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! Abstract

We consider the combinatorial principles PRINC(x, A), C°(x), HP(x) etc. and
variants of the bounding number and their values under these principles.

0 Introduction

In this note, we consider the combinatorial principles PRINC(k, A), C*(k), HP(k)
etc. and variants of the bound ing number and their values under these principles.

In Section 1, we review the combinatorial principles we consider in this note. In
" Section 2, some cardinal invariants (called here b’, b”, b') are introduced which are
all variants of the bounding number b and are defined similarly to the shrinkahility
of bounding families b* of Kada and Yuasa (see [10]). We give basic inequalities
among them together with b and b*. In Section 3, we prove some restrictions the
combinatorial principles in section 1 impose on the values of the card inal invariants
introduced in section 2. These results will be used in [1] and another forthcoming
paper [4] to simplify the arguments to decide the constellations of the principles
and the values of the cardinal invariants in generic extensions.

A part of this note was presented in a series of talks I gave at Nagoya set theory
seminar in June and July 2004, and in a talk at RIMS meeting on “Forcing Method
and Large Cardinal Axioms”, October 27-29, 2004.
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1 The combinatorial principles

We begin with definition and basic properties of the principles we are going to
consider in this note.

For cardinals Ky, ko, K1 << Hg (Or Ky >> ki) denotes the assertion “xy is
regular and 2% < ky” while &; <<< kg (Or K2 >>> K1) denotes “kg is regular and
| H((s1) ") | £ 62"

Let % be a regular cardinal and A < . Our first principle is named after PRINC
of S. Shelah [11] which is PRING(Nz, N;) in our notation.

PRINC(k, A): Forany x >> « and « € H(x), there is an N < H(x) such that

(0) z€N,

() |IN|<NNkE€k,

(1) Vae w]* JPe ( [[w]N°]<nﬁn<|Nl+’/\) N N) vbe N

(@aCb — JcePlaCclh)).

Note that P in (II) is a subset of N as | P| <|N|and |N|C N by N |= (I). Note
also that the definition of PRINC(k, ) is only relevant for regular : Suppose that
K is singular and k = sup,, #; for p = cf(k) < k. I N < H(x) for some x >> &,
N (0)forz =k and N |= (I), then 4 € N by & € N and elementarity. Hence
there is a sequence {k; : i < u) € N as above. Since p C N by N = (I), s; € N
for all i < p. Hence, again by N = (I), x; C N for all 2 < p. Thus &« € N and
| N| > . But this is a contradiction to | N'| € x which follows from N = (I).

Lemma 1.1 If X as above is a successor cardinal then (II) in the definition of

PRINC(k, A} may be replaced by
(IP) Vae Wt 3P e [W*]*NNWeN (aCb — Jce P(aCcCh)).

Proof. Let us call the principle PRINC' (s, \) which is obtained from PRINC(x, A) by
replacing (II) by (II') above. It is clear that PRINC'(k, A) follows from PRINC(s, A).
Suppose that A = p+. We show that PRINC(k, A) follows from PRINC'(k, A).
Assume that PRINC'(k, A) holds. For x >> k and z € H(x), let &’ = (z, ). By
PRINC/(k, \), there is an N < H(x) such that |N| < , 2’ € N and N =(I),
(). By o € N and N [= (I), it follows that 4 C N. Hence |[N|* > X and

A = min(|N|*,\). Since z € N, this shows that N =(0), (I), (II) for this .
] (Lemma 1.1)



Lemma 1.2 For reqular x and A < & the following are equivalent:
(a) PRINC(k, A).
(b) For any x >> & and x € H(x),
See= {N<H(x): (0) €N,
() |[N|<NNnkéesk,
(II) Vae w]™ AP e ( [[w]mrmn(mﬁ’)\) N N)
VbeN (aCb — FceP(alcCh) }

is stationary in [H(x)]<".

Proof. (b) = (a) is clear. For (a) = (b), suppose that x >> &, T € H(x) and
C C [H(x)]<* is a club set. We show that Sy, NC # . Without loss of generality,
we may assume that

(L1) | M|=|Mn&]

forall M €C.
Let x' >>> x. By PRrINC(k, A), there is an N € 8, such that z, C € N. We
have H(x) € N. By elementarity, it follows that

(1.2)  NNH(x) € Sye-
On the other hand:

Claim 1.2.1 N nH(x) = UCNN).

- For M e CNN,sup(MNk) € N. Hence Mk € NNH(x) by N k= (I). Hence
by (1.1), it follows that M C N NH(x). This shows that NnHx) 2UECNN).
For the other inclusion, suppose z € N N'H(x). then there is an M € C such that
{z} C M (ie. z € M). By elementarity, there is such an M € C N N. Hence
NnH(x) € UCNN). ~ (Claim 1.2.1)

Since C is closed, it follows that

(13) NnHx) eC.
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Thus S, NC # 0.
4 (Lemma 1.2)

Let x be regular and A < k. The following principle SEP(k, A) is derived
from SEP of Juhdsz and Kunen [7]. In Fuchino and Geschke [5], it is shown that
SEP(R,, R,) in the notation below is equivalent to SEP of Juhdsz and Kunen [7].

SEP(x,)\): Forany x >> x and z € H(x), there is an N < H(x) such that
(0) z€N,
(I) |N|<Nnk€kand [NJYNN is cofinal in [N]<4,
(1) P(w)NN <5 Pw)
where P <, Q for partial orderings P and @ means that P is a subordering of @
and forallge Q, P | g= {p € P : p < ¢q} has a cofinal subset of size < A and
P1g={p€ P : q<p}has a coinitial subset of size < A. P(w) is seen here as a
partial ordering (or even a Boolean algebra) with respect to the canonical ordering
C on it.
Similarly to Lemma 1.2, the phrase “there is an N < H(x)” in the definition
of SEP(k, ) can be replaced by “there are stationary many N < H(x)”
“stationary many” refers to stationarity in [H{x)]<* (see [5]). Here also, the case
of singular  is irrelevant for SEP(k, \) — see the argument after the definition of

where

PRINC(k, A).
The next lemma follows immediately from the definitions of PRINC(k, A) and
SEP(k, A).

Lemma 1.3 Suppose that k is regulor and A < X < k.
(1) If PRINC(k, A) then PRINC(&, X').
(2) IfSEP(k, \) then SEP(k, ).
(3) IfSEP(k,A) then PRINC(k, A).

For any set X, let
(14) (X)) ={f e X" : Zis injective}
and

(15)  (X)™ = Upeu ()™

Likewise, for sets Xg, ..., X,_1, let



(1.6)  (Xoy.--, Xn-1) ={F€ Xox -+ X Xn1 : T is injective}.

The following principle was introduced by I. Juhdsz, L. Soukup and Z. Szent-
mikléssy in [8].

C*(k): For any matrix (@an @ @ € K,n € w) of subsets of w and T € “w,
one of the following holds:

(c0) there is a stationary S C « such that (), sy Gesus) 7 0 for all
t€ T and (ag,...,0p-1) € (S,

(c1) there exist t € T and stationary Sp, ..., S¢p-1 & & such that
Micor Gty = 0 for all (ao, ..., cxpy-1) € (So,- -+ Sey—1))-

It is easily seen that SEP(k, A) and hence also PRINC(x, A) holds for any &, A
for regular k and A < k with 2% < A, Similarly we have the following:

Lemma 1.4 (I Juhdsz, L. Soukup and Z. Szentmikldssy [8]) (1) C°(Xy) does not
hold.
(2) C*(k) holds for any regular & > Al

Shelah proved the following Theorem 1.5 for the case k = Ny. Theorem 1.5
in its present form can be proved by a straightforward generalization of Shelah’s
original proof. Tadatoshi Miyamoto suggested to the author that the proof can
be slightly simplified by using Lemma 1.2. The proof we give below is with this

simplification.

Theorem 1.5 (S. Shelah [11]) For regular &, PRINC(k, k) tmplies C*(k).

Proof. Assume PRINC(, k). Suppose that A = {aq, : ¢ € E,n € w) is a matrix
of subsets of w and T C “”w. Let x >> « and S, (a7 be defined as in Lemma
1.2,(b). For each N € S, (41), let Sy =& N. By N = (1), éw € &.

Applying N = (I1) to U, ., @syn X {n} (coded as a single subset of w), we can
find a set Py for each N € Sy (4 1y such that

(1.7) Pn € [[w]NO]QNPL NN and
Vb€ N Vn €wlasyn Cb — 3¢ € Py{asym ScCb))

17
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Syam) is stationary in [H(x)]<* by Lemma 1.2. Hence, by Fodor’s lemma, there
is a stationary S C 8,47 and P* such that Py = P* foral N € §. Let
S = {0y : N €S8} Then S is stationary in .

Now, if (V;cp Gasiiy # 0 for allt € T, n = [t] and (g, - .. ; @n-1) € (S)", then
(A,T) = (c0) and we are done.

Otherwise, there are ¢t € T, n* = |t* | and (o, ... o%_,) € (S)™ such that

(1.8)  MNicps Gapr = 0
Claim 1.5.1 There are cg, ... , Cor_1 € P* such that
(1.9) ¢ € P andaqr ) S G

fori<n* and ;. ¢ = 0.

—  Without loss of generality, we may assume that of < of < --- < .. For
i < n* let of =dy, for some N; € S. We take ¢_y, ¢, _5, ..., ¢§ € P* in turn by

downward induction so that at £’th step we have

(1‘10) ni<k Qo 1+ (4) N ﬂkgi<n* Ci = 0.

To see that this is possible, assume that (1.9) for all ¥ < ¢ < n* and (1.10) hold —
for k = n* this is just our assumption (1.8). We show that then we can choose an
appropriate cg-1. Let

by =w\ ( ﬂ oz, (i) 1) ﬂ cz) .
i<k—1 k<i<n*
Then agr k) © - Since af < -+ < @y < 0 =0, = KO N1, O, .-,
o _5 € Ni-1. Hence by A € N1 we have ag: )y € Ni—1 for ¢ <k — 1. Also ¢,
ey Cpx_1 € P* C Ni_1 by induction hypothesis. It follows that b, € Ny_y. By
Ni_1 = (1), we can find a ¢x_; € Py,_, = P* such that oz ivk) © Ch-1 © Dp
This ¢,_; is as desired. - (Claim 1.5.1).

Let S;={a €S : ans C ¢} for i < n*. The next claim shows that these S;,
i < n* witness (A, T) = (c1) and so we are done also in this case.

Claim 1.5.2 §; is stationary fori < n*.



I Let i < n*. As in the proof of the previous claim, let of = On,, for some
N; € S. By definition of S;, we have of € ;.

By ¢; € P* = Py C N;, A € N; and by elementarity, we have 5; € IV;. For any
club C C k, C € N;, we have of = 6y, = N; € C. Hence H(x) = CNS; # 0.
By elementarity N; = C N S; # @. It follows that N; |= §; is stationary. Thus,
again by elementarity, we conclude that S; is really stationary. — (Claim 1.5.2)

[ (Theorem 1.5)

The following principle was introduced in [1]. We shall call a subset A of H(Xy)
definable if there are a formula ¢ and a € H(Xy) such that A = {z € H(Xy) :
H(R,) k= ¢(z,a)}. Note that for any n € N, A C R™ is projective if and only if it

is definable in our sense.

HP(k): Forany f:x — P(w) and any definable A C (P(w)), one of the
following holds:

(h0) there is a stationary S C « such that (F7S)=“\ {0} C A;

(h1) there are n € w\ {0} and stationary So, ..., Sn-1 C £ such
that (f”So,.- [ Sa1) NA=0.

Remark. P(w) in the definition of HP(x) above can be replaced by “w, (P(w))™,
(“w)™ ete. since these spaces can be coded as definable subsets of P{w).

Lemma 1.6 ([1]) For a regular cardinal x, HP (k) implies C*(k).

By Lemma 1.4, (1), C°(X;) does not hold. Hence X, is the least non-trivial
setting of k for C*(k). For x = Ny, the combinatorial principles introduced above

together with some other principles can be put together in the following diagram® :

1) In the following diagram, “WFN” is the assertion “P (w) has the weak Freese-Nation property”
(see [6]). “SEP” is SEP (R, Xy). For “TP(Ny)” see [1].

18



20

WFEN
!
SEP
!
PRINC(Ng, Ny) IP(R2)
i !
PRINC(Rg,Np)  HP(®y)

N /
C*(Ry)

Sometimes it is more convenient to consider the following variant of PRINC:

PrRINCT(k,A):  For any x >> k and z € H(x), there is an N < H(x) such
that
(0) ze€N,
() |[N|<NnNk€&s,
(ITY) Vu < AVA € [gj* 3P e ([[u}ﬂ]@ﬁn"m*”‘) N N)
VBeN(ACB — 3Cc P(ACCCB)).

The following is immediate from the definition:

Lemma 1.7 (1) For any regular &, PRINC(k, ) if and only if PRINC(k, Ny ).
(2) For any regular k and X with A < k, PRINC(k, \) implies PRINC(k, A).

2 Cardinal invariants and cardinal spectra connected to

the bounding number

For a partial ordering P = (P, <). The following sets are introduced in [12]:
&T(P) = {cf(C) : C C P, C is an unbounded chain}
GMP)={|X|: XCPVBC X (Bisbounded in P« |B| < |X|)}
G(P)={|X|: X C P,Xis unbounded in P,VB € [X]<*!(Bis bounded in P)}

Clearly, we have
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(21) 6'(P) C &*P) < 6(P).

For P = (“w, <*), we shall simply write &', &" and & in place of &T({*w, <*)),
SM({“w, <*)) and &((“w, <*}), respectively.
Recall the definition of the following cardinal invariants:

b =min{| X | : X C “w is unbounded with respect to <*}
b* = min{x : VX C“w (X is unbounded — X’ € [X]5*(X" is unbounded)) }

b and b* can be characterized in terms of &7, G" and & as follows:
Lemma 2.1 (1) b=min&'=min&"=mn&.
(2) b*=supb.

Proof. (1): b < min® < min&" < min &' is clear by definition. It is also easily
seen that there is an increasing sequence in (“w, <*) of length b. Hence min &' < b.

(2): For any cardinal s, we have

k< b* & IX C¥ (X is bounded and VX' € [X]** (X' is bounded))
& N>k (Aed)

& k<supB. O (Lemma 2.1)

On analogy of Lemma 2.1, (2), let
b =sup &', b’ =sup&".
By Lemma 2.1 and (2.1), we have

b<b <b’'<b"

Let
DO = {cf(otp({X,R [ X))) : X C“w, Ris 2 projective binary relation
and RN X2 well orders X}

and

bf = supDO.
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Lemma 2.2 (1) &' C DO,
(2) &"N Reg CDO. In particular, if 2%° < X, then &* C DO.

Proof. (1): This is clear by definition.
(2): For k € 6" N Reg, let X € [“w]® be as in the definition of &". Then we

can construct a,, by, @ < k inductively such that

(2.2) an € X and by € “w for a < k.
(23) ag<*bye a<f.

(2.3) is possible since, at the B’th step in the inductive construction, we have
[{a € X : a <*b, forsomea < f}| < k. Note that we need here that « is
regular. :

Let Y = {{a,, b,) : @ < x} and let R be the binary relation defined by

{a,b) R (c,d) & a<"d.

for {a,b), (c,d) € (“w)* Clearly R is projective and orders Y in order type .
] (Lemma 2.2)

Corollary 2.3 (1) b < b, .
<

< <P <b* <D

(2) If 8" N Reg is cofinal in &" then b” < b'. In particular, if b" is regular®
then we have b < b,

bt
<
b<bH <P <b*<D

2) Since Ry < b” < 2%, this is the case if 280 < X,
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3 b, b, b”, b* and b! under the combinatorial principles

Proposition 3.1 (1) & € 6" N Reg implies ~PRINC(+, k') for all & < k.

(2) If&"NReg is cofinal in &" then PRINC(k, k) implies b" < k. In particular,
if 2% < R, then PRINC(k, &) implies b" < k.

(3) If there is a <*-chain of length k then =C°(k). In particular, k € &'
implies ~C* (k).

(4) C°(k) implies b < k.

(5) PRING(k, b) implies b* < k.

(6) k€ & implies —“PRINC(x, b).

(7) keDO — —-HP(x)
(8) HP(k) implies b! < k.

Proof. (1): Since ~PRINC(r/,x’) for all singular &', we may assume that K is
regular. Let X € [“w]® be a witness of x € S" and let aq, be € “w for a < & satisfy
(2.2) and (2.3) above. Suppose that x is sufficiently large and let N < H(x) be
such that

(31) K, {an : o <&), {bs : @< k) €N and
(3.2) |N|<KNN<K.

We show that N does not satisfy (II) in the definition of PRINC(x', x’). Suppose,
for contradiction, that N |= (IT). Then we have®):

(3.3) for any f € “w there is a P € N such that P C N, |P| < £ and
Vge“wnN (g<* f — Jhe P (g< h<* ).

Let
(3.4) o =supxNN.
Let P be as in (3.3) for f = bo-. Let

(35) S={a<k:a,<" hforsomehc P}.

3)If g € “wNN is such that g <* f, then there s g € “wNN such that g’ Ag is finite and g’ < f.
Note that we have s € N and sy C s7 where we let 7, = {(m,n) € w? : n < h{m)} for h € “w.
Hence we obtain (3.3) applying (II) in the definition of PRINC(«', &) to UnewTa X {n} Cwxw
where {f, : n € w} enumerates finite modifications of f.
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By a, € X and since k is regular, we have | S| < k. Hence, by S € N and by
elementarity, there is & € (kN N)\ S. But since ao < bs by (3.4) and (2.3), this
is a contradiction.

(2): This follows from (1).

(3): Assume that there is a <*-chain of length & in “w. Then there is a sequence
(be : & < k) of subsets of w such that b, C* bg and bg Z* by forall @ < § < k.

Fora < k and n € w, let

w\ by, ifn=0

b, \ m, otherwise

(3.6) agn= {

and A = (Ggn : @ < K,n € w). Let T'= {{0,n) : n € w}. Then it is easy to see
that (A4, T) & (c0) and (A, T) = (cl).

(4): This follows from (3).

(5): Suppose that S C “w is unbounded. By PRINC(k, b), there is N < H(x)
such that

(3.7) S €N,

(3.8) |N|< NNk <k,

(39) Vae W 3P e [w]¥] 'AN Whe N
(@aCb — 3ce€ PlaCcCh)).

<min(| N |,

By (3.8), it is enough to show the following:

Claim 3.1.1 SN N s unbounded in “w.

- Otherwise there is a g € “w such that f <* g for all f € SN N. There is an
P € N such that

(3.10) |P|<b, PCN and
(3.11) forany f€ SNN thereishe Pwith f <Fh<"g

— see the footnote on page 11. By P € N, (3.10) and by elementarity of N,
there is ¢ € “w N N such that h <* ¢ for all h € P. By (3.11), f <* ¢ for
all f € SNAN. It follows that N = S is bounded. By elementarity this is a
contradiction. : ~ (Claim 3.1.1)



(6): This follows from (5).

(7): Suppose that x € DO and let (X, R) be such that X C Pw), Ris a
projective binary relation and otp((X,RN X?)) = . Let f: 5 — P(w) be the
mapping sending o < & to the o’th element of X with respect to R. Let

A=RU Ukew\{z} ((P(W)))k .

Then is easily seen that (f, A) = (h0) and (f, A) = (h1).
(8): This follows from (7) since DO is downward closed. [ (Proposition 3.1)

Corollary 3.2
(1) Suppose that 2% < R, then PRINC(Ry, Ny) implies B = Ny.
(2) C*(Rg) implies b’ = Ny,
(3) PRINC(Ng,Ny) implies b = b* = ;.
(4) HP(R,) implies b7 = ;. |

Let

shr(meager) = min{x :YX C R (X is non-meager
—3Y € X (]Y| < kAY is non-meager))}.

shr(meager) as well as b* was studied in [10], [13] and [14]. In these papers it was
shown that extended Cichén’s diagram with these cardinal invariants looks like:

cov{null) «— non{meager) «— shr{meager) «— cof (meager) «— cof (null)

| L |

b — b* — 0
add(null) «— add(meager) — cov(meager) <— non(null)

Proposition 3.3 Suppose that k and A are regular cardinals with A < b, & .
Then PRINC™ (k, \) implies shr(meager) < k. In particular, PRINC(Ry, R;) implies

shr(meager) = N;.

Proof. Suppose that x and X are as above and that PRINC™ (k, A) holds. Then
by Lemma 1.7 and Proposition 3.1, (5), we have b* < &. Let P = Fn(w,2) and G
be a (V,P)-generic filter. By [3], V[G] Er < shr(meager)¥ < b*. But it can be
checked easily that V]G] = PRINCY(x,A). This is a contradiction to Lemma 1.7
and Proposition 3.1, (5). | [ (Proposition 3.3)
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