of class number times regulator of quadratic extensions. The following theorem
is proved by Goldfeld-Hoffstein [3] in the case $k=\mathbb{Q}$ , and extended to a general number
field by Datskovsky [1] using the theory of global zeta functions of prehomogeneous
vector spaces. (and he also corrected an error in the constant of Goldfeld-Hoffstein’s
formula.)

Theorem 1.2 (Datskovsky). Let $L_{\infty}=(L_{v})_{v\in \mathfrak{M}}\infty$ be $a\mathfrak{M}_{\infty}$ -tuple. Then toe have

$\lim_{Xarrow\infty}\frac{1}{X^{3/2}}F$

$| \Delta_{F/k}|\leq X\in \mathrm{Q}(L\}\sum_{\infty},h_{F}R_{F}=\frac{({\rm Res}_{s=1}\zeta_{k}(s))^{2}\Delta_{k}e_{k}\zeta_{k}(2)}{3\cdot 2^{r_{1}+r_{2}-1}2^{r_{1}(L_{\infty}\rangle}(2\pi)^{r_{2}(L_{\infty})}}\prod_{v\in \mathfrak{M}_{\mathrm{f}}}(1-q_{v}^{-2}-q_{v}^{-3}+q_{v}^{-4})$

.

We could prove this theorem by using the theory of the space of binary quadratic
forms. Let us consider $G=\mathrm{G}\mathrm{L}(1)\mathrm{x}$ $\mathrm{G}\mathrm{L}(2)$ , and its linear representation on

$V=\mathrm{S}\mathrm{y}\mathrm{m}^{2}k^{2}=\{x=x(u, v)=x_{0}u^{2}+x_{1}uv+x_{2}v^{2}|x_{0}, x_{1}, x_{2}\in k\}$ .

Explicitly, the $\mathrm{G}\mathrm{L}(2)$-part acts on $V$ by the linear change of variables, and the $\mathrm{G}\mathrm{L}(1)-$

part by the usual scalar multiplication. The relation between $(G, V)$ and Theorem 1.2
is clarified by the following proposition.

Proposition 1,3. (1) Let $\mathrm{P}\{\mathrm{x}$) $=x_{1}^{2}-4x_{0}x_{2}$ which is a polynomial in $V$ , and $\chi(g)=$

$(\det g)^{2}$ which is a character of G. Then we have $P(gx)=\chi(g)P(x)$ for all $g\in$

$G_{7}x\in V$ .
(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . For $x\in V_{k}’$ , we let $k(x)$ be the splitting field of $x(u, v)$

if it is irreducible, and $k(x)=k\mathrm{x}$ $k$ if $x(u, v)$ is reducible. Then the isomorphism
class of $k(x)$ depends only $G_{k}$ orbit of $x$ , and this gives a bijection between $G_{k}\backslash V_{k}’$

and the set of isomorphism classes of etale quadratic extensions of $k$ .
(3) For $x\in V_{k}’$ , $G_{x}^{\mathrm{o}}\cong k(x)^{\mathrm{x}}$ as an algebraic group over $k$ .

The statement (2) explains why $(G, V)$ concerns to quadratic extensions of $k$ . On the
other hand, if we put $T=\mathrm{k}\mathrm{e}\mathrm{r}(Garrow \mathrm{G}\mathrm{L}(V))$, we immediately see $T\cong \mathrm{G}\mathrm{L}(1)$ . Hence,
from (3) we could see that the unnormalized Tamagawa number of $GQX/T$ is more or less
equal to $h_{k\langle x)}R_{k(x)}$ . We call propositions of this form the rational orbit decomposition
for $(G, V)$ .

For the comparison of Theorem 1.1 and Theorem 1.2, if there exist a linear repre-
sentation of an algebraic group satisfying the corresponding proposition, then with an
appropriate theory, we could expect theorems of the form Theorem 1.1. In fact, the
representation is already known by the work of Wright and Yukie [11], namely the space
of pairs of 2 $\mathrm{x}$ $2$ matrices
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2. THE SPACE OF PAIRS OF 2 $\mathrm{X}$ $2$ MATRICES (ORIGINAL APPROACH)

For a while, let $k$ be an arbitrary field. Let

(2.1) $G=\mathrm{G}\mathrm{L}(2)\mathrm{x}$ $\mathrm{G}\mathrm{L}(2)\mathrm{x}$ $\mathrm{G}\mathrm{L}(2)$ , $V=k^{2}\otimes k^{2}\otimes k^{2}$ .
There is an identification $V\cong \mathrm{M}(2,2)\oplus \mathrm{M}(2,2)$ and hence we call this space as the
space of pairs of 2 $\mathrm{x}$ $2$ matrices. We put $T=\mathrm{k}\mathrm{e}\mathrm{r}(Garrow \mathrm{G}\mathrm{L}(V))$ . We immediately see
$T\cong \mathrm{G}\mathrm{L}(1)\mathrm{x}$ $\mathrm{G}\mathrm{L}(1)$ . The following proposition is proved in [6] and [11].

Proposition 2.2. (1) There exists a non-zero polynomial $P$ of $V$ and a rational char-
acter $\chi$ on $G$ such that $P(gx)=\chi(g)P(x)$ .

(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . Then there exists the canonical bijection between
$G_{k}\backslash V_{k}’$ and the set of isomorphism classes of etale quadratic extensions of $k$ . For
$x\in V_{k;}’$ we denote by $k(x)$ the corresponding algebra.

(3) For $x\in V_{k}’$ , $G_{x}^{\mathrm{o}}\cong k(x)^{\mathrm{x}}\mathrm{x}$ $k(x)^{\cross}$ as an algebraic group over $k$ .

Prom the similar observation as in the case of binary quadratic forms, we can ex-
pect that an appropriate theory for this space leads the density of $h_{F}^{2}R_{F}^{2}$ of quadratic
extensions $F$ of $k$ . This observation, due to [11], is the starting point of our work,

Next we recall the definition of the zeta function for this prehomogeneous vector space.
Let $k$ be a number field and A the adele ring of $k$ . We let

$L=\{x\in V_{k}’|k(x)\not\cong k\mathrm{x} k\}$ ,
which is a $G_{k}$-invariant subset of $V_{k}’$ . Note that $G_{k}\backslash L$ corresponds bijectively to the set
of quadratic extensions of $k$ .

Definition 2.3. For a Schwartz-Bruhat function (I on $V_{\mathrm{A}}$ and a complex variable $s$ , we
define the global zeta function as

$Z( \Phi, s)=\int_{G_{\mathrm{A}}/T_{\mathrm{A}}G_{k}}|\chi(g)|_{\mathrm{A}}^{s}\sum_{x\in L}\Phi(gx)dg$ ,

where $dg$ is an invariant measure on $G_{\mathrm{A}}/T_{\mathrm{A}}$ .

The integral converges absolutely and locally uniformly if $\Re(s)$ is sufficiently large.
Roughly speaking, from the Proposition 2.2 we see that the global zeta function has

the following expansion

(2.4) $\sum_{L_{\varpi}}(\Gamma_{L}(\infty\Phi_{\infty}, s)\mathrm{x}\sum_{F\in Q(L_{\infty})}\frac{h_{F}^{2}R_{F}^{2}}{|\Delta_{F/k}|^{s}})$

where $L_{\infty}$ runs through all the splitting type at $\mathfrak{M}_{\infty}$ , and $\Gamma_{L_{\infty}}(\Phi_{\infty}, s)$ are the gamma
factors. Hence from the analytic properties of $Z(\Phi, s)$ , by Tauberian theorem, we could
get the mean value of $h_{F}^{2}R_{F}^{2}$ . Actually our zeta function is slightly different from the
above form, We will discuss on this difference in Section 4.

Let us consider the principal parts of the global zeta function. The standard tool
to study the global zeta function is the Fourier analysis. We choose a suitable inner

product $[, ]$ : $V\mathrm{x}$ $Varrow k$ . Let $g$
’ denote the contragradient representation and 4 the

Fourier transform with respect to $[, ]$ . Then by the Poisson summation formula, we
have

$Z(\Phi, s)=Z_{+}(\Phi, s)+Z_{+}(\hat{\Phi}, 2-s)+I(\Phi, s)$
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where $Z_{+}(\Phi, s)$ , $Z_{+}(\hat{\Phi}, 2-s)$ are the entire functions and $I(\Phi, s)$ is given by

(2.5) $I( \Phi, s)=\int_{G_{\mathrm{A}}/T_{\mathrm{A}}\mathrm{G}_{k}}|\chi(g)|_{\mathrm{A}}\leq 1(|\chi(g)|_{\mathrm{A}}^{s-2}\sum_{x\in V_{\acute{k}}\backslash L}\hat{\Phi}(g^{b}x)-|\chi(g)|_{\mathrm{A}}^{s}\sum_{x\in V_{\acute{k}}\backslash L}\Phi(gx))dg$.

To compute $I(\Phi)$ , it seems natural to divide the index set $V_{k}\backslash L$ of the summation
into its $G_{k}$-orbits and perform integration separately. However, we cannot put this into
practice because the corresponding integrals diverge. This is the main difficulty when
one calculates the global zeta functions of prehomogeneous vector spaces. To surm ount
this problem Shintani [7] introduced a smoothed Eisenstein series of $\mathrm{G}\mathrm{L}(2)$ . He used
this series to determine the principal parts of the global zeta functions for the space
of binary cubic forms. Later A. Yukie [12] generalized the theory of Eisenstein series
to the groups of products of $\mathrm{G}\mathrm{L}(n)’ \mathrm{s}$ , and determined the principal parts of the global
zeta functions for the space of quadratic forms $(\mathrm{G}\mathrm{L}(1)\mathrm{x}\mathrm{G}\mathrm{L}(n), \mathrm{S}\mathrm{y}\mathrm{m}^{2}k^{n})$ and the space
of pairs of ternary quadratic forms $(\mathrm{G}\mathrm{L}(3)\mathrm{x} \mathrm{G}\mathrm{L}(2), \mathrm{S}\mathrm{y}\mathrm{m}^{2}k^{3}\otimes k^{2})$ . The latter space is
known as a significantly interesting case such that the rational orbit space parameterize
etale quartic extensions (see [11]) and the determination of the principal parts is worth
remarkable,

The author’s original approach was to apply their method to our case (2.5) but could
not succeed in computing. After a while the author modified the approach as follows.

3. THE SPACE OF A PAIR OF QUATERNION ALGEBRAS (MODIFIED APPROACH)

Let $\prime \mathfrak{B}$ be a quaternion algebra over $k$ . Let us consider the representation

(3.1) $G=\mathfrak{B}^{\mathrm{x}}\mathrm{x}$
$(\mathfrak{B}^{\mathrm{o}\mathrm{p}})^{\mathrm{x}}\mathrm{x}\mathrm{G}\mathrm{L}(2)$, $V=\mathfrak{B}$ $\otimes k^{2}=\mathfrak{B}$ $\oplus \mathfrak{B}$ .

We regard (3.1) as a representation of the algebraic group $G$ over $k$ . This is an inner
form representation of (2.1), and if $\prime \mathfrak{B}$ $\cong \mathrm{M}(2,2)$ over $k$ then they are equivalent.

For this representation, instead of Proposition 2.2 the following holds.

Proposition 3.2. (1) There exists a non-zero polynomial $P$ of $V$ and a rational char-
acter $\chi$ on $G$ such that $P(gx)=\chi(g)P(x)$ .

(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . Then there exists the canonical bijection be rween
$G_{k}\backslash V_{k}’$ and the set of isomorphism classes of etale quadratic extensions of $k$ those
are embeddable into 3. For $x\in V_{k}’$ , we denote by $k(x)$ the corresponding algebra,

(3) For $x\in V_{k:}’G_{[mathring]_{x}}\cong k(x)^{\mathrm{x}}\mathrm{x}k(x)$
’ as an algebraic group over $k$ .

If $k$ is a number field, then whether a quadratic extension $F$ of $k$ is embeddable into
$\mathfrak{B}$ or not can be determined by finitely many local conditions of $F$ . This reflects to the
condition “$n\geq 2$” in Theorem 1.1.

We define the global zeta function $Z(\Phi, s)$ and the “principal parts” $I(\Phi, s)$ similarly.
One advantage of non-split cases is that the global theory becomes much easier. In
general, the analysis of the global zeta function becomes much more complicated as the
$k$-rank the group growth. If $\prime \mathrm{g}$ is non-split, then the $k$-rank of $G$ in (3.1) is 1, and in
this case we could succeed in computing the principal parts. The following theorem is
proved in [10]
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Theorem 3.3. Let $\prime \mathfrak{B}$ be a non-split quaternion algebra. Then

$I( \Phi, s)=\tau(G/T)(\frac{\hat{\Phi}(0)}{s-2}-\frac{\Phi(0)}{s})+\frac{Z_{\mathfrak{B}}(R\hat{\Phi},1/2)}{s-3/2}-\frac{Z_{\mathfrak{B}}(R\Phi,1/2)}{s-1/2}$,

where $\tau(G/T)$ is the Tamagawa number of $G/T_{\gamma}R\Phi$ the suitable restr iction of (!) to $\mathfrak{B}_{\mathrm{A}}$ ,
and $Z_{\mathfrak{B}}$ the zeta function of simple algebra associated to $\prime \mathfrak{B}$ .

4. FILTERING process

If $Z(\Phi, s)$ had the expansion of the form (2.4), then the Tauberian theorem would
allow us to extract the mean value of the coefficients from Theorem 3.3. However our
global zeta function contains an additional factor in each term. More precisely speaking,
the expansion of $Z(\Phi, s)$ is of the form

(4.1) $Z( \Phi, s)=\sum_{L\infty}(\Gamma_{L_{\infty}}(\Phi_{\infty}, s)\mathrm{x}\sum_{F\in Q(L_{\infty})}\frac{h_{F}^{2}R_{F}^{2}}{|\Delta_{F/k}|^{s}}L_{F}(\Phi, s))$

where $L_{F}(\Phi, s)$ is a Dirichlet series. To surmount this difficulty, Datskovsky-Wright
[2] and Datskovsky [1] formulated the method so called the filtering process. Roughly
speaking, we approximate (2.4) by $(4,1)$ by choosing a sequence of Schwartz-Bruhat
functions $\{\Phi_{n}\}_{n\geq 1}$ such that $L_{F}(\Phi_{n}, s)$ goes uniformly to 1 as $narrow\infty$ . We use the
Tauberian theorem at each step and take the limit of the formulae to prove the desired
density theorem. This is the reason of the Euler product in the formula of Theorem 1.1.
In [9] we followed Datskovsky’s approach [1] to obtain the density theorem.

5. THE CORRELATION COEFFICIENTS

As an interesting application of Theorem 1.1, combined with the result of Kable-Yukie
[4], we also obtain the asymptotic behavior of the correlation coeffcients for class number
times regulator of certain families of quadratic extensions. For simplicity we state our
result in the case $k=$ Q. Note that $R_{F}=1$ for imaginary quadratic fields. The following
is a special case of [9, Theorem 11.2].

Theorem 5,1. We fix a prime num ber 1 satisfying $l\equiv 1(4)$ . For any quadratic field
$F=\mathbb{Q}(\sqrt{m})$ other than $\mathbb{Q}(\sqrt{l})$ , ette put $F^{*}=\mathbb{Q}(\sqrt{ml})$ . For a positive number $X$ , we
denote by $A_{l}(X)$ the set of quadratic fields $F$ such that $- X<D_{F}<0$ and $F\otimes \mathbb{Q}_{l}$ is

the quadratic unramified extension of $\mathbb{Q}_{l}$ . Then we have

$\lim_{Xarrow\infty}\frac{\sum_{F\in A_{l}(X\rangle}h_{F}h_{F^{*}}}{(\sum_{F\in A_{l}(X)}h_{F}^{2})^{1/2}(\sum_{F\in A_{l}(X)}h_{F^{*)^{1/2}}}^{2}}=\prod_{(^{\epsilon_{\iota}})=-1}(1-\frac{2p^{-2}}{1+p^{-1}+p^{-2}-2p^{-3}+p^{-5}})$

,

where $( \frac{\rho}{l})$ is the Legendre symbol and $p$ runs through all the primes satisfying $( \frac{p}{t})=-1$ .

It is an interesting phenomenon that the index set of the product of the density
consists of primes $p$ such that $( \frac{p}{\iota})=-1$ . For example, we can observe that if we choose
1 such that $( \frac{\mathrm{p}}{l})=1$ for all small primes $p$ then $h_{F}$ and $h_{F}*\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}$ strong relation, and
if we choose $l$ such that $( \frac{\mathrm{p}}{l})=-1$ for all small primes $p$ then the relations between $h_{F}$

and $h_{F^{*}}$ become weak
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6. FURTHER PROELEMS

In the monumental work [11], Wright and Yukie considered the problem of rational
orbit decomposition for 8 cases including our case (2.1), and discussed the expected
density theorems for those cases. On the other hand, in the process [10] and [9] to prove
Theorem 1.1, the technical heart is to consider the inner form (3.1) of (2.1). The fe-forms
of irreducible reduced regular prehomogeneous vector spaces over local and global fields
are classified by H. Saito [5], and we could see that some other cases of [11] have inner
forms. In this section, we will discuss the rational orbit decomposition for some inner
form representations. The proof may be appear in the forthcoming paper. In this section
iet $k$ be an arbitrary field. Let $\epsilon_{i}$ be the set of isomorphism classes of etale extensions
of $k$ of degree $\mathrm{i}$ .

(I) The case $(\mathrm{G}\mathrm{L}(3)\mathrm{x}\mathrm{G}\mathrm{L}(3)\mathrm{x} \mathrm{G}\mathrm{L}(2), k^{3}\otimes k^{3}\otimes k^{2})$ .
Let I be a simple algebra of degree 3 over $k$ . Then

$G=\mathrm{I}\}^{\mathrm{x}}\mathrm{x}(\mathcal{D}^{\mathrm{o}\mathrm{p}})^{\mathrm{x}}\mathrm{x}$ $\mathrm{G}\mathrm{L}(2)$ , $V=\mathcal{D}\otimes$
$k^{2}\cong \mathcal{D}$

$\oplus \mathcal{D}$

is an inner form. Let $\mathcal{E}_{3}(\mathcal{D})$ be the set of isomorphism classes of etale cubic extensions
of $k$ those are embeddable into $\mathcal{D}$ . Then the following proposition holds.

Proposition 6.1. (1) There exists a non-zero polynomial $P$ of $V$ and a rational char-
other $\chi$ on $G$ such that $P(gx)=\chi(g)P(x)$ .

(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . Then there exists the canonical bijection be tween
$G_{k}\backslash V_{k}’$ and $8_{3}(\mathcal{D})$ . For $x\in V_{k}’$ we denote by $k(x\grave{)}\in \mathcal{E}_{3}(\mathcal{D})$ be the corresponding
extension,

(3) For $x\in V_{k}’$ , $G_{[mathring]_{x}}\cong k(x)^{\mathrm{x}}\mathrm{x}k^{\mathrm{x}}$ as an algebraic group over $k$ .
From this proposition, we may obtain the density of $h_{F}R_{F}$ of cubic extensions $F$ of $k$ .

In the case I is not split, the principal parts of the global zeta function were described
in [10]. It has possible simple pole at $s=0$ , 1/6, 4/3, 3/2. The local theory and the
filtering process to obtain the density theorem are in progress.

(II) The case $(\mathrm{G}\mathrm{L}(4)\mathrm{x}\mathrm{G}\mathrm{L}(2), \Lambda^{2}k^{4}\otimes k^{2})$ .
Let $\prime B$ be the division algebra of $k$ . We denote by $\mathrm{H}2\mathrm{C}\mathrm{B}$ ) be the set of binary Hermitian

forms over S. Then
$G=\mathrm{G}\mathrm{L}(2, \mathfrak{B})$ $\mathrm{x}\mathrm{G}\mathrm{L}(2)$ , $V=\mathrm{H}2\mathrm{C}\mathrm{B})\otimes k^{2}$

is an inner form. For this case the following proposition holds.
Proposition 6.2. (1) There exists a non-zero polynomial $P$ of $V$ and a rational char-

other $\chi$ on $G$ such that $P(gx)=\chi(g)P(x)$ .
(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . Then there exists the canonical bijection be rween

$G_{k}\backslash V_{k}’$ and $\epsilon_{2}$ . For $x\in V_{k}’$ we denote by $k(x)\in\epsilon_{2}$ be the corresponding extension.
(3) For $x\in V_{k}’$ , $G_{x}^{\mathrm{o}}\cong(\mathfrak{B}\otimes k(x))^{\mathrm{x}}$ as an algebraic group over $k$ .

(III) The case $(\mathrm{G}\mathrm{L}(6)\mathrm{x}\mathrm{G}\mathrm{L}(2), \Lambda^{2}k^{6}\otimes k^{2})$.
Let $H_{3}(\mathfrak{B})$ be the set of ternary Hermitian forms over $t\mathfrak{B}$ . Then just the same as the

above case,
$G=\mathrm{G}\mathrm{L}(3,\mathfrak{B})\mathrm{x}\mathrm{G}\mathrm{L}(3)$ , $V=\mathrm{H}3(3)\otimes k^{2}$

is an inner form. For this case the following proposition holds.
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Proposition 6.3. (1) There exists a non-zero polynomial $P$ of $V$ and a rational char-
acter $\chi$ on $G$ such that $P(gx)=\chi(g)P(x)$ .

(2) Let $V’=\{x\in V|P(x)\neq 0\}$ . Then there exists the canonical bijection between
$G_{k}\backslash V_{k}’$ and $\epsilon_{3}$ . For $x\in V_{k}’$ we denote by $k(x)\in\epsilon_{3}$ be the $co$ responding extension.

(3) For $x\in V_{k}’$ , $G_{x}^{\mathrm{o}}\cong\{g\in(\mathfrak{B}\otimes k(x))^{\mathrm{x}}|\mathrm{N}(g)\in k^{\mathrm{x}}\}$ as an algebraic group over $k$ .
The principal parts of the global zeta function for (II) and (III) are not known.
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