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Relative Difference Sets in Dihedral Groups

Agnes D. Garciano
Mathematics Department, Ateneo de Manila University
Loyola Heights, Quezon City, Philippines

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University
Kurokami, Kumamoto, Japan

Takeo Yokonums,
Department of Mathematics, Sophia University
Kioichi, Chiyoda-ku, Tokyo, Japan

1. Introduction

A (m,n, k,X) relative difference set (RDS) in a finite group G of order mn
relative to a subgroup N of order n, is a k—element subset R of G wherein every
element of G — N has exactly A representations as ri7y b with 71,72 € R. Moreover,
no nonidentity element of N has such a representation. N is called the forbidden
subgroup. If for a subset X of G, we identify X with the group ring element X =
Z:E ¢ C[G| and set XD = Zm"l, then R is a {(m,n,k,A) RDS in G relative
zeX zeX
to N if RR-D =k + A(G — N). It follows that k(k — 1) = An{m — 1). Note that if
N =1, then R is an (m, k, \) difference set in the usual sense.

The notion of a relative difference set was introduced by Elliot and Butson [1].
The following result which is due to them is fundamental in the study of RDS’s.

Result 1.1. ([1]) Let R be a (m, n, k, A) relative difference set in a group G relative to
a subgroup N and let U be a normal subgroup of G containedin N. If ¢ : G — G JU

is the canonical epimorphism and |U| = u, then ¢(R) is a (m, %,k,u)\) relative
difference set in G(= G/U) with respect to N(= N/U).

__ In particular, if N = U, then ¢(R) is a (m,k, nA) ordinary difference set in
G(= G/N). We may then consider R as an "extension” of an ordinary difference set.

Although trivial ordinary difference sets with parameters of the form (v+2,v+
1,v) and (v,v,v) , v > 0, exist in any group, it is still a question whether or not
extensions of these difference sets also exist. In dihedral groups for instance, it is
conjectured that only trivial ordinary difference sets exist. Hence, a problem that
we would like to consider is whether extensions of these trivial difference sets exist
in dihedral groups.

A relative difference set in a group G is said to be semiregular or of affine type
if its parameters are of the form (nX,n,n\,A) or (rA + 2,n,nA + 1, X) respectively.



If N is a normal subgroup of G and R is either a semiregular or affine type RDS
in G, then R is a trivial ordinary difference set in G by Result 1.1. We say that a
(m,n, k, \) relative difference set is trwvial if k = 1 or (n,k) € {(L,m) , (I,m — )}.

If the conjecture mentioned above is true, then the only nontrivial RDS’s that
can exist in dihedral groups relative to a normal subgroup are either semiregular or
of affine type. '

The only nontrivial relative difference set up to equivalence in a dihedral group

known to the authors is as follows:

Example 1.2. Let G = (z,y | z* =y?> =1, y~'zy = 2~1) be the dihedral group of
order 8. Then D = {1,zy,z%y,z%} is a (4,2, 4, 2) relative difference set in G relative
to {y)-

In [2], the following was shown.

Result 1.3. ([2]) There exists no nontrivial semiregular relative difference set in any
dihedral group relative to a normal subgroup.

In section 3, we prove the following.
Theorem 3.1. There is no relative difference set of affine type in dihedral groups.

2. Preliminaries
We will use the following results which we mention here without proof.

Result 2.1. ([3]) Let X be an n x n circulant matrix

Lo Ty - Tn—1
Tp-1 Lo 't Tp-2
X =
1 g Ty

Then det{X) = [To<i<n_1 (@0 &g+ 2 g+ - +EVig, ), where & is & primitive
nth root of unity. Moreover, if det(z) # 0, then X" is also circulant.

Result 2.2. ([4]) (Inversion Formula). Let G be an abelian group and A= Z agg
g€G

1
be an element of the group algebraC{G}. Then, a, = @ Z x(4) x(g™?) for each
) x€G*
g € G where G* is the group of characters of G.

Throughout the rest of this paper, we will assume the following:
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Assumptions. Let R be a (nA+2,n,nA+1,1) (A > 0) relative difference set in a
dihedral group G relative to a subgroup N. Set G = C(t) where C is a cyclic group
and ¢ is an involution which inverts C. Set R = A + Bt where A and B are subsets
of C. By exchanging Rt for R if necessary, we may assume |A| < |B|.

Proposition 2.3. Under the above assumptions, the following hold:

o >

(i) If N c C, then AACY + BBEY = (nA+ 1)+ MC — N) and AB = 3 C.

A A
Furthermore, |A] = % and |B| = n_z_ +1.

(i) EN ¢ C , N;=NnNCandN,=NtNC,then AACD+BBY = (nA+

A+D) — v 1
L)4+A(C—N;)and AB = %(G—-Ng). Furthermore, |A| = (nA+1) 5 A+
and |B| = (n)ﬁ—l)-;— Vn)‘+1.

Proof. We have RR(-D = (A + Bt)(AD +¢tB(-1) = AACY + BB 4+ 24Bt.
Suppose N C C. By definition, RR(~1) = (nA + 1) + MC + Ct — N).
Thus, AACD + BBCY = (nA+1)+ A\(C — N) and AB = -% C.1f|Al=a
and |B| = b, it follows that a+b=nA+1 and ab = 2 n(nA+2). Hence (i)
holds.
Suppose N ¢ C. Then, RR(™V = (nA + 1) + A(C + Ct — Ny = Not).
Thus, AACYD + BBEY = (nA+ 1) +A(C — Ny) and AB = % (C—Np). If

A
|A| = a and |B| = b, it follows that a + b =nA+ 1 and ab = 1 n(nA + 2}.
Hence (ii) holds. n

3. Nonexistence of Affine Type Relative Difference Sets in Dihedral
Groups

To prove our main theorem, we first show a necessary condition on the forbidden
subgroup.

Proposition 3.1. Let R be a relative difference set of affine type in a dihedral group
G relative to a subgroup N of G. Then, N is normal in G.

We will prove Proposition 3.1 in Lemmas 3.2 - 3.7. As mentioned in the previous
section, we let G = C{t) where C is a cyclic subgroup of G and t is an element of G
which inverts C. Set R = A + Bt where A and B are subsets of C.



Suppose the proposition is false and let G be a minimal counterexample to the
proposition. As every element outside C is an involution and inverts C, we may
assume that t € N.

Lemma 3.2. n = 2. In particular,
(i) G=CN , N={t)and C = Zy4y)
(i) Disa (2A+2, 2, 2X + 1, A) relative difference in G with respect to N.

Proof. Let L=NNC. Then [N : L] =2 and G> L as C is cyclic. Therefore, by
Result 1.1, D is a difference set with parameters (n/\ +2, 2, nA+1, n_):)

in G(= G/L) relative to N(= N/L = 7ZZ). Clearly, G #N. By the minirial—

ity of G, L =1. Thus N = (t). n
By Proposition 2.3, we have

AACD £ BBED = 22+ 1)+ A(C - 1) (1)

AB = 22\— (C—-1) (2)

22+1—-v2x+1
2

22+14+vV2x+1
2

|A| = and |B|=

Lemma 3.3. We may assume that C = A + BGD 41

Proof. By (2) and (3), ANB("Y = ¢ and |A|+|B| = |C| - 1. Hence C' = AuBGD
U{g} for some g € C. Exchanging D for Dg~! if necessary, we may assume
that g = 1.

Lemma 3.4. A= A1 and B = B-1,

Proof. Let x be a nonprincipal character of C' and set x(A) = a and x(B) =b. By

_ Y -

(1), (2) and Lemma 3.3, ag +bb= A+ 1, ab= 5 and a+b+1=0. It

follows that 2a@ +a + @ = A = 2a%@ + 2a. Hence a = @. By Result 2.2,

A—ACD =0. Thus, A= AV andas B=C—A—1, we have B = B=1,
]

By (3) above, we can set 25 + 1 = +/2A +1 for a positive integer s.
Then A = 252 + 25 and D is a (4s2 + 45+ 2, 2, (2s+ 1)%, 25 +2) RDS
in G(& Dys212s4+1)). Moreover, by (1), (2) and Lemma 3.4, we have
Al = 2s*+5, |B| = 25 +3s+1, C=A+B+1, A? + B? =
(25 + 1)2 + (262 + 2)(C — 1) , AB = (s* + s)(C — 1). Hence, the following
hold.
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Lemma 3.5. A2+ A=s2C+s*+s , B +B=(s+1)2C+s*+s.

Let M be the unique subgroup of €' of index 2 and let d be an involution of C.
Then C' = M x {d). Set C = C/M(={1,d}).

Lemma 3.6. |ANM| = s2+s, |[ANMd] = s*, |BNM| = s*+s, |[BNMd| = (s+1)%

Proof. Let v = |ANM|and w = [ANMd]|. Then 4 = v+wd and v+w = [A] = 28°+s.
ByLemma35 (v+wa§)2 (v+wd)—32(2s +2s+1)(1+d)+s +s. It
follows that v2 4+ w? +v = 284 + 253 + 252 + 5 and 2vw +w = 25* +2s% + 57
and so (v —w)?+ (v —w) = 82 +s. Thus,v—w=sorv—w=—(s+1). If

v—w = —(s+1), then 2w = 2s? + 2s+1, a contradiction. Hence v —w = s
and so v = s2 + s, w = s°. The other equations in the Lemma can be
proven similarly. _ ]

Lemma 3.7. s is even.

Proof. By Lemma 3.6, BN Md # ¢. Let g € BNMd and set Q = {(z,y) | =,y € B,
g = zy}. By Lemma 3.5, |Q] = (s +1)? — 1. If 5 is odd, then || = 1
(mod 2). As (z,y) € Q implies (y,z) € €, there is an element z € B such
that (z,2) € Q. Thus, g = z° € Md, a contradiction. Thus, s is even. s

Proof of Proposition 3.1:

By Lemma 3.7, s = 2¢ for some integer £ > 0. By Lemma 3.6, AN Md # ¢. Let
g€ AnMdandset Q= {(z,y) |2,y € A, zy = g}. By Lemma 35, |Q] = s* -1 =1
(mod 2). By a similar argument as in Lemma 3.7, we have a contradiction. Thus,
Gov N.

Proposition 3.8. Let G be a dihedral group and N a normal subgroup of G. Then,
there is no nontrivial relative difference set of affine type in G relative to V.

In the rest of this section, let G be a minimal counterexample to Proposition
3.8 and let Rbe a (pA+2, p, pA+1, A} RDS in G. By the minimality condition,
p is a prime. As mentioned in Section 2, we let G = C(t) where t inverts the cyclic
group C and let R = A + Bt where A and B are subsets of C. Exchanging R for its
translate, if necessary, we may assume RN N = ¢ and RU {1} is a complete set of
coset representatives of G/N. Since G N, N is contained in C. By Proposition 2.3,
we have

AACYD + BBED = (pA+ 1) + A(C — N) (4)
4B=3C (5)

A A
=52 , [Bl=g5p+1 (6)



A
Let h = 3 p+ 1. Moreover, let C = HN where N = (s) 2 7, and H = 7ZZ,.

Thus, we can set
A:Ag—f—AlS—;—..-—{—Ap_.lsp‘“l’ B=By+Bis+---+B &1817—1 <7>

for some subsets 4p , ... , 4p-1 , Bo, ..., Bp-1of H.

Lemma 3.9. The following hold:
(i) AiNA;j=BiNBj=¢ Vijwith0<i, j<p—1,i#].
({) H=14 cicp—1 Ai = 2o<i<p—1 Bi-

Proof. Since N = (s) and AACVNN = BBCYAN = {1} by (4), (i) holds. Hence,
|A] = ZO<1,< —1 |A;| and |B] = Zo<z<p ,|Bil. By (6), |A] = h —1 and

|B| = h. Then (i) follows immediately. n
Substituting {7) into equations (4) and (5), we have
AgBy + A1By1 + AsBp_o 4+ Ay 1By = % H
AoBi + A1Bo+ AsBp1+ -+ Ap1B2 = % H
AgB; + A1Bi1+ ABi—o+-- + Ap 1Bipr1 = % H (8)
. g
AgBp_1+ A1Bp_g+AsBy 3+ -+ Ap1Bo = % H

and
ApATY + ALASY 4 A ATV 4 A 2 ALY+ Ap i ALY
+BoBY + BB 4 By + BTV 4o+ B BiTy = MH 1) (9)

Let x be a character of H. By (8), we have

X(Bo)  x(Bp-1) -+ x(B1) x(4o) 1
x(B1)  x(Bo) -+ x(Ba) x(41) \ 1
: : : =3 x(H) |1 (10)
x(Bp—2) Xx(Bp-3) -+ x(Bp-1)| | x{Ap—2) 1
X(Bp-1) x(Bp-2) -+ x{(Bo) x(Ap-1) 1

Lemma 3.10. The following hold.

(@) Aol = |Az| = -+ = |Api| = 32.
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pA?

(i1) |BollBp-1| + [BillBol + -~ + [Bp-1l|Bp—2| = =~
Proof. Let |4;] = a; and |B;| = b; for ¢ =0,1,...,p— 1. If x is the principal
character of H, then by (10},

bg bp_l “e b1 ag 1
bl bg R bg a1 1

- =5 | (1)
bp_g bp_g v bp_l Ap—2 1
bp_l ﬁp_g L bo ap—1 1

Let P be the p x p matrix in the above equation (11). By Result 2.1,
det(P) = H05i§p~1(b0 + bp_]_CZ +b _2<27' + -+ b1C(p—1)z), where ( is a
primitive p—th root of unity. By Lemma 3.9 (i), bo + bp—1 + bp—2 + -+ +
by = |H| # 0. Suppose by + bpo1* + by aC? + -+ + b:¢PVE = 0 for
some i # 0. Set = ¢*. Then, 4 is a primitive p—th root of unity and
2=l + zP~2 4 ... + z + 1 is a minimal polynomial of § over Q. Hence
A
by = bp_1 = bp_g = -+ = b1. However, pbo = } gc;cp1bi = |H| = 3 p+1,
a contradiction. Thus det(P) # 0. By Result 2.1, P~! is also circulant.

Since (ag,a1,---,ap-1)% = - P7Y1,1,...1)7, it follows that ap = a1 =

- = @p-;. Hence, by Lemma 3.9, ap = a1 = +++ = p-1 = 7 Thus (i)
holds and (ii) follows from (9) and (i).

Lemma 3.11. Let x be a non-principal character of H. Then x(Bg) = x(B1) =
- =x(Bp-1) =0.

Proof. Set x(4;) = a; and x(B;) = f3; for i =0,1,...,p — 1. By (10)

Qg  Qp.y - A Bo 0
o @y o o B 0
' = (12
op-z Op-3 - Qp-1| | Op-2 0
Qp—1 Qp-2 - qg Bp—1 O-]

Let @ be the p x p matrix in the equation (12) above. By Result 2.1,
det(Q) = To<i<p-1{00 + agz_l +opol® + -+ o1 PV, where ¢ is a
primitive pth root of unity. Let i A0 , i€ {0,1,...,p—1}and let n =
g+ p_ 10+ 26 + -+ 6P~ where 6 = (*. Then, we have n? = of +
b 4ok 4+l (modp) =3 ocicp1 (> sea, x(z))?  (mod p) =
ZOSiSp——l (EJJEAz‘ X(xp)) = EmG{Ao,...,Ap_l} X(X(p)) = X(H(p) — 1) by
Lemma, 3.9 (ii). On the other hand, H® = H as (p,h) = 1. Hence 7? = —1



(mod p) and so 7P = —1 + pa for an algebraic integer o € Z[f]. If n = 0,
1
then o = p a contradiction. Hence det(Q) # 0. Thus, the lemma holds.

Proof of Proposition 3.8:

By Lemma 3.11 and Result 2.2, there exist co,c1,...,cp—1 €T such that By =
coH,B; = c1H,...,Bp_1 = cp_1H. Since each B; is a subset of H, B;, = H and

. . A2
B; = ¢(Vi # ig) for some ig € {0,1,...,p — 1}. By Lemma 3.10, p_4_ = 0. Thus
A = 0, a contradiction. u
By Propositions 3.1 and 3.8, we have the following.
Theorem 3.12. There is no nontrivial relative difference set of affine type in dihedral
groups.
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