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Abstract

We give some families of finite structures with a predimension function, in
which we can construct various structures with desired predimensions.

1 Introduction

N. Peatfield and B. Zilber investigated a generic structure of certain class of finite
structures considered by Hrushovski and they showed that with some modification of
the structure, they can put a topology called an analytic Zariski structure on it. One
of their main tools is the following.

For the class K they considered, a structure M is elemetarily equivalent to a
generic structure of K if and only if M satisfies Axioms 1 and 2:

Axiom 1. Any finite substructure A of M belongs to K.

Axiom 2. For any A, B € K such that A < B, if f: A — M is an L-embedding
then it can be extended to an L-embedding f' : B — M.

Axiom 2 represents a strong form of the amalgamation property. For any class K
of finite structures, these axioms may have some meaning. This will be investigated
in a joint work with K. Ikeda and A. Tsuboi [2]. This paper will be a part of this
work.

2 Preliminaries

Throughout this paper, £ is a finite relational language. If M is an L-structure and
R is a relation with n arguments then R(M) = {z € M™ : M = R(z)}.

Definition 2.1 Suppose £ = {Ry, Rs,..., R}, and o = (a1, s, .. ., 1) where o; are
positive real numbers at most 1.
For a finite L-structure A, let

§(A) = |Al ~ [Ri(A)] — [Ra(A)] — - = [Ru(A)].
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§ is called a predimension function.

Let B be an L-structure and A € B. We write A < B if for any subset X of B,
whenever A C X C B then §(4) < §(X).

Let K, = {A:6(X) >0 for any X C A}.

Definition 2.2 (Asymmetric amalgam) Let B and C be L-structures, and let
A=BnNC as aset. B®4C is a structure with universe B'UC and for each relation
Rin £, R(B®,C) = R(B)UR(C)—(R(C)NA™) where n is the number of arguments
of R.

Note that §(B @4 C) = §(B) + 6(C) — §(C|4) where C|4 is a substructure of C
with the universe A.

Fuarthermore, if BN C = {a} (a singleton), then we write B &, C for B &1, C,
and if BNC = 0, then we write B&® C for B®y C.

Definition 2.3 Let A be an L-structure, a, b elements in A, and suppose that for
any relation R € £, there is no tuple z of elements in A such that A = R(z) and =
contains a and b.

A/{a = b) is an L-structure obtained from A by identifying a and b. More precisely,
it is defined as follows: The universe, also denoted A/{a = b), is A — {b}. Let
f:A— A/(a=b) be a projection map defined by f(z) = « for z # b, and f(b) = a.
For any relation R € £, A/{a = b) & Rlcy,...,¢,) for ¢1,... ¢, € A/{a = b) if and
only if A = R(d},...,c,) forsome cf,...,c, € Asuch that f(c])=¢ fori=1,...,n.

3 Arithmetic of Structures

In this section, we work in K, for some tuple a of positive real numbers at most 1.
We show that there are a plenty of structures in K, to get structures in K, of desired
§-ranks.

Definition 3.1 Let s be a real number such that 0 < s <2. A triple (E,a,b) is an
s-component if E is an L-structure, a,b € E, a # b, 6({a}) = §({b}) = 1, and the
following hold:

For any non-empty substructure X of E|

(1) s<é(X)ifa,be X,
(2)1<é6X)ifag Xorb¢g X, and
(3) 6(E) =s.

We also say that E is an s-component with joints a and b, or just £ is an s-
component.

Lemma 3.2 Let s, t, u be real numbers such that 0 < s,t,u < 1.



(1) Suppose (A, a,b) is an (1+s)-component, (B, b,c) a (1+t)-component, s+t < 1,
and C = A&, B. Then (C,a,c) is an (1 + s + t)-component.

(2) Suppose (A, a,b) is an (1+ s)-component, (B,b,c) a (1+1)-component, (C, c,d)
a (1+u)-component, s+t <1, D=A® B®.C, and D= D/(a = d). Then
(D,c,a) is an (s + ¢ + u)-component.

(3) Suppose k > 3, 11, r2, ..., Tr-1, Tk GT€ NON-negative real numbers such that
ri+ry+ -+ 11 < 1, and an r;-component exists for each i. Then there is
an (ri+ 1o+ -+« + re-1 + r¢)-component.

Proof. (1) Suppose X CC =A@, B and X # .

We check the condition (1) of the definition of an (1 + s + t)-component first.
Assume that a,c € X. Consider the case b € X. Then a,b€ XN A, b,c € XN B,
and X = (X NA) P, (X N B). Hence,

S(X)=8XNA+6XNB)>(Q+s)+(1+t)—1=1+(s+1).

Now, consider the case b € X. Thenb ¢ XNA,b¢ XNB, and X = (XNA)S(XNB).
Hence,
H(X)=8XNA)+HXNB)21+12>1+(s+1).

Therefore, a,c € X implies §(X) > 1+ s+t

Now, we check the condition (2) of the definition of an (1 4+ s + t)-component.
Suppose X is a non-empty subset of C. Then §(X) > (X NA)+dXNB)—-12>
1+1~-1=1.

(2) Since there is no relation on a tuple containing a and d, going from D to D,
the number of relations does not change. Therefore, for any X C D, §(X/(e = d)) =
§(X)-1lifa,de X, and 6(X/(a =d)) =d6(X)ifa,dg X.

Suppose ¢,a € X C D. Let Y C D be such that X = Y/(a = d). We can assume
that a,d € Y.

Consider the case b € Y. Since a,b,¢,d € Y, we have (Y NA) > 1+, 6(Y N
By>1+t,6YNC)>14u,and ¥ = (Y NA) & (YN B)d: (YNC). Hence,
§(Y) > 14 (s +t+u). Therefore, §(X)=4d0(Y/(a=d)) =6(Y)—-12>2s5+t+u.

Now, consider the case b € Y. Then, §(YNA) > 1,6(YNB) > 1,4YNC) = 1+u,
andY = (YNA)S(YNB)®AYNC). Wehave §(Y) > 1+ (14u) > 1+ (s+t+u) by
the assumption that s+t < 1. Therefore, §(X) = §(Y/(a =d)) =6(Y)—1 > s+t+u.
We have checked the condition (1} of the definition of (s + ¢ + u)-component.

We turn to check the condition (2) of the definition of (s + ¢ + u)-component.
Suppose a € X C D and X # 0. Then X C D and a,d & X. Let X; = X N (AU B)
and Xo = XNC. Since s+t <1, AUB = A®, B is a (1 + s + t)-component
by (1), and thus §(X;) > 1 by a € X. §(X;) > 1 since d ¢ X. Therefore, 6(X) >
§(X)+6(Xg)—-12> 1.

Suppose c € X anda € X. Let Y C D besuch that X =Y/(a=d) anda,d €Y.
Since c €Y, 8(Y) = §(YN(AUB))+86(Y NC) > 2. Therefore, §(X) =4(Y)—-12>1.
O
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Lemma 3.3 Suppose 0 < s < 1/2 and a (1 + s)-component exists. If s is rational
then a 1-component exists. If s is irrational, then for any e > 0 there exists € such
that e > & > 0 and a (1 + ¢')-component exists. With Lemma 3.2, we can choose a
1-component or a (1 + &")-component arbitrarily large.

Proof. Suppose 0 < s < 1/2 and a (1 + s)-component exists. Consider the following
non-negative decreasing sequence {s;}i«.: Let so = s. If 5; = 0 then let 541 = 0. If
s; > 0 then choose the least positive integer m; such that m;s; > 1 and let s;4; =
m;8; — 1.

By Lemma 3.2 (2), there is a {1+ s;)-component for each ¢ <w.

Note that if s; > 0 then s; > 8,41 > 0. If 59 = s is rational then s; = 0 eventually.
Hence, 1-component exists.

If sg = s is irrational, s; converges to 0. This should be well-known, but we
give a proof for convenience. Since {s;}i<. is a decreasing sequence, {mi}icw 18
an increasing sequence. If {m;}ic, is unbounded, then s; converges to 0 because
s; < 1/(m;—1). If {m;}i«, is bounded, m; = m for some positive integer m eventually.
So, we can assume that s;;; = ms; — 1 for all 4. Since s; converges to some 8> 0,
8 = mf — 1. Therefore, § = 1/(m —1). But s; > § = 1/{(m — 1) contradicts
(m — 1)81' = (mﬁ — 1)82' < 1. O

Lemma 3.4 Let (V,E) be a finite graph where V is a set of vertices and E a set
of edges, and let 5(V,E) = |V| — BlE| with 0 < 3 < 1. Then a graph which is a
(14 s)-component exists for some real number s such that 0 < s < 1/2 with respect
to this 6.

Proof. We remark first that any two different points in each (14 s)-component below
will be its joints.
Suppose a; = 1/2. A graph with 4 points and 6 edges (Kj) is a 1-component.
Suppose 1/2 < a; < 1. Let s = 1 — e;. Then a graph with 2 points and 1 edge is
a {1+ s)-component. These 2 points will be joints.

Suppose 0 < a; < 1/2. Choose least natural number & such that k — « (g) < 1.
k
2

graph with k points. Then for any non-empty proper subset X of Kj, §(X) > 1.
Starting from Kj, remove 1 edge at a time. Then the d-value of the graph incleases
by ¢, at a time. Repeat this process until the §-value of the graph exceeds 1. Let £
be the graph with k points obtained by this process. We eventually get E because k
points with no edge has the -value k > 5. If §(E) = 1, then E is a 1-component. If
not, 1 < §(E) < 1+ a; < 1+ 1/2 since if we put one more edge to £, the é-value will
be less than 1. O

Note that £ < 4 implies k — « > 1. Therefore, & > 5. Consider K}, a complete

If we have an s-component as a sufficiently large graph, then we can make an
s-component as a structure with an n-ary relation for any n.



Lemma 3.5 Let 8 be a real number such that 0 < § < 1. Suppose (A, E) is a
sufficiently large binary graph. Then there is S C A™ such that |A|— Bl E| = |A[—B|S|
and | X| — BlEx| < | X| — B|Sx]| for any X C A. Here, Ex is the set of edges in E
connecting vertices in X, end Sx = X™"NS. In particular, if (A, E) is an s-component
then so is (A, S). '

Proof. Let f:[A]> — A" be a one-to-one map such that a, b are members of f({a,b})
for any distinct points in A ([A]? is the set of two point subsets of A). We can choose
such f if |A| > 2n. Let § = f(E) (Consider each edge as the set of two end points).
Then |A| — 8|E| = |A| — 8]8]. Also, for any X C A, if f(e) € X then e € Ex. Hence,
|Sx| < |Ex|. Therefore, | X|— B|Ex| < |X|— B|Sx|. O

As a corollary, we get the following proposition.

Proposition 3.6 If a rational number is a member of o then a 1-component exists
in K,.

If an irrational number is a member of a, then for any € > 0, there are ¢’ and £”
such that € > ¢’ > " > 0 and o (1 + &')-component and a (1 — €")-component exist
in K,.

Lemma 3.7 Suppose that ry +ry + -+ + 1, — n = 1 where the r;'s are positive real
numbers at most 1, —1 < r < 1, and n a natural number. Assume further that
1-component exists and so does (1 + r;)-component for each i = 1, ..., k. Then
(1 + r)-component exists.

Proof. We prove the lemma by induction on . The lemma holds for n = 0 by Lemma
3.2 (1). Suppose n > 1. Let ¢ be the maximum suffix such that 71 +---+7r; < L.
Since a l-component exists, we can assume that ¢ > 2.

If i = k then n must be 1. Therefore, there is a (1 + r)-component by Lemma 3.2
(3), and we are done. ' '

Suppose i < k. Thenry+---+r;+ripg > 1. Let g=r1+- - +ri+r411—-1 20 By
Lemma 3.2 (3), there is a (1+¢)-component. We have g+749+--+7.—(n—1) =7.
Therefore, r-component exists by the induction hypothesis. 0

Proposition 3.8 Suppose that a rational number is a member of a.

(1) A 1-component exists in K.

(2) If a reduced fraction k/m is a member of o then a (1 + 1/m)-component exists
in K,.

(3) If a (1 +1/m)-component and a (1+1/m’)-component exist in K, then a (1+
1/lem(m, m/'))-component exists in K,. Here, lem(m,m') is the least common
multiple of m and m/.
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(4) If a (1 + 1/m)-component exists in K, then a (1 — 1/m)-component exists in
K,.

Proof. (1) is in Proposition 3.6.

(2) Suppose a reduced fraction k/m = a; for some ¢. Then a graph with 2 points
and 1 edge is & (1 + (m — k) /m)-component for §,, defined by 8o,(4, E) = |A| — 4| Ef.
Since there is a graph which is a 1-component for &,,, we can make a (14 (m—k)/m)-
component arbitrarily large. By Lemma 3.5, (1 4+ (m — k)/m)-component exists in
K,.

Let ¥ = m — k. k' and m are prime each other. Therefore, there are positive
integers u, v such that uk’ — vm = 1. Hence, u(k'/m) —v = 1/m. There is a
(14 1/m)-component in K, by Lemma 3.7.

(3) Let d be the greatest common divisor of m and m’. Then there are positive
integers u < m' and v < m such that um — vm' = d. Then u(1/m’) — v(l/m) =
d/(mm') and thus u(1/m’) + (m — v)(1/m) — 1 = d/(mm/). Therefore, there is a
(1+ d/(mm'))-component in K, by Lemma 3.7.

(4) Also, by Lemma 3.7. O

4 A Property of K,

In this section, we show a special property of K, with which we can show that the
elementary theory of the generic structure of K, is axiomatized by Axioms 1 and 2
in the introduction. This will be investigated in [2].

Lemma 4.1 Suppose 0 < 5,t <1, C= B®, E, and (E,a,b) is a (1+1)-component.
If 6(A) +5 < 8(X) for any X such that AC X C Banda € B—A, then§(A)+s <
§5(X) for any X such that AC X CC.

Proof. Suppose AC X CC. faé X, then A C (XNB),a g (XNE), and
X =(XnB)&(XNE). {(XNE)=0,then AC X C B, and thus §(X) > §(A)+s.
If (XNE) # 0, then §(XNE) > 1 and thus §(X) = 6(XNB)+8(XNE) > §(A)+1 =
6{A) +s.

Ifae X, then X = (XNB)®,(XNE), AC XN B, and X NE # . Hence,

§(X)=6XNB)y+8XNE)—12(6(A)+s)+{1+t)—12>5A) +s.
O
Lemma 4.2 Suppose 0 < t < s <1, C = B®, E, and (E,a,b) is a (1 — 1)-

component. If 6(A) + s < 8(X) for any X such that AC X C B anda € B— A,
then 8(A) + (s —t) < 8(X) for any X such that AC X C C.



Proof. Suppose A ¢ X C C. If a ¢ X, then A C (XN B), a & (X NE),
and X = (XNB)@(XNE). f(XNE) =0 then A € X C B, and thus
8(X) > 8A) +s>d8A) +s~t IH(XNE)# 0, then §(XNE) > 1 and thus
S(X)=8XNB)+8XNE)>28A) +126(A)+s—1.

fae X,then X = (XNB)®, (XNE), AC XNB,and X NE # {. Hence,

§(X)=8(XNB)+5(XNE)~12>(6(A)+s)+(1—1t)—1>8(A)+s—¢
0

Theorem 4.3 Consider K, where « consists of rational numbers only. Suppose A,
B are L-structures in K, and A < B. Then for any positive integer n, there is an
L-structure C in K, such that BC C, B<, C, A< C and §(C) = 0(4A).

Proof. We prove the theorem by the induction on |B — Al.

Suppose |B — A| = 0. In this case, A = B. Let C = B = A. Then the statement
holds.

Suppose |B — A| > 0. Let By be a substructure of B such that A C By € B and
§(By) < §(X) for any set X such that A € X C B.

Note that we have A < By and By < B.

Suppose §(A) = §(By). We have |B— Bg| < |B—Al. By the induction hypothesis,
for any integer n > 0, there is a structure C D B such that B <,, C, By < C and
8(C) = §(By). Since A < By and 6(A) = §(By), we have the statement.

Suppose {A) < §{By). If a is a point in B — A then é({a}/A) < 1. Therefore,
6(By/A) < 1 by the choice of By. Let s = §(Bg) — 6(A) < 1. Then 6(A) + s < §(X)
for any substructure X of By such that A € X.

Let a = (ni/my,ng/ma, ..., n;/m;) where each n;/m; is a reduced fraction. Let
m be the least common multiple of my, ma, ..., my. Then s = 6(By) — d(4) is a
multiple of 1/m. Let s = k/m where k is a positive integer.

For any positive integer n, let C' be an L-structure such that

C/ =B ®a0 EO eea] El e @a.n E'n, @an_;,l Fl @an_;.g F2 o ®an+k Fk7

where the a; are pairwise distinct, ag € By — A, (i, a4,0:41) is a l-component for
each i =0, 1, ..., n, and (F},anyj,@nyjr1) is a (1 — 1/m)-component for j = 1, 2,
..., k. Let Cy be a substructure of C’ such that

C!0 = BO GBag EU @al El e @an En Gaan_,_l Fl ®an+2 FZ e ﬂaﬂm—k Fk-

By Lemmas 4.1 and 4.2, we have A < Cp and §(A) = 8(Ch). Therefore, Cy € K.

We show that By <, C;. Suppose X C Cp — By and |X| < n. Then X =
{ag,a1,...,a,1} or a; ¢ X for some i < n. In either case, X C (By ®Bay Eo Pay
Ei- @, E;)®D forsome j < nand D € K,. Since By € By®oy Eo®a, B1 -+ Do, Ej
by Lemma 4.1, §(Bo) < §(X).
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Now we have C' = B ®p, Cs, Bo < C, and By < Co. Hence, Cp < C’ and
B <, . Since |¢' — Cy| = |B ~ By| < |B — A, we have C € K, such that C O ",
C' <, C, Co < C and §(C) = §(Cy). Therefore, B <, C, A < C, and §(C) = §(A).
O

Theorem 4.4 Suppose A, B are L-structures in K, and A < B. Then for any real
number ¢ > 0 and for any positive integer n, there is an L-structure C in K, such
that BC C, B<,C, A< C and §(C) < 6(A) +¢.

Proof. If o consists of ratinal numbers only, then the statement holds by Theorem
4.3.

Assume that o contains an irrational number. The proof for this case is similar
to that of Theorem 4.3. So, we give only a sketch. Choose By as in the proof of
Theorem 4.3. Assume that s = §(By) — 6(A) > 0. Let € > 0 be an arbitrary (small)
real number. Let

Cl = B@ao EO @aq El ”'@an En ®an+l Fl ®an+2 FZ" '@am_k Fk

as in the proof of Theorem 4.3, except that (E;, a;,a:41) is a (1 + £)-component with
t sufficiently small for each ¢ =0, 1, ..., n so that

5(30 @ag EO @m El e @an Eﬂ) < (5(30) + 5/47

and (F}, @ny g, nrjr1) is a (1 — t')-component with 0 <’ <e/dforj=1,2,...,k,
where k is the largest integer such that kt' < s. Then A < Cp, and §(Co) < 6(A)+¢/2
for Cy as in the proof of Theorem 4.3. Then we have C; < €' and B <, C".

By the induction hypothesis, we can choose C € K, such that C' <, C, Gy £ C,
and §(C) < §(Cy) + /2. Therefore, we have the theorem. O
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