

Title	Principal functions of operators (Role of Operator Inequalities in Operator Theory)
Author(s)	Cho, Muneo; Huruya, Tadasi
Citation	数理解析研究所講究録 (2005), 1427: 137-142
Issue Date	2005-04
URL	http://hdl.handle.net/2433/47306
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Principal functions of operators

神奈川大学・工学部 長 宗雄 (Muneo Chō)
Department of Mathematics,
Kanagawa University
新潟大学・教育人間科学部 古谷 正 (Tadasi Huruya)
Faculty of Education and Human Sciences,
Niigata University

Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . About the trace formula, we have the following:

Theorem 1 (M. Krein, 1953). Let A be a self-adjoint operator on \mathcal{H} and K be a trace class self-adjoint operator on \mathcal{H} . Then there exists a unique function $\delta(t)$ such that

$$\operatorname{Tr}igg(p(A+K)-p(A)igg)=\int p'(t)\delta(t)dt,$$

where p is a polynomial.

Theorem 2 (Carey-Pincus [5], Helton-Howe [11]). Let T = X + iY be an operator on \mathcal{H} with trace class self-commutator ($[T^*, T] \in \mathcal{C}_1$). Then there exists a function g(x, y) such that

$$\operatorname{Tr}igg([p(X,Y),q(X,Y)]igg) = rac{1}{2\pi i}\int\int J(p,q)(x,y)g(x,y)dx\,dy,$$

where p and q are polynomials of two variables.

Functions $\delta(t)$ and g(x,y) in Theorems 1 and 2 are called the phase shift of the perturbation problem $A \to A + K$, and the (Cartesian) principal function of T, respectively. Let T be hyponormal and satisfy $[T^*, T] \in \mathcal{C}_1$. For operators A and K of Theorem 1, let $A = TT^*$ and $K = T^*T - TT^*$. Then

$$\delta(t) = \frac{1}{2\pi} \int_0^{2\pi} g(\sqrt{t}\cos\theta, \sqrt{t}\sin\theta) d\theta \quad \text{ a.e. } t > 0.$$

For the polar decomposition T = U|T|, we have the following:

Theorem 3 ([5],[8],[17]). Let T = U|T| be semi-hyponormal operator satisfying $[|T|, U] \in \mathcal{C}_1$ with unitary U. Then there exists a function g_T such that, for $\mathcal{P}, \mathcal{Q} \in \mathcal{A}$,

$$\operatorname{Tr}([\mathcal{P}(|T|,U),\mathcal{Q}(|T|,U)]) = rac{1}{2\pi} \int \int J(\mathcal{P},\mathcal{Q})(r,e^{i heta}) e^{i heta} g_T(e^{i heta},r) dr d heta.$$

Let C_1 be the trace class and A be Laurent polynomials; $\mathcal{P}(r,z) = \sum_{k=-N}^{N} p_k(r) z^k$. Let $J(\mathcal{P}, \mathcal{Q})$ be the Jacobian of \mathcal{P}, \mathcal{Q} .

Functions g and g_T of Theorems 2 and 3 are called the principal functions of T related to the Cartesian decomposition T = X + iY and the polar decomposition T = U|T|, respectively. We have two ways of the principal functions of T: One is by the Cartesian decomposition T = X + iY. In the case of a hyponormal operator T, by the mosaic $0 \le B(x, y) \le I$ we define

$$g(x, y) = \text{Tr}(B(x, y)).$$

Others is by the determining function:

$$\det\left((X-z)(Y-w)(X-z)^{-1}(Y-w)^{-1}\right)$$
$$=\exp\left(\frac{1}{2\pi i}\int\int g(x,y)\frac{dx}{x-z}\frac{dy}{y-w}\right).$$

Principal function gives many information of T.

If T is hyponormal, then $g \geq 0$ and for sufficiently high n the operator T^n has a non-trivial invariant subspace (Berger [3], Martin-Putinar [14]). Other properties are

(1)
$$z \notin \sigma_e(T) \implies g(x,y) = -\operatorname{ind}(T-z) \quad (z = x + iy).$$

- (2) If T has a cyclic vector, then $g \leq 1$.
- (3) If T has a finite rational cyclic multiplicity m, then $g \leq m$.

Carey-Pincus [5, Th.7.1] showed a relation between g(x,y) and $g_T(e^{i\theta},r)$ as follows: For $x+iy=re^{i\theta}$,

$$g(x,y) = g_T(e^{i\theta}, r^2).$$

Definition 1. T is p-hyponormal if $(T^*T)^p \ge (TT^*)^p$. Especially, T is called hyponormal and semi-hyponormal if p = 1 and p = 1/2, respectively. Since

hyponormal \implies semi-hyponormal \implies p-hyponormal,

if we have the principal functions of p-hyponormal operators and more weak operators, then we can study similar properties.

For an operator T = U|T| let $T_t = |T|^t U|T|^{1-t}$ (0 < t < 1) be the Aluthge transformation of T. Let g_T and g_{T_t} be the principal functions of T and $T_t = |T|^t U|T|^{1-t}$ (0 < t < 1), respectively. Then we have following problems:

- $(1) g_T = g_{T_t}$
- (2) If T is hyponormal, then $g(x,y) = g_T(e^{i\theta},r)$ for $x + iy = re^{i\theta}$.

In this talk, we study relations above.

2. Relations with principal functions associated with polar decompositions

Definition 2. Let T = U|T| be a p-hyponormal operator with unitary U such that $[|T|^{2p}, U] \in \mathcal{C}_1$. Put $S = U|T|^{2p}$. Then S is semi-hyporomal. By Theorem 3, there exists the principal function g_S of S and we define the principal function g_T of T by

$$g_T(e^{i heta},r)=g_S(e^{i heta},r^{rac{1}{2p}})$$

(see [8, Definition 3]).

We prepare some lemmas.

Lemma 4. If operators A, B, C satisfy $[A, C], [B, C] \in \mathcal{C}_1$, then we have $[AB, C] \in \mathcal{C}_1$.

Let $||A||_1 = \text{Tr}(|A|)$ for $A \in \mathcal{C}_1$, that is, $||A||_1$ is the trace norm of A.

Lemma 5. If a positive invertible operator A and an operator D satisfy $[A, D] \in C_1$, then, for any real number α , we have

$$[A^{\alpha}, D] \in \mathcal{C}_1.$$

Lemma 6. Let T = U|T| be an invertible operator. Put $T_t = |T|^t U|T|^{1-t}$. If $[|T|, U] \in \mathcal{C}_1$, then $[T_t^*, T_t] \in \mathcal{C}_1$.

Lemma 7. Let T = U|T| be an invertible operator and $T_t = |T|^t U|T|^{1-t}$. For the polar decomposition $T_t = V|T_t|$ of T_t , if $[|T|, U] \in \mathcal{C}_1$, then, for every real number α ,

$$[|T_t|^{\alpha}, V] \in \mathcal{C}_1.$$

Lemma 8. Let T = U|T| be an invertible operator and $T_t = |T|^t U|T|^{1-t}$. For the polar decomposition $T_t = V|T_t|$ of T_t , if $[|T|, U] \in \mathcal{C}_1$, then, for a positive integer n, it holds that

$$\operatorname{Tr}([U^{n}|T|^{n}, |T|^{2}]) = \operatorname{Tr}([V^{n}|T_{t}|^{n}, |T_{t}|^{2}]),$$
$$\operatorname{Tr}([U^{-n}|T|^{n}, |T|^{2}]) = \operatorname{Tr}([V^{-n}|T_{t}|^{n}, |T_{t}|^{2}])$$

and

$$Tr([U^*|T|, U|T|]) = Tr([V^*|T_t|, V|T_t|]).$$

Therefore, we have the following.

Theorem 9. Let T = U|T| be an invertible semi-hyponormal operator such that $[|T|, U] \in \mathcal{C}_1$. For $T_t = |T|^t U|T|^{1-t}$, let g_T and g_{T_t} be the principal functions of T and T_t , respectively. Then we have

$$g_T = g_{T_t}$$

almost everywhere on C.

Next we recall the principal functions for log-hyponormal operators.

Definition 3. Let T = U|T| be log-hyponormal with $\log |T| \ge 0$ such that $[\log |T|, U] \in \mathcal{C}_1$. Put $S = U \log |T|$. Then S is semi-hyponormal with unitary U. Hence there exists the principal function g_S of S and we define the principal function g_T of T by

$$g_T(e^{i\theta}, r) = g_S(e^{i\theta}, \log r)$$

(see [6, Definition 4]).

It is known that, if T = U|T| is log-hyponormal, then the Aluthge transformation $T_{1/2} = |T|^{1/2}U|T|^{1/2}$ is semi-hyponormal (see [16]). Hence there exists the principal function $g_{T_{1/2}}$ of $T_{1/2}$.

Then we have the following.

Theorem 10. Let T = U|T| be a log-hyponormal operator such that $\log |T| \geq 0$ and $[\log |T|, U] \in \mathcal{C}_1$. For $T_{1/2} = |T|^{1/2}U|T|^{1/2} = V|T_{1/2}|$, let g_T and $g_{T_{1/2}}$ be the principal functions of T and $T_{1/2}$, respectively. Then we have

$$g_T = g_{T_{1/2}}$$

almost everywhere on C.

Now we generalize Theorem 9 as follows.

Theorem 11. Let T = U|T| be an invertible p-hyponormal operator such that $[|T|, U] \in \mathcal{C}_1$. For $T_t = |T|^t U|T|^{1-t}$, let g_T and g_{T_t} be the principal functions of T and T_t , respectively. Then we have $g_T = g_{T_t}$ almost everywhere on \mathbb{C} .

3. Relation with principal functions associated with two decompositions

Next, we show the following theorem (cf. [5, Theorem 7.1]).

Theorem 12. Let T = X + iY = U|T| be hyponormal with unitary U. Suppose that $[|T|, U] \in \mathcal{C}_1$. Let g and g_T be the principal functions corresponding to the Cartesian and the polor decompositions of T, respectively. For $x + iy = re^{i\theta}$, let $g_T(x, y) = g_T(e^{i\theta}, r)$. Then $g = g_T$ almost everywhere on \mathbb{C} .

Though the results above can be generalized to operators with trace-class self-commutator, we confine ourselves to deal only with the p-hyponormal case (cf. [5]).

4. Application: Berger's Theorem and index

In this section, we apply previous results to Berger's Theorem [3] and an index property [11]. First we show the following:

Lemma 13. Let operators S = V|S| and T = U|T| be invertible. Assume that $|S| - |S^*|$, $|T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that SA = AT and $\ker(A) = \ker(A^*) = \{0\}$. Then, for $S_{1/2} = |S|^{\frac{1}{2}}V|S|^{\frac{1}{2}}$ and $T_{1/2} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$, there exists $B \in \mathcal{C}_1$ such that $S_{1/2}B = BT_{1/2}$ and $\ker(B) = \ker(B^*) = \{0\}$.

Lemma 14. Let S and T be invertible semi-hyponormal operators. Assume that $|S| - |S^*|, |T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that SA = AT and $\ker(A) = \ker(A^*) = \{0\}$. Then $g_S \leq g_T$ almost everywhere on \mathbb{C} .

Corollary 15. Let S and T be invertible p-hyponormal or log-hyponormal operators. Assume that $|S| - |S^*|, |T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that SA = AT and $\ker(A) = \ker(A^*) = \{0\}$. Then $g_S \leq g_T$ almost everywhere on \mathbb{C} .

Theorem 16. Let T = U|T| be an invertible cyclic p-hyponormal operator. Assume $[|T|, U] \in \mathcal{C}_1$. Then

 $g_T \leq 1$ almost everywhere on \mathbb{C} .

Let $\mathbf{Rat}(\sigma)$ be the set of all rational functions with poles off σ .

Definition 4. The rational multiplicity of $T \in B(\mathcal{H})$ is the smallest cardinal number m with the property which there exists a set $\{x_n\}_{n=1}^m$ of m-vectors in \mathcal{H} such that

$$\bigvee \{ f(T)x_i \; ; \; f \in \mathbf{Rat}(\sigma(T)), \; 1 \leq i \leq m \; \} \; = \; \mathcal{H}.$$

Also, we have

Theorem 17. Let T = U|T| be an invertible cyclic p-hyponormal operator with finite rational cyclic multiplicity m. Assume $[|T|, U] \in \mathcal{C}_1$. Then

 $q_T < m$ almost everywhere on \mathbb{C} .

Finally, we show index properties. Let $\sigma_e(T)$ be the essential spectrum of T and $\operatorname{ind}(T)$ the index of T; i.e.,

 $\operatorname{ind}(T) = \dim \ker(T) - \dim \ker(T^*).$

Then it is known the following result. Let T be a pure hyponormal operator and g(z) be the principal function of T. Then it holds that, for $z \notin \sigma_e(T)$,

$$g(z) = -\mathrm{ind}(T-z)$$

[11, Theorem] (see also [4, Theorem 4]).

An operator T is called *pure* if it has no nontrivial reducing subspace on which it is normal. Then we need the following

Lemma 18 (Lemma 4 of [7]). For an operator T = U|T|, let $T_{1/2} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. Assume that T is an invertible p-hyponormal operator. If T is pure, then $T_{1/2}$ is also pure.

Finally, we have the following.

Theorem 19. Let T = U|T| be a pure invertible p-hyponormal operator. If $0 \neq z \notin \sigma_e(T)$, then $g_T(e^{i\theta}, r) = -\text{ind}(T - z)$, where $z = re^{i\theta}$.

REFERENCES

- 1. A. Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Th. 13(1990), 307-315.
- 2. A. Aluthge and D. Wang, w-hyponormal operators II, Integr. Equat. Oper. Th. 37(2000), 324-331.
- 3. C.A. Berger, Intertwined operators and the Pincus principal function, Integr. Equat. Oper. Th. 4(1981), 1-9.
- 4. R.W. Carey and J.D. Pincus, An invariant for certain operator algebras, Proc. Nat. Acad. Sci. U.S.A. 71(1974), 1952-1956.
- 5. R.W. Carey and J.D. Pincus, Mosaics, principal functions, and mean motion in von-Neumann algebras, Acta Math. 138(1977), 153-218.
- 6. M. Chō and T. Huruya, Mosaic and trace formulae of log-hyponormal operators, J. Math. Soc. Japan 55 (2003), 255-268.
- 7. M. Chō and T. Huruya, Aluthge transformations and invariant subspaces of p-hyponormal operators, Hokkaido Math. J. 32 (2003), 445-450.
- 8. M. Chō and T. Huruya, Trace formulae of p-hyponormal operators, Studia Math. 161(2004), 1-18.
- 9. K.F. Clancey, Seminormal operators, Springer Verlag Lecture Notes No. 742, Berlin-Heidelberg-New York, 1979.
- 10. T. Furuta, Invitation to linear operators, Taylor & Francis Inc, London and New York, 2001.
- 11. J.W. Helton and R. Howe, Integral operators, commutator traces, index and homology, Proceedings of a conference on operator theory, Springer Verlag Lecture Notes No. 345, Berlin-Heidelberg-New York, 1973.
- 12. I.B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integr. Equat. Oper. Th. 37(2000), 437-448.
- 13. I.B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integr. Equat. Oper. Th. 40(2001), 52-60.
- 14. M. Martin and M. Putinar, Lectures on hyponormal operators, Birkhäuser Verlag, Basel, 1989.
- 15. J.D. Pincus and D. Xia, Mosaic and principal function of hyponormal and semi-hyponormal operators, Integr. Equat. Oper. Th. 4(1981), 134-150.
- 16. K. Tanahashi, On log-hyponormal operators, Integr. Equat. Oper. Th. 34(1999), 364-372.
- 17. D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.

Muneo Снō

Department of Mathematics

Kanagawa University

Yokohama 221-8686, JAPAN

Tadasi Huruya

Faculty of Education and Human Sciences

Niigata University

Niigata 950-2181, JAPAN

E-mail: chiyom01@kanagawa-u.ac.jp E-mail: huruya@ed.niigata-u.ac.jp