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Abstract

We consider the estimation of error variance and construct a class of estim a-
tors which uniformly improve upon the usual estimators. We also consider
the estimation of order restricted normal variances. We give a class of
isotonic regression estimators which uniformly improve upon the usual es-
timators including the unbiased estimator, the unrestricted maximum like-
lihood estimator and the best scale and translation equivariant estimator
under various types of order restrictions. They are discussed under entropy
loss and under squared error loss.

1. Introduction
Let $S_{0}/\sigma^{2}$ and $S_{i}/\sigma^{2}$ , $\mathrm{i}=1$ , 2, $\cdots$ , $k$ be mutually independently distributed as

$\chi_{\mathrm{I}/0}^{2}$ and $\chi_{\iota_{i}}^{2},(\lambda_{i})$ , $\mathrm{i}=1,2$ , $\cdots$ , $k$ respectively, where $\chi_{\nu_{0}}^{2}$ denotes the $\chi^{2}$ distribution
with $\nu_{0}$ degrees of freedom and $\chi_{\nu_{i}}^{2},(\lambda_{i})$ the noncentral $\chi^{2}$ distribution with $l/_{i}$

degrees of freedom and noncentraiity parameter $\lambda_{\mathrm{z}}$ . Considering the estimation of
variance $\sigma^{2}$ based on a random sam ple $X_{1}$ , $\cdots$ , $X_{n}$ from a normal population with
unknown mean $\mu$ , it corresponds to the case when $k=1$ , $S_{0}= \sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$ ,
$t/_{0}=n-1$ , $S_{1}=n\overline{X}^{2}$ , $\iota/_{1}=1$ and $\lambda_{1}=n\mu^{2}/(2\sigma^{2})$ . If we consider the estimation of
error variance $\sigma^{2}$ based on experiments using two-level orthogonal arrays, $S_{0}$ and
$S_{i}$ are sum of squares for error term and that for each factorial effect, respectively
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When we estimate $\sigma^{2}$ under the squared error loss

$L_{1}(\sigma^{2},\hat{\sigma}^{2})=(\hat{\sigma}^{2}/\sigma^{2}-1)^{2}$ , (1)

the estimator $\delta_{0}=S_{0}/(\nu_{0}+2)$ is the best among estimators of the form $\mathrm{c}50$ ,
where $c$ is a constant. Stein (1964) showed that for the case when $k=1$ , $\delta_{1}=$

$\min\{S_{0}/(l/_{0}+2))(S_{0}+S_{1})/(\nu_{0}+l/_{1}+2)\}$ uniformly improves upon $\delta_{0}$ . Gelfand
and Dey (1988) generalized Stein’s result and showed that

$\delta_{0}\prec\delta_{1}\prec\cdots\prec \mathit{5}_{k}$ , (2)

where $\delta_{j}$ is the estimator defined by $\delta_{j}=\min_{0\leq l\leq j}[(\sum_{i=0}^{l}S_{i})/(\sum_{i=0}^{l}\iota/_{i}+2),$ $j=$
$1$ , $\cdots$ , $k$ and $\delta_{j}\prec\delta_{j+1}$ means that $\delta_{j+1}$ uniformly improves upon $\delta_{j}$ . One may
think that it is more appropriate to consider the estim ation of $\sigma^{2}$ under the entropy
loss function

$L_{2}(\sigma^{2},\hat{\sigma}^{2})=\hat{\sigma}^{2}/\sigma^{2}-\log(\hat{\sigma}^{2}/\sigma^{2})-1$. (3)

Then, it is well-known that the best positive multiple of $S_{0}$ is the unbiased esti-
mator

$\zeta_{0}=S_{0}/l/_{0)}$ (4)

and that it is improved upon uniformly by a Stein-type shrinkage estimator when
$k=1$ . (See Brow $\mathrm{n}$ (1968) and Brewster and Zidek (1974).)

In Section 2, we first construct a wide class of estimators of $\sigma^{2}$ , which uniformly
improve upon the positive multiples of $S_{0}$ under the entropy loss (3). Further,
under the squared error loss (1), we construct a class of improved estimators of
$\sigma^{2}$ , which gives a generalization of the result (2).

These results are applied to the estimation problem of order restricted norm al
variances. Let $X_{ij}$ be the j-th observation from the i-th population and be mu-
tually independently distributed as $N(\mu_{i)}\sigma_{i}^{2})$ , $\mathrm{i}=1,2$ , $\cdots$ , $k$ , $j=1$ , 2, $\cdots$ , $n_{i}$ ,
where $\mu_{\iota}$ ’s are unknown. Let us define $V_{i}= \sum_{j=1}^{n_{i}}(X_{ij}-\overline{X}_{i})^{2}$ , then $V_{i}’ \mathrm{s}$ are mu-
tually independently distributed as $\sigma_{i}^{2}\chi_{\nu_{i}}^{2}$ , where $l\nearrow i=n_{i}-1$ . Assume that it is
known that

(A. 1) $\sigma_{1}^{2}$ is the smallest among $\sigma_{i}^{2}$ , $\mathrm{i}=1,2$ , $\cdots$
)

$k$ .

When we estimate $\sigma_{1}^{2}$ assum ing the simple order restriction $\sigma_{1}^{2}\leq\cdots\leq\sigma_{k}^{2}$ , the
isotonic regression estimator based on $V_{i}/\nu_{i}$ with weights $lJ_{i}$ is given by

$\tilde{\sigma}_{1}^{2}so=\min_{1\leq j\leq k}[(\mathrm{I}^{\nu_{l}(V_{l}/\nu_{l}))/(\sum_{l=1}^{j}\nu_{l})]}\cdot$ (5)
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Hwang and Peddada (1994) showed that when it is know $\mathrm{n}$ that (A. 1), $\tilde{\sigma}_{1}^{2}$

so
uni-

formly improves upon $V_{1}/\nu_{1}$ under the loss function $L(\sigma_{1}^{2}, \mathrm{a}_{1}^{2}\wedge)=\rho(|\hat{\sigma}_{1}^{2}-\sigma_{1}^{2}|))$

where $\rho(\cdot)$ is an arbitrary nondecreasing function. (Regarding this loss, see Hwang
(i985).)

In Section 3, for the case when it is known that (A. 1), we first construct a class
of estimators based on $V_{i}$

)
$\mathrm{s}$ which uniformly improve upon usual estimators of $\sigma_{1}^{2}$

including the unbiased estimator the unrestricted maximum likelihood estim ator
and the best scale and translation equivariant estimator. They are considered
und er entropy loss and under squared error loss. Our improved estimator is con-
sidered as isotonic regression estimator under dummy simple order restriction.
$\mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}_{)}$ we mention that the results can be applied to the estimation of each
variance under various order restrictions. Finally, we show that our improved es-
timator can be further improved upon uniformly by an estimator using not only
$V^{)},\mathrm{s}$ but also $\overline{X}_{\uparrow}’ \mathrm{s}$ .

2. A class of improved estimators of variance
Let $S_{0}$ and $S_{i_{2}}\mathrm{i}=1,2_{7}\cdots$ , $k$ be random variables distributed as stated in the

Introduction. We construct a class of estimators of $\sigma^{2}$ improving upon the positive
multiple of $S_{0}$ directly under the entropy loss (3) and also under the squared error
loss (1),

2.1 Improved estimators under entropy loss

To give a class of improved estimators under entropy loss, we first show Theorem
2.1 using the following Lemma, which was given in Shinozaki (1995).

Lemma 2.1. For $0\leq v<1$ ,

$\log(1-v)\geq-v-\frac{v^{2}}{6}-\frac{v^{2}}{3(1-v)}$ .

Theorem 2.1. For $1\leq j\leq k$ , let $\phi_{J}$ : $\mathbb{R}^{j}arrow \mathbb{R}^{1}$ be positive real valued function
of

$\gamma_{j}=(\frac{S_{0}}{S_{0}+S_{1}}$ , $\frac{S_{0}+S_{1}}{S_{0}+S_{1}+S_{2}}$ , $\cdots$ , $\frac{\sum_{i=0}^{j-1}S_{i}}{\sum_{i=0}^{j}S_{i}}$ ),
and let $a_{j} \geq 1/(\sum_{i=0}^{j}\nu_{i})$ . When we estimate $\sigma^{2}$ under entropy loss,
$\min\{\phi_{7}(\gamma_{j}), a_{j}\}\sum_{i=0}^{j}$ Si uniformly improves upon $\phi_{j}(\gamma j)\sum_{i=0}^{j}S_{i}$ if $\phi j(\gamma j)>aj$

with positive probability



$\epsilon$ a

Proof. Let us denote $\tilde{\sigma}^{2}=\phi_{j}(\gamma_{j})\sum_{i=0}^{j}S_{i}$ and $\hat{\sigma}^{2}=\min\{\phi_{j}(\gamma_{j}))a_{j}\}\sum_{i=0}^{j}S_{i}$ .
Noting that $\hat{\sigma}^{2}$ can be expressed as

$\hat{\sigma}^{2}=(\sum_{i=0}^{j}S_{f})\phi_{j}(\gamma_{\mathrm{i}})-(\sum_{i=0}^{j}S_{i})(\phi_{j}(\gamma_{j})-a_{j})I_{\phi_{j}(\gamma_{j})\geq a_{j}}$ , (6)

where $I_{C}$ denotes the indicator function of the set satisfying the condition $C$ , we
have the loss difference of $\tilde{\sigma}^{2}$ and $\hat{\sigma}^{2}$ as

$L_{2}(\sigma^{2},\tilde{\sigma}^{2})-L_{2}(\sigma^{2},\hat{\sigma}^{2})$

$=( \frac{\sum_{i=0}^{j}S_{i}}{\sigma^{2}})(\phi_{j(-/j})-a_{j})I_{\phi,(\gamma_{j})\geq a_{j}}+\log\{1-(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})I_{\phi_{j}(\gamma_{I})\geq\alpha_{j}}\}$ . (7)

Noting that $0\leq\{1-a_{j}/\phi_{j_{\backslash }}^{(}\gamma_{j})\}I_{\phi_{j}(\gamma_{j})\geq a_{j}}<1$ and using Lem ma $2.1\rangle$ we evaluate
the second term on the right-hand side of (7) as

$\log\{1-(1-\frac{a_{j}}{\phi_{J}(\gamma_{j})})I_{\phi_{j}(\gamma_{\mathrm{j}})\geq a_{j}}\}$

$\geq-(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})I_{\phi_{j}(\gamma_{j})\geq a_{j}}-\frac{1}{6}(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})^{2}I_{\phi_{j}(\gamma_{j})\geq a_{j}}$

$- \frac{1}{3}\frac{(1-\frac{a\mathrm{j}}{\phi_{j}(\gamma_{J}\}})^{2}I_{\phi_{j}(\gamma,)\geq a_{j}}}{1-(1-\frac{a}{\phi_{j}(}L)\gamma_{j}\overline{)}I_{\phi_{j}(\gamma_{j})\geq a_{j}}}$

$=(1- \frac{a_{j}}{\phi_{j}(\gamma_{j})})\frac{\phi_{j}(\gamma_{j})}{a_{j}}\{\frac{1}{6}(\frac{a_{j}}{\phi_{j}(\gamma_{j})})^{2}-\frac{5}{6}\frac{a_{j}}{\phi_{j}(\gamma_{j})}-\frac{1}{3}\}I_{\phi_{j}(\gamma)\geq a_{j}}j$ , (S)

where the last equality is by

$\frac{(1-\overline{\phi_{j}}-a(S)^{2}\gamma_{\mathit{3}}\overline{)}I_{\phi_{f}(\gamma_{J})\geq\alpha_{j}}}{1-(1-\frac{aj}{\phi_{j}(\gamma_{j})})I_{\phi_{\dot{f}}(\gamma_{j})\geq a_{j}}}=\frac{\phi_{j}(\gamma_{j})}{a_{j}}(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})^{2}I_{\phi_{j}(\gamma_{j})\geq a_{j}}$ . (9)

To evaluate the expectation of (7), we introduce auxiliary random variables $K_{x}$ , $?$

.
$=$

$1,$ $\cdots,j$ distributed independently as Poisson distribution with mean $\lambda_{i}$ such that
$K_{i}$ is independent of $S_{0}$ , and $S_{i}$ given $K_{i}$ is distributed as $\sigma^{2}\chi_{\nu_{i}+2K_{i}}^{2}$ , Note that

given $K=$ $(K_{1}, \cdots, K_{j})_{?}\sum_{i=0}^{j}S_{i}$ and $\gamma_{j}$ are mutually independent and that
$\sum_{i=0}^{j}S_{i}$ given $I\zeta$ is distributed as $\sigma^{2}\chi_{\iota’ 0+\Sigma_{i=1}^{j}(\nu_{i}+2K_{i})}^{2}$ . Thus we evaluate the expec-
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tation of the first term on the right-hand side of (7) given $K$ as

$E\ovalbox{\tt\small REJECT}$ $( \frac{\sum_{i=0}^{j}S_{i}}{\sigma^{2}})(\phi_{j}(\gamma_{j})-a_{j})I_{\phi_{j}(\gamma_{j})\geq a_{j}}|K\ovalbox{\tt\small REJECT}$

$=a_{j} \{\nu_{0}+\sum_{i=1}^{j}(\nu_{i}+2K_{i})\}E[(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})\frac{\phi_{j}(\gamma_{j})}{a_{j}}I_{\phi_{j}(\gamma_{j})\geq a_{J}}|K]$

$\geq E[(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})\frac{\phi_{j}(\gamma_{j})}{a_{J}}I_{\phi_{j}(\gamma)\geq a_{j}}|jK]$ , (10)

where we have the last inequality from $a_{j} \geq 1/(\sum_{\iota}^{j},=0\nu_{\iota})$ . Using (8) and (10), we
see that the expectation of (7) given $K$ is not smaller than

$\frac{1}{6}E\ovalbox{\tt\small REJECT}\frac{\phi_{j}(\gamma_{j})}{a_{j}}(1-\frac{a_{J}}{\phi_{j}(\gamma_{j})})\{(\frac{a_{j}}{\phi_{j}(\gamma_{j})})^{2}-5\frac{a_{j}}{\phi_{j}(\gamma_{j})}+4\}I_{\phi_{j}(\gamma_{\mathrm{j}})\geq a_{j}}|K\ovalbox{\tt\small REJECT}$

$= \frac{1}{6}E\ovalbox{\tt\small REJECT}\frac{\phi_{j}(\gamma_{j})}{a_{j}}(1-\frac{a_{j}}{\phi_{j}(\gamma_{j})})^{2}(4-\frac{a_{j}}{\phi_{j}(\gamma_{j})})I_{\phi_{j}(\gamma_{j})\geq a_{j}}|I\mathrm{f}||$ , (11)

which is clearly positive since $\phi_{j}(\gamma_{j})>a_{j}$ with positive probability. Taking the
expectation of (11) over $K$ , we see that the risk of $\hat{\sigma}^{2}$ is smaller than that of $\tilde{\sigma}^{2}$

and this completes the proof. $\square$

Based on Theorem 2.1, we construct a class of estimators improving upon
estim ators of the form

$\eta_{0}=a_{0}S_{0}$ , (12)

where $a_{0}$ is a positive constant. The estimator $\zeta_{0}$ is clearly of the form (12).
Though an estimator improving upon the best positive multiple $\zeta_{0}$ , uniformly im-
proves upon $\eta_{0)}$ we are also interested in constructing a class of estimators improves
ing upon $\eta_{0}$ directly. We first note that $\eta_{0}$ can be written as $\eta_{0}=\phi_{1}(\gamma_{1})(S_{0}+S_{1}))$

where $\phi_{1}(\gamma_{1})=a_{0}\gamma_{1}$ and $\gamma_{1}=S_{0}/(S_{0}+S_{1})$ . Let

$\eta_{j}=\phi_{j+1}(\gamma_{\dot{\gamma}+1})\sum_{i=0}^{j+1}S_{i}$ , (13)

with

$\phi_{j+1}(\gamma_{j+1})=\min\{\phi_{j\prime}(\gamma_{j}), a_{j}\}(\frac{\sum_{i_{-}^{-}0}^{j}S_{i}}{\sum_{i=0}^{j+1}S_{i}})$ (14)

for $j=1,2$ , $\cdots$ , $k-1$ and let

$\eta_{k}=\min\{\phi_{k}(\gamma_{k}), a_{k}\}\sum_{i=0}^{k}S_{i}$ . (15)
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(Note that the right-hand side of (14) is a function of $\gamma_{j+1}.$ ) Then $\eta_{j-1}$ and $\eta_{j}$

can be expressed as $\phi_{j}(\gamma_{j})\sum_{i=0}^{j}S_{i}$ and $\min\{\phi_{j}(\gamma_{j\prime}), a_{j}\}$ $\sum_{i=0}^{j}S_{i}$ , respectively. Thus
from Theorem 2.1 we see that $\eta_{J}$ uniformly improves upon $\eta_{j-1}$ if $a_{j} \geq 1/(\sum_{i=0}^{j}\iota/_{i})$

and $a_{i-1}>a_{j}$ , $\mathrm{i}=1$ , $\cdots$ , $j$ . Using (12), (13), (14) and (15) inductively, we see that
$\eta_{j}$ is also expressed as $\min_{0\leq l\leq j}[a_{l}(\sum_{i=0}^{l}S_{i})]$ , and we have the following Theorem.

Theorem 2.2. Let $a_{0}>$ 1, $(\nu_{0}+u_{1})$ and let $\eta_{j}=\min_{0\leq l\leq j}[a_{l}(\sum_{i=0}^{l}S_{\dot{f}})],$ j $=$

$0_{\mathrm{I}}$ 1, \cdots , k. Under entropy loss,

$\eta_{0}\prec$ Tlr $\prec\cdots\prec\eta_{k}$ , (16)

if $a_{j} \geq 1/(\sum_{i=0}^{j}\nu_{i})$ and $a_{j-1}>a_{j}$ , $j=1,2$ , $\cdots$ , $k$ .

Prom Theorem 2.2, we see that $\eta_{j)}j=1,2$ , $\cdots$

}
$k$ constitute a class of esti-

mators which uniformly improve upon $\eta_{0}$ . We should remark that this class is
determ ined by $a_{j}$ , $j=1$ , $\cdots$ , $k$ .

Remark 2.1. For fixed $a_{0}$ , we can choose specific values of $\mathrm{a}\mathrm{i}$ , $\cdots$ , $a_{k}$ satisfying
the condition given in Theorem 2.2. One such choice is $a_{j}=1/( \sum_{i=0}^{j}l/_{i})$ , $j=$
$1$ , $\cdots$ , $k$ for $a_{0}=1/\nu_{0}$ and under entropy loss we have

$\zeta_{0}\prec\zeta_{1}\prec\cdot$ . . $\prec\zeta_{k\}}$ (17)

where $\zeta_{0}$ is as defined by (4) and

$\zeta_{j}=\min_{0\leq l\leq j}[(\sum_{i=0}^{l}S_{i})/(\sum_{i=0}^{l}\nu_{i})]$ , $j=1,2$ , $\cdots$ , $k$ . (18)

Note that $\zeta_{0}$ is the best estimator of the form (12) under entropy loss as well as
the unbiased estimator.

2.2 Improved estimators under squared error loss

Here, under the squared error loss (1), we give a class of improved estimators
of $\sigma^{2}$ , which are slight modifications of the estimators given by Gelfand and Dey
(1988), They are given in the following Theorem, whose proof is similar to that
of Theorem 1 in Gelfand and Dey (1988) and is omitted here,

Theorem 2.3. Let $a_{0}>1/(\nu_{0}+l/_{1}+2)$ and let $\eta j=\mathrm{m}\mathrm{i}\mathrm{n}0\leq l\leq j[a\iota(\sum_{i=0}^{l}S_{\mathrm{q}})]$,
j $=0,$ 1, \cdots , k. Under squared error loss,

$\eta_{0}\prec\eta_{1}\prec\cdots\prec\eta_{k}$ , (19)
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if $a_{j} \geq 1/(\sum_{i=0}^{j}\nu_{i}+2)$ ancl $a_{j-1}>aj$ , $j=1,2$ , $\cdots$ , $k$ .

Remark 2.2. For fixed $a_{0}$ , we can choose specific values of $a_{1}$ , $\cdots$ , $a_{k}$ satisfying
the conditions given in Theorem 2.3. One such choice is (a) $aj=1/( \sum_{i=0}^{j}\iota/_{i}+2)$ ,
$i=1$ , $\cdots$ , $k$ for $a_{0}=1/(\nu_{0}+2)$ and we have (2) which is given by Gelfand and
Dey (1988). Another choice $\mathrm{i}^{\sigma}.j(\mathrm{b})aj=1/(\sum_{i=0}^{j}\nu_{i}))j=1_{7}\cdots$ , $k$ for $a_{0}=1/\nu 0$

and we have (17) under squa] ed error loss, which constitutes a class of improved
estimators over the unbiased estimator $S_{0}/\iota/_{0}$ . We note that Nagata (1989) has
given the estimator for the case when $k=1$ essentially.

3. An application to the estimation problem of
ordered variances

In this section, under entropy loss and under squared error loss, we discuss the
estimation of order restricted normal variances. Let $X_{ij}$ , $\mathrm{i}=1$ , 2, $\cdots$ , $k$ , $j=$

$1,2$ , $\cdots$ , $n_{i}$ be the j-th observation of the 2-th population and be mutually in-
dependently distributed as $N(\mu_{i}, \sigma_{i}^{2})$ , where $\mu_{i}’ \mathrm{s}$ are unknown. Let us define
$V_{\mathrm{i}}= \sum_{\mathrm{i}=1}^{n_{l}}(X_{ij}-\overline{X}_{i})^{2}$ , then $V_{\mathrm{i}}’ \mathrm{s}$ are mutually independently distributed as $\sigma_{\iota}^{2}\chi_{\iota_{i}}^{2},$

)

where $\nu_{f}=n_{i}-1$ . Assume that it is known that (A. $\mathrm{I}$ ).

3.1 Improved estimation of each variance
We first consider the $\mathrm{i}\mathrm{m}^{t}$ proved estim ation of $\sigma_{1}^{2}$ based on $V_{i}$ , $\mathrm{i}=1,2$ , $\cdot$ $\cdot$

, , $k$ .
Note that $V_{1}/(\nu_{1}+1)$ is the unrestricted maximum likelihood estimator and $V_{1}/\nu_{1}$

(or $V_{1}/(\nu_{1}+2)$ ) is the best scale and translation equivariant estimator under
entropy loss (or under squared error loss). In the following, we construct a class
of estimators, which uniform ly improve upon usual estimators of the form $cV_{1}$ .
The following well-known Lemma is a preliminary for our discussion.

Lemma 3.1. Let $V_{i}$ be distributed as $\sigma_{i}^{2}\chi_{\nu_{i}}^{2}$ , where $\sigma_{i}^{2}\geq\sigma:$ . Then there exists an
auxiliary random variable $U_{\dot{\mathrm{t}}}$ satisfying the following two conditions,

(a) $V_{\mathrm{i}}$ given $U_{i}$ is distributed as $\sigma_{1}^{2}\chi_{\nu_{i}}^{2}$ $(U_{i})$ .
(b) $U_{i}$ is distributed as $\tau_{i}^{2}/(2\sigma_{1}^{2})\chi_{\nu_{\dot{\mathrm{t}}}}^{2}$ , where $\tau_{i}^{2}=\sigma_{i}^{2}-\sigma_{1}^{2}$ .

Now based on the results of Theorems 2.2 and 2.3 and Lemma 3.1, we show
that the estimator

$\hat{\sigma}_{1}^{2^{S}}=\min_{1\leq_{J}\leq k}[(\sum_{l=1}^{J}V_{l})/(\sum_{l=1}^{j}w_{l})]$ (20)

uniformly improves upon $V_{1}/w_{1}$ if the weights $w_{i}$ , $\mathrm{i}=1$ , $\cdots$ , $k$ satisfy some con-
ditions, which we state in the following Theorem
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Theorem 3.1. Assume that it is known that $\sigma_{1}^{2}$ is the smallest among $\sigma_{i}^{2}$ ’s.
(i) Let $0<w_{1}<\iota/_{1}+\nu_{2}$ . Under entropy loss, the estimator $\hat{\sigma}_{1}^{2}s$ uniformly improves
upon $V_{1}/w_{1}$ if $w_{2}$ , $\cdots$ , $w_{k}$ satisfy $\sum_{l=1}^{j}w_{l}\leq\sum_{l=1}^{j}\nu_{l}$ and $w_{j}>0$ , $j=2$ , $\cdots$ , $k$ .

(ii) Let 0 $<w_{1}<\nu_{1}+\iota/_{2}+2$ . Under squared error loss, the estimator $\sigma 12^{S}$

uniformly improves upon $V_{1}/w_{1}$ if $w_{2}$ ,
$\cdots$ , $w_{k}$ satisfy $\sum_{l=1}^{j}w_{l}\leq\sum_{l=1}^{j}\nu_{l}+2$ and

$w_{j}>0$ , $j=2$ , $\cdots$ , $k$ .
Proof. We only deal with (i) since $\mathrm{k}\mathrm{i}\mathrm{i}$ ) can be proved similarly. From Lemma
3.1 we can imagine auxiliary independent random variables $U_{\dot{\mathrm{t}}}$ , $i=2$ , $\cdots$

)
$k$ such

that $V_{1}$ and $V_{i}$ , $\mathrm{i}=2$ , $\cdots$ , $k$ given $C_{i}^{\cdot}$ , $\mathrm{i}=2$ , $\cdots$ , $k$. are mutually independently
distributed as $\sigma$: $\chi_{\nu_{1}}^{2}$ and $\sigma_{1}^{2}\chi_{\nu_{i}}^{2}(U_{i})$ , $\mathrm{i}=2$ , $\cdots$ , $k$ respectively. Given $U_{i_{2}}i=$

$2$ , $\cdots$ , $k_{\dagger}$ by applying Theorem 2.2 with $S_{i}=V_{i+1}$ , $\mathrm{i}=0,1$ , $\cdots$ , $k-1$ , $\nu_{i}=$

$\mathrm{t}/_{i+1)}\mathrm{i}=0,1$ , $\cdots$ , $k-1$ , $\lambda_{i}=U_{i+1}$ , $\mathrm{i}=1,2,$ $\cdots$ , $k-1$ and $a_{i}=1/( \sum_{l=1}^{i+1}w_{l}),\dot{\mathrm{z}}=$

$0$ , 1, $\cdots$ , $k-1$ , we have $\eta_{0}\prec\eta_{k-1}$ , which is equivalent to

$E[L_{1}(\sigma_{1}^{2},\hat{\sigma}_{1}^{2^{S}})|U_{2}, \cdots, lJ_{k}]<E[L_{1}(\sigma_{1}^{2}, V_{1}/w_{1})|U_{2}, \cdots, U_{k}]$ . (21)

Taking the expectation on both sides of (21) over $U_{2}$ , $\cdots$ , $U_{k}$ , we see that (i) is
true and this completes the proof. $\square$

$($

Note. We should mention that (ii) of Theorem 3.1 gives a generalization of
Theorem 2 in Gelfand and Dey (1988) who also utilized our Lemma 3.1 in their
proof.

Remark 3.1 For fixed $w_{1}$ , we can choose specific values of weights $w_{2}$ , $\cdots$ , $w_{k}$

satisfying the conditions given in Theorem 3.1 and we have estimators improving
upon the unrestricted maximum likelihood estimator, the unbiased estimator and
the best scale and translation equivariant estimator. For example: (a) If we
choose $w_{i}=\nu_{7}$ , $\mathrm{i}=2$ , $\cdots$ , A for $w_{1}=\nu_{1}$ in (i), we see that under entropy loss the
estimator (5) uniformly improves upon the best scale and translation equivariant
estimator $V_{1}/\nu_{1}$ . (b) If we choose $w_{i}=\iota r_{i}$ , $\mathrm{i}=2$ , $\cdots$ , $k$ for $w_{1}=\nu_{1}$ in (ii), we
see that the estimator (5) uniformly improves upon the unbiased estim ator $V_{1}/\nu_{1}$ ,

which is the result implied by Hwang and Peddada (1994) under squared error
loss, (c) If we choose W2 $=\nu_{2}-1$ and $w_{i}=\nu_{i}$ , $\mathrm{i}=3$ , $\cdots$ , $k$ for $w_{1}=\nu_{1}+1$

in (i) and (ii), we have an estimator improving upon the unrestricted maximum
likelihood estimator for both loss functions. (Note that in case of (c), we assume
that $\nu_{2}\geq 2.$ )

Remark 3.2. Since the estimator $\hat{\sigma}_{1}^{2^{S}}$ can be written as

$\hat{\sigma}_{1}^{2^{S}}=\min_{1\leq j\leq k}[\{\mathrm{I}^{w_{l}(V_{l}/w_{l})\}/(\sum_{l=1}^{j}w_{l})]},$ (22)
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it can be considered as the isotonic regression estimator of $\sigma_{1}^{2}$ based on $V_{i}/w_{i}$ with
weights $w_{\mathrm{i}}$ under the simple order restriction $\sigma_{1}^{2}\leq\cdots\leq\sigma_{k}^{2}$ . (See Robertson,

Wright and Dykstra (1988) or Barlow, Bartholomew, Bremner and Brunk (1972).
$)$ Note that this estimator is not the isotonic regression when it is known that
(A. 1), In this remark, without loss of generality, we assume that $\sigma_{i}^{2}\leq\sigma_{j}^{2}$ if
the ordering between $\sigma_{i}^{2}$ and $\sigma_{j}^{2},2\leq \mathrm{i}$ $<j\leq k$ is known. Then Theorem 3.1
implies the following about this estimator. The ordering between $\sigma_{2}^{2}$ , $\cdots$ , $\sigma_{k^{\wedge}}^{2}$ is
not completely known, so we guess it, while preserving the known ordering, and
construct dummy simple order restriction: $\sigma_{1}^{2}\leq\cdots\leq\sigma_{k}^{2}$ . Theorem 3.1 assures
that the isotonic regression estimator under this dummy simple order restriction
uniformly improves upon $V_{1}/w_{1}$ even if the guess is wrong. Note that $w_{i}$ ’s must
satisfy the conditions given in Theorem 3.1.

Theorem 3.1 can be applied to the estimation of each variance under various
types of order restrictions. Before proceeding any further, we introduce a picto-
tial notation of order restriction developed by Hwang and Peddada (1994). In
Fig 1, each graph $((\mathrm{a})-(\mathrm{d}))$ represents the corresponding order restriction. For
example Fig. 1 (a) corresponds to the simple order restriction $\sigma_{1}^{2}\leq 2\sigma_{2}^{2}\leq\sigma_{3}^{2}\leq\sigma_{4}^{2}$ .

Note that $\sigma_{i}^{2}$
’

$\mathrm{s}$ are denoted by solid circles. We omit writing $\sigma$ on the graphs
but only write the subscripts. If two circles are joined together by a line seg-
ment, it means that the circle with larger number is known to correspond to
the larger $\sigma^{2}$ . For example Fig. 1 (b) corresponds to the order restriction
$\sigma_{1}^{2}\leq\sigma_{2}^{2}$ , $\sigma_{3}^{2}\leq\sigma_{4}^{2}\leq\sigma_{5}^{2}$ , $\sigma_{6}^{2}\leq\sigma_{7}^{2}$ .

Now, we explain an improved estimation scheme. We should mention that
Hw ang and Peddada (1994) proposed similar procedure for estimating order re-
stricted location parameters of elliptically symmetric distributions. We first con-
sider the case when it is known which variance corresponds to the smallest vari-
ance ( $\mathrm{e}.\mathrm{g}$ . Fig 1 (a) and (b)). Without loss of generality, we assume that $\sigma_{1}^{2}$ is the
smallest variance. The estimation procedure is given as follows.

Step 1. Estimation of $\sigma_{1}^{2}$ From Theorem 3.1 and Remark 3.2, we can construct
an isotonic regression estimator of $\sigma_{1}^{2}$ which gives the uniform improvement over
$V_{1}/w_{1}$ if $w_{1}$ is not so large as shown in Theorem 3.1.

Step 2. Estimation of other variances. When we estimate $\sigma_{l}^{2}$ , we remove the
smallest number of circles from the graph so that $\sigma_{i}^{2}$ becomes the smallest variance
in the resulting subgraph $G_{i}$ . Then by Theorem $3.1_{\mathrm{I}}$ we can construct an isotonic
regression estimator of $\sigma_{l}^{2}$ based on the circles in $G_{i\}}$ which gives the uniform
improvement over $V_{i}/w_{i}$ if $w_{i}$ satisfies the condition implied by Theorem 31.

Example. When we consider the estimation of $\sigma_{3}^{2}$ in Fig 1 (b), we remove the
circles 1 and 2 so that $\sigma_{3}^{2}$ corresponds to the smallest variance in the resulting
subgraph Fig 1 (d). We guess the unknown ordering between $\sigma_{5}^{2}$ and $\sigma_{6}^{2}$ in the sub-
graph $G_{3}$ , and we have the dummy simple order restriction $\sigma_{3}^{2}\leq\sigma_{4}^{2}\leq\sigma_{5}^{2}\leq\sigma_{6}^{2}\leq$
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1234

(a) Graph corresponding to $\sigma_{1}^{2}\leq\sigma_{2}^{2}\leq\sigma_{3}^{2}\leq\sigma_{4}^{2}$ .

17

(b) Graph corresponding to $\sigma_{1}^{2}\leq\sigma_{2}^{2}$ , $\sigma_{3}^{2}\leq\sigma_{4}^{2}\leq\sigma_{5}^{2}$ , $\sigma_{6}^{2}\leq\sigma_{7}^{2}$ .

(c) Graph when it is not known which variance is the smallest.

3 7

(d) Subgraph $G_{3}$ of (b).

Fig. 1. Pictorial representation of order restriction
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$\sigma_{7}^{2}$ . Then under this dummy order restriction, we construct isotonic regression
estimator of $\sigma_{3}^{2}$ based on $V_{i}/w_{i},$ $\mathrm{i}=3,4$ , $\cdots$ , 7 with weights $w_{i}$ , $\mathrm{i}=3,4$ , $\cdots$ , 7,

that is $\hat{\sigma}_{3}^{2}s=\min_{3\leq j\leq k}[(\sum_{l=3}^{j}V_{l})/(\sum_{l=3}^{j}w_{l})])$ which gives the unifor $\mathrm{m}$ improve-
ment over $V_{3}/w_{3}$ if $w_{i}$ , $\mathrm{i}=3$ , $\cdots$

}
$7$ satisfy some conditions. As for the estimation

of $\sigma_{2}^{2}$ , $\sigma_{4}^{2}$ , $\sigma_{5}^{2}$ and $\sigma_{6)}^{2}$ we can discuss similarly. However, our procedure does not
work for the estimation of $\sigma_{7}^{2}$ , the largest variance.

When it is not known which variance corresponds to the smallest variance
(e.g. Fig 1 (c)), we can start with Step 2. We should notice here that though
our scheme gives improved estimators of each of order restricted variances, the
obtained estimates may violate the known order restriction unfortunately. To the
best of our knowledge, it is not well established when and how we can construct
such estimators which not only improve upon usual estimators but also preserve
the known order restriction.

3.2 Further improvement
Here, we show that our improved estimator given in Section 3.1 can be further

improved upon uniformly by an estimator which use not only $V_{i}’ \mathrm{s}$ but also $\overline{X}_{i}’ \mathrm{s}$ .
We give an estimator improving upon $\hat{\sigma}_{1}^{2^{S}}$ especially for the case when $k=2$
and $\sigma_{1}^{2}\leq\sigma_{2}^{2}$ is known. We can similarly discuss the estimation of each of order
restricted variances also for thhe case when $k\geq 3$ . Let $Q_{j}=n_{j}\overline{X}_{j}^{2},\dot{\mathrm{J}}$ $=1,2$ ,
then $Q_{j}’ \mathrm{s}$ are independently distributed as $\sigma_{j}^{2}\chi_{1}^{2}(\lambda_{j}))$ where $\lambda_{j}=n_{j}\mu_{J}^{2}/(2\sigma_{j}^{2})$ . We
can imagine random variables $Kj$ , $j=1,2$ distributed independently as Poisson
distributions with means Xj, $j=1,2$ such that given $K_{j}’ \mathrm{s}$ , $Qj7s$ are independently
distributed as $\sigma_{j}^{2}\chi_{1+2K_{j}}^{2}$ respectively. Further from Lemma 31 wc can imagine a
random variable $T_{2}$ such that $T_{2}$ given $K_{2}$ is distributed as $(\sigma_{2}^{2}-\sigma_{1}^{2})/(2\sigma_{1}^{2})\chi_{1+2K_{2}}^{2}$

and that $Q_{2}$ given $K_{2}$ and $T_{2}$ is distributed as $\sigma_{1}^{2}\chi_{1+2K_{2}}^{2}(T_{2})$ . Thus, together with
the proof of Theorem 3.1, we can imagine auxiliary random variables $U_{2}$ , $K_{1}$ , $K_{2}$

and $T_{2}$ such that $V_{1}$ , $V_{2}$ , $Q_{1}$ and $Q_{2}$ given them are independently distributed as
$\sigma_{1}^{2}\chi_{\nu_{1}}^{2})$ $\sigma_{1}^{2}\chi_{\nu_{2}}^{2}(U_{2})$ , $\sigma_{1}^{2}\chi_{1+2K_{1}}^{2}$ and $\sigma_{1}^{2}\chi_{1+2K_{2}}^{2}(T_{2})$ . Note that $\hat{\sigma}_{1}^{2}s$ is expressed as

$\min\{a_{1}V_{1}, a_{2}(V_{1}+V_{2})\}$ , (23)

where $a_{\underline{1}}$ and $a_{2}$ are given constants. Also note that when we consider the estima-
then of $\sigma^{2}$ under entropy loss (or squared error loss), $a_{1}$ and $a_{2}$ must satisfy the
condition $a_{1}>a_{2}\geq 1/(\nu_{1}+l/_{2})$ (or $a_{1}>a_{2}\geq 1/(lJ1+\iota\prime_{2}+2)$ ). Similarly with the

proof of Theorem 3.1, we see that $\hat{\sigma}_{1}^{2^{S}}$ is improved upon uniformly by

$\min\{a_{1}V_{1}, a_{2}(V_{1}+V_{2}), a_{3}(V_{1}+V_{2}+Q_{1}), a_{4}(V_{1}+V_{2}+Q_{1}+Q_{2})\}$ (24)

if $a_{j}\geq 1/(\nu_{1}+l/_{2}+j-2)$ and $a_{j-1}>a_{\mathrm{i}}$ , $j=3,4$ (or if $a_{j}\geq 1/(\nu_{1}+\nu_{2}+j)$ and
$a_{g-1}>a_{j)}j=3,4)$ under entropy loss (or under squared error loss)
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We should mention that we can construct an estimator $\mathrm{i}$ mproving upon $a_{1}V_{1}$

by using Vi, $V_{2}$ , $Q_{1}$ and $Q_{2}$ regardless of the pooling order of $V_{2}$ , $Q_{1}$ and $Q_{2}$ . For
example

$\mathrm{J}$

rrnn{ $a_{1}V_{1},$ $b_{2}(V_{1}+\mathrm{Q}2),$ $b_{3}$ ( $V_{1}+Q_{1}+\mathrm{V}2$ , a $\{\mathrm{V}\mathrm{i}+Q_{1}+V_{2}+Q_{2}$ ) $\}$ (25)

and

$\min$ { $\mathrm{a}\{\mathrm{V}\mathrm{i} c_{2}(V_{1}+Q_{2}), \mathrm{c}_{3}(V_{1}+Q_{2}+Q_{\mathrm{J}} ), c_{4}(V_{1}+Q_{2}+Q_{1}+V_{2})\}$ (26)

uniformly improve upon $\mathrm{a}\mathrm{i}$ Vi if $a_{1}$ , $b_{j}$ , $j=2,3,4$ and $c_{j}$ , $j=2,3$ , 4 satisfy some
conditions which will be apparent from Theorems 2.2 and 2.3.
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