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On the exact WKB analysis for the fourth
Painlevé hierarchy

Tatsuya KOIKE
Department of Mathematics
Graduate School of Science

Kyoto University

Yukihiro NISHIKAWA
Hitachi Ltd.

1 Introduction

In the exact WKB analytic study of Painlevé equations, [AKT], [KT1], [KT2]
and [T] gave the explicit description of the connection formulas of Painlevé
transcendents. In their analysis some properties on the relation which holds
between the Stokes geometry of the Painlevé equations and that of their
Lax pairs play the key role. After their success, [KKNT] showed that these
properties of the Stokes geometry also hold for several Painlevé hierarchies
(P, Pi-; and Py_; in the notation of [KKNT)).

In this article we discuss the fourth Painlevé hierarchy which was intro-
duced by Gordoa-Joshi-Pickering [GJP], and report that such basic proper-
ties of the Stokes geometry also hold for this hierarchy. Here we give the
outline of our results; the detailed explanation of our results including nu-
merical results of the Stokes geometry and of Nishikawa Phenomena will be
published somewhere.
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2 The fourth Painlevé hierarchy and their
Lax pairs with a large parameter

The fourth Painlevé hierarchy we treat here was introduced in [GJP]. The
following is essentially same with that given in [GJP, p.336], but we introduce
a large parameter 77 to employ the exact WKB analysis:

Definition 2.1. We call
N 0, X, = 2V + uX, + g — 20,

. m 1
(21) (Prv) { N Xm0 Yy = —vX2 + (Yo + 39~ a)? - %ﬁz.

the fourth Painlevé hierarchy form = 1,2,---. Here o, 8 and g are arbitrary
constants, and
Xm = Kp+ gt, Ym = Lm;

where {K,;} and {L;} are polynomial of unknown functions u, v and their
derivatives recursively defined by the following relation:
(2.2)

-5 Kj—H _ _1_ L + un_lé‘t — 7’]_283 2’17_183 Kj
N t Lj+1 - 2 Zn"lvat + ﬁﬁlvt un“lﬁt + 7’}_28? Lj
(j > 0) with Ky = 2 and Ly = 0. Here, and in what follows, ' denotes the
differentiation with respect to t.

Remark 2.1. Precisely speaking, this recursion relation (2.2} does not define
{K,} and {L;} uniquely; there remain ambiguities of integral constants for
each step. In the following we take these integral constants as zero at each
step. See [N1], [N2] for the precise definition of {K;} and {L;}, and for the
proof that this recursion relation (2.2) really defines {K;} and {L;} as poly-
nomials of w and v and their derivatives. Here we list up first few members
of {K;} and {L;} in a vector notation:

e (1) - ()
e () = ()

55 K3\ _ (1 * ( ud 4 6uw — 3~ lun + 2
(2.5) Ly — \2 3ulv + 3% + 3~ tur + %" )
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Remark 2.2. (Pry); becomes

7' = 2v+ulu+gt)+g— 2
(2.6) 1

1
nHu+gthy = —v(u+gt)>+ (v+ —2-a - 9)2 - Z,BQ.

We can solve the first equation with respect to v. By substituting this v into
the second equation, we obtain

"2 3 2 52
9. /.':(y) 202,83 _ 9042 9_t2 9% — gy — o
27 y oy T \2¥ T H(Gt g -2a-1"g)y 5 [
where y = u + gt. This is the traditional fourth Painlevé equation (the
standard form of the fourth Painlevé equation is obtained by setting g = —2

andn =1 in (2.7)). This is the reason whey we call (2.1) the fourth Painlevé
hierarchy.

Remark 2.3, As is ezplained in [GIP] we can add more terms with arbitrary
constants in (Prv)m. Our analysis in the following can be applied to such
extended (Pry)m-

The underlying Lax pair of (Pv)., is also introduced in [GJP]:

0
(% - nA) P =0, (2.8.a)
(28) (le)m . a
where
1 .08, .
(2.9) Ry 2" Ox | Bz<0 1>’
Z8 R O 0 0
om =9 gz " Oz
and
(2.10) g¢= LY Lo, g 21 i
N qg= x—iu —-’U‘i"é’ﬁ Uy, m“"z' t9+zox Kj :
. J=
Actually the compatibility condition '
0A OB
9.11 R — BA) =
(2.11) 5 Ba +n(AB - BA) =0

of (L1y)m is reduced to (P ).
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3 Relations of the Stokes geometry of the Py
hierarchy and its underlying Lax pair
In this section we considered the Stokes geometry of (Pry)m and (Lyv)m (we

will fix m in the following). To this purpose we first construct a formal
solution of (Pry)n, of the following form

u = t,n) = u(t)+n tu(t)+- 00,
o4 {U = o(t,n) = w()+nud)+-.

By substituting this expansion into (Py)n,, we find that 4, and vy satisfy

DAY + U @4 g — 2a = (,

1
o (XD + (V0 + 5g - ) - 357 =0,

(3.2)

or, equivalently,

2L+ uKD 4 g - 20 =0,

1
(KO 4+ gt)? + (LY + %9 —a)’ = 22 =0,

(3.3)

where Xé?), YW(ZO), Kf,(f(f) and ng) are top order terms of Xy, Y, Km and L,
with respect to the large parameter 7, respectively. We can show that ng)
and K are polynomials of v and v (See [N1], [N2].), and hence (3.3) is
algebraic equation with respect to u and v. Once uo and v, are chosen and
fixed so that they satisfy (3.3), higher order terms u; and v; (j > 1) are
determined uniquely and recursively. A formal solution (3.1) constructed in
this way is called a zero parameter solution in the following.

Once a zero parameter solution u = @, v = © is constructed, we substitute
this zero parameter solution into our quantities A, B, Kp, L, Sn and gq.
As a result, we obtain expansions of A and B etc. with respect to the large
parameter n like
(3.4) Aml = Apo(z,t) + 0 Ama(z, ) + -,

=4, v="7

(35) Bml - Bm,O(w» t) + Wﬁle,l(ﬂf, t) +oeen

=4, =0

Explicitly we obtain

1 0 Smo 0 1
3.6 m) =~ e ; Bm = )
(3.6) Amyo gz (QOSm,o 0 ) 0 (Qo O)
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where

1
(3-7) o = (ﬂf - §U0)2 — Vg,

1 - -
(38) Sm,O = ~2~ (tg -+ me—z i,g) .
j=0

Now we consider the Stokes geometry of (2.8.a) which is defined with the
characteristic polynomial
(3.9) det(A — Amo(z, 1)) = A* + det A oz, 1).
First we find Apo = (25m,0/92)Bm,o by (3.6), which implies

QSm,O
gz

) 2
(3.10) det Ao = ( ) det B,

Hence we obtain the following proposition on turning points of (2.8.a):

Proposition 3.1. (i) Eq (2.8.a) has m double turning points
{bl (t)a b?(t)7 UK bm(t)}

and each b;(t) is a root of Sy o(z,t) = 0.
(it) Egq (2.8.a) has two simple turning points {a1(t), a2(t)} and each a;(t) is
a root of :

det B o = (z — %ua)z — g = 0.

We also obtain the relation between the eigenvalues of Ay and that of B.
The following proposition can be shown easily (See [KKNT}):

Proposition 3.2. Let A, and A be eigenvalues of Ao, g and p eigenval-
ues of By. Then we obtain

d o d 0
(3.11) B T ot B T gk
or
o 0 ) d
1 A= o A =
(3:12) 5 T Bt BT ah
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Next we consider the Stokes geometry for the fourth Painlevé hierarchy.
The Stokes geometry of (Prv)n is defined as that of linearized equation of
(Prv)m at a zero parameter solutions v = 4, v = ©. Hence we first determine
the (characteristic polynomial of) linearized equation. To this purpose we
set u = 4+ Au and v = ¥+ Av in (Prv)m, and consider the linear part in
(Au, Av). Let AX,, and AY,, be linear parts of X, and ¥, in (Au, Av),
respectively. In terms of this AX,, and AY,,, the linearized equation of
(Prv)m can be written as

d

N = AXy = 20Y, +0AX,, + XnAu,
dt o
(3.13) an*%AYm = A (Xn)2A0 - 20X, A X,
|
+2(Ym -+ 59 - Q)Aym,
where
(314) Xm = miu:ql,v:ﬁ ’ f/m = mru:ﬂ,v:ﬁ ’

This linearized equation can be expressed in the following form:

4 2
d [AX P AX
—1 m _ m
(3.15) 7 EE (Aym) - ("_2,[} . n—l%% —i (Aym)

o At
s {1 0 Au
+Xm (0 —1) (Av)
where we have used
(3.16) Wy + g — 20 = —uX,,.

We will now determine AX,, and AY,,. By its definition we easily find
that AX,, = AK,, and AY,, = AY,,. Since K, and L,, are polynomials in
u, v and their derivatives, there exits a 2 x 2 matrix valued linear differential
operator

(3.17)  P™(t,n7'8;n) = B (60718 + P (78 + -

for which

AK,, m _ Au
(3.18) (AL,,) = PU™(t, ™" 3y m) (AU)
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holds. In terms of this operator PU™{¢,718;;n), the characteristic polyno-
mial C{t,v) (i.e., the top order part with respect to n of the symbol obtained
by replacing 7718, by v) of (3.15) is expressed as

(3.19)

e = ae (T (a2 B2 (3 )]

_ —-v+uy 2 (m) > 10
= det [( 20, y-}-uo) Pyt v) + X (0 1)1

(Here we multiply a matrix (Bl (1]) for the later convenience).

Proposition 3.3. We have

7

p=vf2,2=b; (1)

(3.20) Oft,v) = (—1)™4 ﬁ det(u — By)

j=1

where {b;(t)} are double turning points defined in Proposition 3.1.

Proof. To determine Po(m) (¢,v) we use the recursion relation (2.2). Consider

the linear part in {Aw, Av) of both side of (2.2), we find that { (t vi}
should satisfy the following recursion relation:

(3.21) PI(tv) = RPP(t,v) + %’*—OIQ
where
_ 1 —V + Ug 2 . 1 D
(3.22) R__Z ( 2ug u—}-uo)’ L= (O 1)’
By solving this recursion relation with the initial condition P, (t v) = I,
we have

(3.23) ™ (¢, v) ZR’”'~’ YKo,



Hence we obtain

(3.24) Clt,v) = det [272135”%, V) +Xm,0}
(325) = det {iz Rm_jKj,o + gtIQ:l
3=0
(3.26) — 4det [35 (gﬂg + ZRm_jKJ',O)} .
=0

Here we note that Sy, can be factorized as

(3.27) Smp = = (tg+§: mIK; ) H( — b;(t))

7=1

(See Proposition 3.1 (i)). Substituting R into z in this equation (3.27) we

find
(3.28) C(t,v) _4H - b;1,).
Hence we conclude that
(329) C(t, l/) = 4det (R - bj(t)fz)
j=1
_ i } —v 4 ug — 2b; 2
o )
(3.31) = 4]] { ;u0)2 - vo}
j=1
(3.32) = (-1)™4 Hdet(,u — By)
j=1

n=v2,x=b;(t)

This completes the proof of the proposition.

As is explained already, Stokes geometry for (P )., is defined in terms
of O(t,v). Note that it follows from the Proposition 3.3 that C(¢,v) has the

167
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form f(v? t) with some polynomial f of degree m. This implies that there
are two kind of turning points for (Prv)m: (i) A turning points where the
degree 0 part of f vanishes (“a turning point of the first kind”), and (%) a
turning point where the discriminant of f vanishes (“a turning point of the
second kind”). The following theorems are obtained by using Proposition 3.2
and 3.3:

Theorem 3.1. (i) Let t = 71 be a turning point of the first kind of (Prv)m.
Assume (a) t = T is not a turning point of second kind, (b) 0C /0t does not
vanish at t = 7, v = 0. Then at t = 71 a double turning point z = b (1)
merges with o simple turning point z = ax(t) in the Stokes geometry of
(2.8.2). Consequently the two eigenvalues v; 4+ of C merge and vanish at
t =1, Furthermore the following relation holds:

1 ¢ b (t)
(3.33) = / (v — v; Vit = f (\e = A_)dz.
71 a,h(t)

(i) Let t = 7 be a turning point of the second kind of (Pry)m. Assume
(a) t = 7 is not a turning point of the fist kind, (b) t = 7 is a simple
zero of discriminant of f(t,z). Then at t = 71 a double turning point z =
b;(t) merges with another double turning point ¢ = by (t). Consequently two
etgenvalues vy and vy, of C merge at t = 7, and so do v;_ and vy _.
Furthermore the following relation holds:

t t by (t)
(3.34) / (Vg — vy 2 )it = — / (v — vy Yt = / (As — ).

I i b (t)
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