
Title The NP-completeness of EULERIAN RECURRENT
LENGTH (Algebra, Languages and Computation)

Author(s) Jimbo, Shuji; Oshie, Yasuaki; Hashiguchi, Kosaburo

Citation 数理解析研究所講究録 (2005), 1437: 107-115

Issue Date 2005-06

URL http://hdl.handle.net/2433/47477

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39182134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


107

The NP-completeness of EULERIAN RECURRENT
LENGTH

Shuji Jimbo* Yasuaki Oshie
Kosaburo Hashiguchi

Faculty of Engineering, Okayama University

February 22, 2005

Abstract

It is shown that it is $\mathrm{N}\mathrm{P}$-complete to determine the maximum length of the
shortest cycles in Eulerian trails of an arbitrary Eulerian graph. By the authors,

the maximum length of the shortest cycles in Eulerian trails of an Euterian graph
is referred to as Eulerian recurrent length of the Eulerian graph, and the decision

problem above is named EULERIAN RECURRENT LENGTH.

Keywords: $\mathrm{N}\mathrm{P}$-complete, Eulerian graphs, cycles, path decompositions.

1 Introduction
Computations to find a parameter of an Eulerian trail of a Eulerian graph are discussed.
We begin to define several technical terms in graph theory. A trail of a graph is a walk in

which all the edges are distinct. An Eulerian trail of a graph is a closed trail containing

all the edges of the graph. A connected graph is Eulerian if there exists an Eulerian

trail of the graph. It is well known that a connected graph $G$ is Eulerian if and only

if the degree of each vertex of $G$ is even. Hence, it is very easy to determine whether
an arbitrary graph has an Eulerian trail or not. The Eulerian recurrent length of an
Eulerian graph is the maximum length of a shortest cycle in an Eulerian trail of the

Eulerian graph. More precisely, letting $l(c)$ denote the length of walk $c$ , $C(t)$ the set
of all cycles in walk $t$ , and $E(G)$ the set of all Eulerian trails in graph $G$ , the Eulerian
recurrent length of a graph $G$ is defined to be $\max_{\ell\in E(G)}\min_{c\in C(t)}l(c)$ . The terminology

of graph theory given in [5] is chiefly used in this paper.
We define the following decision problem referred to as EULERIAN RECUR-

RENT LENGTH, and shall prove that it is NP-complete.

$*\mathrm{E}$ trails $\mathrm{j}\mathrm{i}\mathrm{m}\mathrm{b}\mathrm{o}\emptyset \mathrm{k}\mathrm{i}\mathrm{s}\mathrm{o}$ . it . okayama-u . $\mathrm{a}\mathrm{c}$ . jP
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EULERIAN RECURRENT LENGTH
INSTANCE: A graph $G=(V, E)$ and a positive integer $J\leqq|V|$ .
QUESTION: Is there an Eulerian trail $T$ of $G$ such that the length of every
cycle in $T$ is greater than or equal to $J$?

The terminology of the theory of $\mathrm{N}\mathrm{P}$-completeness given in [2] is chiefly used in this
paper.

The $\mathrm{N}\mathrm{P}$-completeness of EULERIAN RECURRENT LENGTH implies the intractabil-
ity of determining whether an arbitrary graph has an Eulerian trail that have no cycle of
length less than a given lower limit or not. It is clear that EULERIAN RECURRENT
LENGTH is in the class $\mathrm{N}\mathrm{P}$. To prove that the problem is $\mathrm{N}\mathrm{P}$-complete it suffices to
exhibit a polynomial reduction from the known $\mathrm{N}\mathrm{P}$-complete problem $3\mathrm{S}\mathrm{A}\mathrm{T}$ . The follow-
ing definition of problem $3\mathrm{S}\mathrm{A}\mathrm{T}$ is quoted from [3]. A set of clauses $C=\{C_{1}, C_{2}, \ldots, C_{r}\}$

in variables $\mathrm{u}\mathrm{i}$ , $u_{2}$ , . . . ’ $u_{s}$ is given, each clause $C_{i}$ consisting of three literals $l_{i,1}$ , $l_{i,2}$ , $l_{i,3}$ ,
where a literal $l_{\iota,j}$ is either a variable $u_{k}$ or its negation $\overline{u_{k}}$. The problem is to determine
whether $C$ is satisfiable, that is, whether there is a truth assignment to the variables
which simultaneously satisfies all the clauses in $C$ . A clause is satisfied if one or more
of its literals have value $\mathrm{t}$‘true”.

2 Definitions and a fundamental lemma
A path is a trail whose vertices are distinct, except that, possibly, the initial vertex is
equal to the final one. If the initial and final vertices of a path are distinct, then the
path is referred to as $\mathrm{a}\mathfrak{l}$ non-closed path. Let $k$ be a positive integer, and $G$ a graph that
has $2k$ vertices, say $v_{1}$ , $v_{2}$ , $\ldots$ , $v_{2k}$ , of odd degree. Since $G$ is obtained from an Eulerian
graph by deleting $k$ edges such that no two of them share a common vertex, thhe edge
family of $G$ can be divided into $k$ edge disjoint non-closed trails. The $k$ trails may be
$k$ paths. For example, if $G$ is the graph obtained from the complete graph $K_{2k+1}$ by
deleting such $k$ edges, then the edge family of $G$ can be divided into $k$ edge disjoint
non-closed paths, each of which is from one vertex incident with a deleted edge to the
other one.

For a non-closed trail $T$ of a graph, $I(T)$ and $F(T)$ denote the initial and final
vertices of $T$ , respectively.

Definition 1 Let $k$ be a positive integer, and $G$ a graph that has $2k$ vertices, say
$v_{1}$ , $v_{2}$ , $\ldots$ , $v_{2k}$ , of odd degree. A set of $k$ non-closed trails $\mathcal{T}=\{T_{1}, T_{2}, \ldots, T_{k}\}$ in $G$ is
a trail decomposition of $G$ if every edge of $G$ belongs to exactly one trail in $\mathcal{T}$ . A trail
decomposition of a graph is a path decomposition of the graph if every trail in the trail
decomposition is a path.

For a trail decomposition $\mathcal{T}=$ {$71,$ $T_{2}$ , $\ldots$ Tk} of $G$ , IF(T) denotes

$\{\{I(T_{1}), F(T_{1})\}, \{I(T_{2}), F(T_{2})\}, \ldots , \{I(T_{k}), F(T_{k})\}\}$ ,

that is to say the family of $k$ sets each of which consists of the initial and final vertices
of a trail in T. For a path decomposition $\mathcal{P}$ of $G_{J}\mathcal{F}=$ IF(V) is referred to as an
initial-final family associated with P. If we need not specify the path decomposition $\mathcal{P}$ ,
then we refer to $\mathcal{F}$ sirnply as an initial-final family of $G$ .
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For a finite set $S$ , $|S|$ denotes the number of the elements belonging to $S$ .

Lemma 1 For any positive integer k $\geqq 2$ , there exists a graph $H(k)=(V_{k}, E_{k})$ such
that

1. $H(k)$ has exactly 2k vertices $v_{0}(k)$ , $\mathrm{H}(\mathrm{k})$ , $\ldots)v_{2k-1}(k)$ of degree 1,

2, $|V_{k}|=4k^{2}-4k+1$ and $|E_{k}|=\mathrm{S}k^{2}$ -10&,

3. for any trail decomposition $\mathcal{T}$ of $H(k)_{r}$ if $\mathcal{T}$ includes a cycle, then $\mathcal{T}$ includes $a$

cycle of length less than or equal to $\mathrm{S}k$ - 13,

4. all of the initial-final families of G are
$\{\{v_{0}(k), v_{1}(k)\}, \{v_{2}(k),v_{3}(k)\}, \ldots , \{v_{2k-2}(k), v_{2k-1}(k)\}\}$ and
$\{\{v_{0}(k), v_{2k-1}(k)\}, \{v_{2}(k), v_{1}(k)\}, \ldots, \{v_{2k-2}(k), v_{2k-3}(k)\}\}_{f}$

5. for any path decomposition $\mathcal{P}$ of $G_{f}$ all of the paths in $\mathcal{P}$ share a common vertex
$w_{f}$ and, for every initial or final vertex in a path $P$ in $\mathcal{P}$ , the length of the section
between $w$ and the vertex on the path is $4\mathrm{k}$ - 5 and,

6, for any path decomposition 7’ of $G_{t}$ all of the paths in $\mathcal{P}$ are of the same length
$\mathrm{S}k$ - 10,

Proof We shall configure the vertex-set of $H(k)$ as a set of points on a plane. Let
$r_{0}$ , $r_{1}$ , $\ldots$ , $r_{2k-1}$ be $2k$ distinct half-lines with the common origin $0$ . For each $\mathrm{i}\in$

$\{0,1, \ldots, 2k-1\}$ , and for every positive integer $d$ , let $r_{i}(d)$ denote the point $z$ on $r_{i}$ such
that the distance between $0$ and $z$ is $d$ . Let $S$ denote the set of pairs of two non-negative
integers {( $x$ , $y$ ) $|x\in \mathbb{Z}$ , $y\in \mathbb{Z}$ , $0\leqq x$ , $0\leqq y$ , and $y-2k+1<x<y-1<2k-1$ }.
The vertex-set $V_{k}$ is defined to be $\{r_{x}(x+y)|(x, y)\in S\}\cup\{r_{y}(x+y)|(x, y)\in$

$S\}\cup\{r_{i}(4k)|\mathrm{i}\in\{0,1, \ldots, 2k-1\}\}\cup\{\mathit{0}\}$ . For $\mathrm{i}\in\{0,1, \ldots, 2k-1\}$ , and for non-negative
integer $d$ with $d<4k,\hat{r}_{i}(d)$ denote $r_{i}(\delta)\in V_{k}$ such that $d<\delta$ and, for any integer $x$ with
$d<x<\delta$ , $ri(d)\not\in V_{k}$ . The edge-set $E_{k}$ is defined to be $\{\mathit{0}\hat{r}\mathrm{c}(0), \mathit{0}\hat{r}_{1}(0), \ldots, \mathit{0}\hat{r}_{2k-1}(0)\}\cup$

$\bigcup_{(x,y})\in S\{\hat{r}_{x}(x+y)r_{y}(x+y), r_{x}(x+y)\hat{r}_{y}(x+y), r_{x}(x+y)r_{y}(x+y), r_{x}(x+y)r_{y}(x+y)\}$ , there
symbol $\cup$ denotes multi-set union operation, and hence the arguments are multi-sets.

Statements (1) and (2) follow immediately from the construction of $H(k)$ above.

Statements (3), (4), (5), and (6) are shown as follows.
Let $v=r_{x}(x+y)$ , $v’=\hat{r}_{x}(x+y)$ , $w=r_{y}\ell(x+y)$ , and $w’=\hat{r}_{y}(x+y)$ be vertices

of $H(k)$ . Notice that each of $x<y$ and $x>y$ may hold. Let $v’$ denote the vertex

of $H(k)$ such that $v”v\in E_{k}$ , $v’\neq w$ , and $v$
” 7 $w’$ , and $w$

” the vertex of $H(k)$ such

that $w’w\in E_{k}$ , $w’\neq v$ , and $w$
” 7 $v’$ . If a trail decomposition of $H(k)$ contains a

trail that includes the sub-trail $v’arrow warrow w”$ , then the decomposition must contain a

trail that includes the cycle $varrow warrow \mathrm{u}$ . Hence, if any trail in a trail decomposition

of $G$ has no cycles of length 2, then the subgraph of $H(k)$ induced by the six vertices
$\{v, v’, v", w, w’, w"\}$ is decomposed into two paths as either

1. $v’arrow warrow varrow v’$ and $w’arrow varrow warrow w’$ , or

2. $v’arrow warrow varrow w’$ and $v’arrow varrow warrow w”$ .



110

$v$

$v$

Figure 1: Two types of path decomposition.

Those types of decomposition are illustrated in Fig. 1.
If the latter decomposition occurs, then we choose such four vertices so that the

distance between $0$ and $v$ , which is equal to the one between $0$ and $w$ , is minimum. By
our choice, the trail that includes $v”arrow varrow warrow w$’ must contain a path that connects
$v$ and $0$ and one that connects $w$ and $0$ . Those paths and edge $vw$ compose a cycle of
length at most $\mathrm{S}k$ - $13=2\cdot 2(2k-4)$ $+3$ . Thus, if a trail decomposition $T$ has no
trail that includes a cycle of length less than or equal to Sk – 13, then every trail of
$T$ consists of two paths each of which connects an end-vertex of $H(k)$ and $0$ , and is of
length $4k-5=2(2k-3)+1$ . Furthermore, it is easy to see that, for every $(\mathrm{a}, y)\in S$,
the path that connects $r_{x}(4k)$ and $0$ and the one that connect $r_{y}(4k)$ and $0$ intersect at
$r_{x}(x+y)$ and $r_{y}(x+y)$ , composing a trail that includes a cycle of length less than or
equal to $\mathrm{S}k$ - 13. By renaming vertex $r_{i}(4k)Vi(k)$ for each $\mathrm{i}\in\{0,1, \ldots, 2k-1\}$ , and
vertex $ow$ , statements (3), (4), (5), and (6) follow immediately from those facts. $\blacksquare$

3 The components used in the reduction
We will provide a positive integer constant $\mu$ and, given an instance $C$ of the problem
$3\mathrm{S}\mathrm{A}\mathrm{T}$ , show how to construct a graph $G$ such that the Eulerian recurrent length of $G$

is greater than or equal to $\mu$ if and only if $C$ is satisfiable.
The graph $G$ will be put together from components which carry out specific tasks.

There are three types of component, satisfaction-testing components, variable-setting
components, and garbage-collecting components. Let $C=\mathrm{t}\mathrm{o},$ $C_{2}$ , $\ldots$ , $Cr$ } be a set of
$r$ clauses in variables $\mathrm{u}\mathrm{i}$ , $u_{2}$ , $\ldots$ , $u_{s}$ .

Every clause in $C$ is one-to-one corresponding to a satisfaction-testing component.
For each $\mathrm{i}\in\{1,2, \ldots, r\}$ , the satisfaction-testing component corresponding to $C_{i}$ is
denoted by $\Gamma_{C}(C_{i})$ , and is isomorphic to the graph that consists of three disjoint edges,
namely

$\Gamma_{C}(C_{i})$ $=$ $(\{a(\mathrm{i}, 1), b(\mathrm{i}_{\dot{J}}1), a(i, 2), b(\mathrm{i}, 2), a(\mathrm{i}, 3), b(\mathrm{i}, 3)\}$ ,
$\{b(\mathrm{i}.1)a(\mathrm{i}, 2), b(\mathrm{i}, 2)a(i, 3), b(\mathrm{i}, 3)a(\mathrm{i}, 1)\})$ .
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– Identlfication

$H_{\mathrm{i}- 1}$
$H_{\mathrm{i}}$

$H_{i+1}$ $H_{\mathrm{i}+2}$

Figure 2: Connection around $H_{i}$ .

Every variable in $C$ is one-to-one corresponding to a variable-setting component. For
each $j\in\{1,2, \ldots, s\}$ , the variable-setting component corresponding to $u_{j}$ is denoted
by $\Gamma_{C}(u_{j})$ , and is isomorphic to the graph $\triangle(m)$ defined below, where $m$ denotes the
number of clauses that includes variable $u_{k}$ or its negation $\overline{u_{k}}$ , or 3 if the number is less
than 3. The definition of the garbage-collecting component $\Gamma_{C}$ shall be stated in the
next section.

For an integer $x$ and a positive integer $y$ , $x$ mod $y$ denotes the unique integer $z$ in
$\{0, 1, \ldots, y-1\}$ such that x-z is a multiple of $y$ . Let $m$ be an integer greater than 2.
The $\triangle(m)$ is constructed as follows. Let Ho, $H_{1}$ , $\ldots$ , and $H_{2m-1}$ be $2m$ distinct graphs
isomorphic to $H(6)$ . For each $H_{i}$ and each $j\in\{0,1, \ldots, 11\}$ , $v_{j}^{i}$ denotes the vertex of
$H_{i}$ corresponding to vertex $v_{j}(6)$ of $H(6)$ .

Roughly speaking, $\triangle(m)$ is constructed by joining Ho, $H_{1}$ , . . ., and $H_{2m-1}$ in a ring.

Its precise definition is as follows. Graph $\triangle(m)$ is obtained from $H0$ , $H_{1}$ , $\ldots$ , $H_{2m-1}$ by

identifying each vertex in $6m$ end-vertices with another one as follows:

Identify $v_{3}^{i}$ with $v_{11}^{(i+1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ for each $\mathrm{i}\in\{0, 1, \ldots, 2m -1\}$ ,

identify $v_{4}^{i}$ with $v_{10}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ for $\mathrm{i}\in\{0,1, \ldots, 2m-1\}$ , and
identify $v_{5}^{i}$ with $v_{9}^{(i+3)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ for $\mathrm{i}\in\{0,1, \ldots, 2m-1\}$ .

Fig. 2 illustrates the connection around $H_{i}$ in $\triangle(m)$ .
By definition, the set of all the end-vertices of $\triangle(m)$ is $( \bigcup_{i=0}^{2m-1}\{v_{0}^{i}, v_{1}^{i}, v_{2}^{\mathrm{i}}\})\cup(\bigcup_{i=0}^{2m-1}\{v_{6}^{i}, v_{7}^{i}, v_{8}^{i}\})$ .

For a graph $G$ , $V(G)$ and $E(G)$ denote the vertex set and edge family of $G$ , respectively.

Lemma 2 Let m be an integer greater than 2. Then, the following statements hold,

1. Equations $|V(\triangle(m))|=236m$ and $|E(\triangle(m))|=456m$ hold.

2. For any trail decomposition $\mathcal{T}$ of $\triangle(m)_{r}$ if 7 includes a cycle, then $\mathcal{T}$ includes $a$

cycle of length less than or equal to 152
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3. All of the initial-final families of $\triangle(m)$ are

$S_{+}(m)$ $=$ $2m-1i=0\cup\{\{v_{0}^{i}, v_{1}^{\mathrm{i}}\}, \{v_{2}^{i}, v_{8}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}\}, \{v_{6}^{i}, v_{7}^{l}\}\}$ and

$S_{-}(m)$ $=$ $2m-1i=0\cup\{v_{1}^{i}, v_{2}^{i}\}$ , $\{\{v_{0}^{i}, v_{6}^{(?-2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}\}, \{v_{7}^{i}, v_{8}^{\mathrm{t}}\}\}$.

4. For any path decomposition $\mathcal{P}$ of $\triangle(m)$ such that IF(V) $=S_{+}(m)$ and any $\mathrm{i}\in$

$\{0,1, \ldots, 2m-1\}$ , every edge in the path in $\mathcal{P}$ that connects either $v_{0}^{i}$ and $v_{1}^{i}$ or
$v_{6}^{i}$ and $v_{7}^{i}$ belongs to $E(H_{i})$ , and every edge in the path in $\mathcal{P}$ that connects $v_{2}^{i}$ and
$v_{8}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ belongs to $Hi\cup H(i+1)\mathrm{m}\mathrm{o}\mathrm{d} 2m\cup H(i-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m\cup H(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m$ . For any path
decomposition $\mathcal{P}$ of $\triangle(m)$ such that IF(V ) $=S_{-}(m)$ and any $\mathrm{i}\in\{0,1, \ldots, 2m-1\}_{f}$

every edge in the path in $\mathcal{P}$ that connects either $v_{1}^{i}$ and $v_{2}^{i}$ or $v_{7}^{i}$ and $v_{8}^{i}$ belongs to
$E(H_{i})$ , and every edge in the path in $\mathcal{P}$ that connects $v_{0}^{1}$ and $v_{6}^{(i-2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ belongs
to $Hi\cup H(i-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m\cup H(\iota+1)\mathrm{m}\mathrm{o}\mathrm{d} 2m\cup H(i-2)\mathrm{m}\mathrm{o}\mathrm{d} 2m$.

5. For any path decomposition $\mathcal{P}$ of $\triangle(m)_{;}$ the length of a path in $\mathcal{P}$ that connects two
vertices in $\bigcup_{i=0}^{2m-1}\{v_{0}^{i}, v_{1}^{i}, v_{2}^{i}\}$ or two vertices in $\bigcup_{i=0}^{2m-1}\{v_{6}^{i}, v_{7}^{i}, v_{8}^{\mathrm{i}}\}$ is 38, and that of
a path in $\mathcal{P}$ that connects a vertex in $\bigcup_{i=0}^{2m-1}\{v_{0}^{i}, v_{1}^{i}, v_{2}^{i}\}$ and one in $\bigcup_{i=0}^{2m-1}\{v_{6}^{i}, v_{7}^{i}, v_{8}^{x}\}$

is 152.

Proof, Statement (1) follows immediately from the structure of $V(\triangle(m))$ .
Let $\mathcal{P}$ be a path decomposition of $\triangle(m)$ . For each $\mathrm{i}\in\{0, 1, \ldots, 2m-1\}$ , the

restriction of $\mathcal{P}$ to $H_{i}$ , say $\mathcal{P}_{i)}$ is a path decomposition of $H_{i}$ . We say that $\mathcal{P}_{i}$ is of the
positive type if $\mathrm{I}\mathrm{F}(\mathcal{P}_{i})=\{\{v_{0}^{i}, v_{1}^{i}\}, \{v_{2}^{i}, v_{3}^{i}\}, \ldots, \{v_{10}^{i}, v_{11}^{i}\}\}$, that $\prime \mathrm{p}_{i}$ is of the negative
type otherwise. Statement (2), (3), (4), and (5) follow from the fact that if there are
$7_{i}^{\supset}$ of the positive type and $\mathcal{P}_{j}$ of the negative type in $\mathcal{P}$ , then there is a path in $\prime \mathrm{p}$ that
includes a cycle of length less than or equal to 152.

For instance, assume that every $\prime \mathrm{p}_{i}$ is of the positive type. It is easy to see that, for
each $\mathrm{i}\in\{0,1, \ldots, 2m-1\}$ , $\{v_{0}^{i},v_{1}^{i}\}$ and $\{v_{6}^{\mathrm{i}}, v_{7}^{i}\}$ belong to $S_{+}(m)$ . Furthermore, it can
be shown that there is a path that connects $v_{2}^{i}$ and $v_{8}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ in $\mathcal{P}$ as follows. Since
$\mathcal{P}_{i}$ , $\mathcal{P}_{(i+1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ , $\mathcal{P}_{(i-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ , and $\mathcal{P}_{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ are all of the positive type, $\mathcal{P}_{i}$ includes a
path that connects $v_{2}^{i}$ and $v_{3}^{i}$ , $\mathcal{P}_{(i}[perp]_{1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ includes a path that connects $v_{11}^{(i+1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ and
$v_{10}^{(i+1)\mathrm{r}\mathrm{I}1\mathrm{o}\mathrm{d}2m},$

$\mathcal{P}_{(\mathrm{i}-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ includes a path that connects $v_{4}^{(i-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ and $v_{5}^{(i-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ ,

and $\mathcal{P}_{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ includes a path that connects $v_{9}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ and $v_{8}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ . those
four paths compose a path in $\mathcal{P}$ that connects $v_{2}^{i}$ and $v_{8}^{(i+2)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ . In the case where
every $\mathcal{P}_{i}$ is of the negative type, we can obtain similar results. Statement (3), (4), and
(5) are readily follow from those results.

Now, assume that there are $\mathcal{P}_{i}$ of the positive type and $\mathcal{P}_{j}$ of the negative type in
P. To prove Statement (2), it suffices to show that there is a path in $\mathcal{P}$ that includes
a cycle of length less than or equal to 152. We can choose $\mathrm{i}$ and $j$ above so that
$j=$ $(\mathrm{i}-1)$ mod $2m$ . It is easy to see that $\mathcal{P}_{i}$ has a path that connects $v_{11}^{i}$ and $v_{10}^{i}$ , $\mathcal{P}_{j}$

has a path that connects $v_{3}^{j}$ and $v_{4}^{j}$ , and $\mathcal{P}_{(j-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ has a path that connects either
$v_{4}^{(j-1)\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{d}2m}$ and $v_{3}^{(j-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ or $v_{4}^{(j-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ and $v_{5}^{(j-1)\mathrm{m}\mathrm{o}\mathrm{d} 2m}$ . Furthermore, it follows
from Lemma 1 that, for each $h\in$ {$j$ , $(\mathrm{i}+1)$ mod $2m$}, every path in $\mathcal{P}_{h}$ passes throug
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the vertex $w_{h}$ that corresponds to $w$ in Lemm a 1 and the length from $w_{h}$ to the end-
vertex on the path is 19. Those facts guarantee that the existence of a cycle of length
less than or equal to 152 in a path in $\mathcal{P}$ , concluding the proof. $\blacksquare$

4 The main theorem
Let $C=\{C_{1}, C_{2}, \ldots, C_{r}\}$ be a set of clauses in variables $u_{1}$ , $u_{2,)}\ldots u_{s}$ such that each
clause $C_{i}$ consists of three literals $l_{i,1}$ , $l_{i,2}$ , $l_{i,3}$ , where the variables of the three literals
are distinct.

The Eulerian graph $G(C)$ corresponding to $C$ is constructed as follows.
For each $k\in\{1,2, \ldots, s\}$ , $v_{j}^{i}(k)$ denotes a vertex of the variable-setting compo-

nent $\Gamma_{C}(u_{k})$ corresponding to the vertex $v_{j}^{i}$ of $\triangle(\max\{m(k), 3\})$ , where $m(k)$ denotes
the number of clauses that includes variable $u_{k}$ or its negation $\overline{u_{k}}$. Let $M(k)$ denote
$\max\{m(k), 3\}$ . For each $k\in\{1,2, \ldots, s\}$ and $t\in\{1,2, \ldots, m(k)\}$ , $\mathrm{i}(k, t)$ and $j(k, t)$

denote positive integers such that the literal $l_{i(k,t),j(k,t)}$ is the t-th occurrence of literals
whose variable is $v_{k}$ .

First, we shall connect satisfaction-testing components and variable-setting compo-
nents as follows. For each $k\in\{1,2, . . , , s\}$ and $t\in\{12\}$ ’ . . . , $m(k)\}$ , apply the following
procedure:

If $l_{i(k,t),j(k,t)}=u_{k}$ , then
identify $v_{2}^{t}(k)$ with $v_{1}^{t+M(k)}$ , identify $v_{1}^{t}(k)$ with $a(\mathrm{i}(k, t),j(k, t))$ , and identify
$v_{2}^{t+M(k)}$ $(k)$ with $b(\mathrm{i}(k, t),j(k, t))$ .

Otherwise,
identify $v_{0}^{t}(k)$ with $v_{1}^{t+M(k)}$ , identify $v_{1}^{t}(k)$ with $a(\mathrm{i}(k, ?),j(k, ?))$ , and identify
$v_{0}^{t+M(k)}$ $(k)$ with $b(\mathrm{i}(k, t),j(k, t))$ .

The graph $G_{0}(C)$ obtained by applying the procedure above has many end-vertices.
Notice that if a vertex of $G_{0}(C)$ is not an end-vertex, then the degree of the vertex is
even.

Next, we shall construct the garbage collecting component for $C$ , $\Gamma_{C}$ , and join it to
$G_{0}(C)$ to obtain $G(C)$ , as follows. Let $x_{1}$ , $x_{2}$ , $\ldots$ , and $x_{N}$ be all of the end-vertices of
$G_{0}(C)$ . Component $\Gamma_{C}$ is the tree with $N$ end-vertices $y_{1}$ , $y_{2}$ , $\ldots$ , $y_{N}$ , $75N$ vertices of
degree 2, and one vertex $z$ of degree $N$ such that the length of the path from $z$ to any
end-vertex is 76. Graph $G(C)$ is obtained by identifying $y_{i}$ of $\Gamma_{C}$ with $x_{i}$ of $G_{0}(C)$ for
each $\mathrm{i}\in\{1,2, \ldots, N\}$ .

The positive integer constant $\mu$ is defined to be 153. Notice that the length of any
cycle passing through the vertex $z$ of $\Gamma_{C}$ is greater than or equal to $\mu$ . The following is

the main theorem of this paper.

Theorem 3 It is $NP$-complete to determine whether a graph given has an Eulerian
trail that includes no cycles of length less than $\mu$ or not.

Proof, The problem is clearly in the class $\mathrm{N}\mathrm{P}$. Furthermore, it is easy to see that the
Eulerian graph $G(C)$ can be constructed from an instance $C$ of $3\mathrm{S}\mathrm{A}\mathrm{T}$ in polynomia
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time. It therefore suffices to show that $C$ is satisfiable if and only if $G(C)$ has an
Eulerian trail that includes no cycles of length less than $\mu$ .

First, assume that $G(C)$ has an Eulerian trail $T$ that includes no cycles of length
less than $\mu$ . For any variable $u_{k}$ , a truth value is assigned to $u_{k}$ as follows. By Lemma 2,
a path decomposition $\mathcal{P}$ of Tc{ $\mathrm{u}\mathrm{k})$ is obtain ed from $T$ by deleting all of the edges not
contained in Tc{uk). If IF(P) $=S_{+}(M(k))$ , then assign “true” to $ukl$ otherwise assign

$‘\zeta \mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}"$ . Then, every clause $C_{i}$ must be satisfied by a literal, otherwise $\Gamma_{C}(C_{i})$ and
the six paths in the path decompositions of the variable-setting components that share
vertices with $\Gamma_{C}(C_{i})$ compose a cycle. It is impossible for the Eulerian trail $T$ to include
such a cycle.

Next, assume that there is a truth assignment to the variables which simultaneously
satisfies all the clauses in $C$ . For any variable $u_{k}$ , if the truth value of $u_{k}$ is “true”,
then a path decomposition $\mathcal{P}$ of Tc{uk) is made so that IF(P) $=S_{+}(M(k))$ holds.
Otherwise, a path decomposition $\mathcal{P}$ of $\Gamma_{C}(u_{k})$ is made so that IF(P) $=S_{-}(M(k))$

holds. Since every clause $C_{i}$ in $C$ is satisfied by at least one literal, by Lemma 2
and the connection between satisfaction-testing components and variable-setting com-
ponents, it follows that, for each clause $C_{i}$ in $C$ , there exists a path $P$ in the path
decomposition of a variable-setting component such that $P$ connects an end-vertex of
the satisfaction-testing component $\Gamma_{C}(C_{i})$ and one of the garbage-collecting component
$\Gamma_{C}$ . Furthermore, the following holds. Let $P_{1}$ and $P_{2}$ be paths in the path decomposi-
thon of one variable-setting component. If an end-vertex of $P_{1}$ is identical with one of
$P_{2}$ or an end-vertex of $P_{1}$ and one of $P_{2}$ are both end-vertices of one satisfaction-testing
component $\Gamma_{C}(C_{i})$ , or both, then $P_{1}$ does not intersect $P_{2}$ at any vertex except their
end-points.

It is therefore easy to see that the path decompositions of the variable-setting com-
ponents defined above can be uniquely extended to a path decomposition of $G(C)-z$ ,
the graph obtained from $G(C)$ by deleting $z$ , where 2 is the unique vertex of the
garbage-collecting component $\Gamma_{C}$ with degree greater than 2. Furthermore, we obtain
an Eulerian trail $T$ from the path decomposition $\mathcal{P}=\{P_{1}, P_{2}, \ldots , P_{N/2}\}$ of $G(C)-z$
by plugging $z$ between $P_{i}$ and $P_{i+1}$ for each $\mathrm{i}\in$ { 1, 2, . . . , (N7 $2)-1$ } , and between $P_{N/2}$

and $P_{1}$ . Notice that all of the paths in $\mathcal{P}$ are contained in $T$ and, furthermore, any
cycle in $T$ includes vertex $z$ of $\Gamma_{C}$ . Thus, it follows that $T$ includes no cycles of length
less than $\mu$ , concluding the proof. 1

5 Concluding remarks
The graph $G(C)$ constructed from an instance $C$ of $3\mathrm{S}\mathrm{A}\mathrm{T}$ contains only one vertex $z$

whose degree tends to infinity as the size of $C$ tends to infinity. For any vertex $v$ of
$G(C)$ , the degree of $v$ is at most a constant, except $z$ . We conjecture that there is
a reduction from $3\mathrm{S}\mathrm{A}\mathrm{T}$ to EULERIAN RECURRENT LENGTH so that, for any $C$ ,
the degree of any vertex in $\mathrm{G}\{\mathrm{C}$ ) does not exceed some constant. Furthermore, we
conjecture that $\mu$ , the lower limit of the length of a cycle in an Eulerian trail, may
be vastly decreased. It is an interesting challenge to determine to what extent the
instance $(G(C), \mu)$ of EULERIAN RECURRENT LENGTH transformed from $C$ can
be simplified. Let $\mathcal{G}$ be the class of simple graphs with maximum degree at most 4.
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According to [1], the problem to determine whether the Eulerian recurrent length of a
graph in $\mathcal{G}$ is greater than 3 or not can be solved in polynomial time.

Lastly, we remark that this paper is written by correcting and touching in the
previous article [4].
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