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Path description of conserved quantities of
generalized periodic box-ball systems

AR « RKEGEEERZHER D ME # (Jun Mada)
BAERE - HEZH BEHE? R # (Makoto Idzumi)
R - KEZRECRRI R Y KA #18 (Tetsyji Tokihiro)

} Graduate School of Mathematical Sciences, University of Tokyo
2 Department of Mathematics, Faculty of Education, Shimane University

Abstract

The present article is a review on the conserved quantities of pe-
riodic box-ball systems (PBBS) with arbitrary kinds of balls and box
capacity greater than or equal to one. By introducing the notion of
nonintersecting paths on the two dimensional array of boxes, we give
a combinatorial formula for the conserved quantities of the generalized
PBBS using these paths.

1 Introduction

The box-ball system (BBS) is a reinterpretation of a soliton cellular automa-
ton proposed by Takahashi-Satsuma [1] as a dynamical system of balls in a
one dimensional array of boxes [2]. Hence, the BBS shows both a feature of
cellular automata (CAs) and that of solitons.

The periodic box-ball system (PBBS) is the BBS in which the updating
rule is extended to be compatible with a periodic boundary condition [8].
Let us consider a one-dimensional array of N boxes. A periodic boundary
condition is imposed by assuming that the Nth box is adjacent to the first
one. (We may imagine that the boxes are arranged in a circle.) In the
generalized PBBS (GPBBS), the capacity of the nth (1 < n < N) box is
denoted by a positive integer 8, and we suppose that there are M kinds of
balls distinguished by an integer index 7 (1 < j < M). When "n 8, = 1 and
M =1, the GPBBS coincides with the PBBS. Then, the rule for the time
evolution of the GPBBS from time step ¢ to £ + 1 is given as follows:

1. At each box, create the same number of copies of the balls with index
1.

2. Choose one of the copies arbitrarily and move it to the nearest box
with an available space to the right of it.

3. Choose one of the remaining copies and move it to the nearest available
box on the right of it. '



4. Repeat the above procedure until all the copies have been moved.
5. Delete all the original balls with index 1.

6. Perform the same procedure for the balls with index 2.

7. Repeat this procedure successively until all of the balls are moved.

An example of the time evolution of the GPBBS according to this rule is
shown in Fig. 1.
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Figure 1: Time evolution rule for PBBS.

In this article, we investigate the conserved quantities of the GPBBS for
arbitrary M. In section 2, we derive the path description of characteristic
polynomial of particular matrices. In section 3, we briefly summarize the
results of Ref. [9], which we will use in the subsequent sections. In section 4,
we treat the ndKP equation which corresponds to the GPBBS. We shall
obtain an explicit expression for the conserved quantities of the ndKP equa-
tion. Using the results in section 4, we construct the conserved quantities
of the GPBBS in section 5. In section 6, we discuss algebraic aspects of the
GPBBS with respect to the Affine Weyl group and the crystals of quantum
affine algebra. Section 7 is devoted to the concluding remarks.
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2 Path description of a particular determinant

For a particular matrix B which contains a parameter y in upper half ele-
ments, we give a combinatorial description for coefficients of the character-

istic polynomial det(AI — B) in A and u in terms of nonintersecting paths

(theorem 2.1).

Let
B:= (Do ~Y)(D; =70)---(Dy ~7T),
where D; (i =0,1,... , M) are diagonal matrices,
[ 21 ]
T2
Di = Z33 s
B TN |
and
. -
H
1
T := 1
i ]
If we put Dz@ = D; and
[ ITN—r+14
TN—r+2
D" = TN
Z14
L ‘rN-—'I‘,i -

for 0 < r < N, we have

DIty = ypi,

Hereafter, for i = 0, we define

Z ceei=1.

1 <ep < <c;
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Then, using the notation Dzm, we obtain

M+1

— £ {h ha—1 hagogp1—M+£
B=Y (-0f| X DD plien O xd @)
£=0 0<hi<hg <
<hp g1 <M
and
det (A — B)

N N—k ‘
— kzzo(_l)N—kAk ;O /-LJ Z Z

xc{1,2,...,N} JCX
iX=N—k §J=j

M—N-n+o(n)+1

Z sgn(o) H 2 H Tn—h;+i—1,h;

geS_-)fc neJ 0<hi<ha < o i=1
w<hpNento(n)+1 <M

M-n+o(n)+1
X H Z H Tn—hi+i—1,h;
neX—J 0<hy<ha< - =1

"'<hM-n+a(n)+l_<_M

(2.3)

A combinatorial description of the coefficients is possible.

By Cn m+1 we denote the N x (M +1) boxes in Fig. 2 and by (n, m)-box
the box at the nth column in the (m + 1)th row. We assume that the Nth
column is adjacent to the first one.

M

Figure 2: N x (M + 1) boxes.

Let o and b be column indices (a,b = 1,2,... ,N). A path connecting
the initial point a and the end point b is a (continuous) polygonal line from
the initial point a to the end point b which consists of (i), (i) or (iii) in Fig. 3
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locally; here by the initial point a we mean the middle point of the south
edge of (a,0)-box and by the end point b the middle point of the north edge
of (b, M)-box. For example, the left part in Fig. 4 shows a path connecting
the initial point 1 and the end point 1, and the right part shows a path from
5 to 2.

<

AN

@ i (i)

Figure 3: A line can pass through a box in three possible ways.

M—t+1
There is a natural correspondence between H Tp—hiti-1,h; (0 < Ay <
i=1

hy < --+ < hpgy1 < M) and a path on Cy ar41. To put it concretely, we
draw the line (i) on (n — h; +4 — 1, h;)-box (i = 1,2,... ,M ~ £+ 1). For
each r, h; <7 < hy41, we draw the line (ii) on (n+1i—r,r)-box and the line
(iii) on (n+14—7—1,7)-box where hg = —1 and hp;_s9 = M + 1; then we
obtain the path. For example, for N = 8 and M = 5, T1,021,1T1,271,3%1,4Z1 5
and x5 074,2225 correspond to the paths in Fig. 4 respectively.

1 2
5 5
4 4 N
3 3 \\
2 2
1 1 N
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
X130 X11 X1,2 X138 X1,4 X155 Xs0 X42 Xo5

Figure 4: Paths corresponding to T1,0%1,1%1,2%1,3%1,4%1,5 and Ts0T4,2T25.

Let X = {d,ds, ... Akt (1 <dy <dy <+ <dyg < N), and we
denote by P(d; o) the set of all paths which connect the initial point d and
the end point o(d) (d € X,0 € Sx; c¢f. Fig. 5). Define énm : P(d;o) —



o (d)
M
N N,
’ | P
m N
1
0 N
d

Figure 5: A path P € P(d;0).

{Zn,m, 1} as

P has the vertical line
hm on the (n, m)-box of Cn ar+1-
1 (otherwise)

Enm(P) = (2.4)

where P € P(d;0).
We introduce

PUN(dy,... . dn—k)

=S (Pi,...,Pn-k) | P; and P; are nonintersecting

P, e P(d;;o) (i=1,2,... ,N — k).
5)
for any i and j, i # j.

N
denotes the largest integer which does not exceed £.

Then, we obtain the following theorem.

The upper bound of the summation over j is (M + 1)} where [£]

Theorem 2.1
For B defined in (2.1), it holds that

det(A — B)
N [(N-k}\((MH)]
=Y (=DM S (TR
k=0 j=0
N—-k N M
> > ITITII éemt®)
1<di <do <+ (Pry.. ' PN ) t=1 n=1m=0

<AN-k SN epUd(dy,.. dpy_p)
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where &, , and PY(dy,... ,dy_1) are defined in (2.4) and (2.5) respec-
tively. O

3 GPBBS and ndKP equation

In order to describe the dynamics of the GPBBS, we introduce a new in-
dependent variable s (s € Z). As any integer s can be uniquely expressed

as s = Mt+j (t € Z, 1< j < M), we denote by u® the number of balls
s—1

with index 7 = s mod M in the nth box at time step ¢t = {—Mé , where

[z] denotes the largest integer which does not exceed z. In other words, the

new time variable s is a refinement of the original time, indicating explicitly

when balls with index 7 move.

We assume that 8, and ], satisfy the relation

N M N N
> 0= N> uk (k=12...,M). (3.1)
n=1 n=1

i=1n=1

The first and second terms of the left-hand side of (3.1) represent the number
of spaces and the number of balls in the GPBBS respectively, hence the left-
hand side is the total number of free spaces of the GPBBS. The right-hand
side of (3.1) is the number of balls with index k. Thus (3.1) requires the
total number of free spaces of the GPBBS to be larger than the number of
copies of any type of ball in the time evolution process.

Let us consider the process at time s, i.e., the movement of the balls
with index j at time step ¢ where s = Mt + j; we often use s instead of
J, t.e. we treat the indices modulo M. If we define %, which denotes the
number of spaces of the nth box at s, by

o— -1 -M+1
K = On — (ug +uy t -+ ud ML)

condition (3.1) is rewritten as
N |
ok =Y WM k=12, M)

Then we have the following theorem.



Theorem 3.1 ([9])

The time evolution of the GPBBS is described by an ultradiscrete equation:

k
s s—1 2 : s—M s—1
U, — K = Lo .
i n k:l,?.?(,N =t U‘n——g E’n—ﬁ-l
j:

k

-M s—1

— max s=i 3

a O’k:l??i(\/—l Zlun“ﬂ K’n—H—l
J=

(3.2)

The ndKP equation is obtained from the generating formula of the KP
hierarchy [12, 13]. The ndKP equation is given as

(b(m) — c(n))T{l + 1,m,n)7(l,m + 1,n+ 1)
+(c(n) —aD)T(l,m+1L,n)r(l+1,mn+1)
+ (o) = b(m))T(l,m,n+ )7l +1,m+1,n)=0, (3.3)

where 1,m,n € Z are independent variables, the tau function 7 : Z X Z X
Z — R (or C) is dependent variable and the coefficients a(l),b(m),c(n)
are arbitrary functions which depend on the independent variables [,m,n
respectively.

In order to relate the ndKP equation to the GPBBS, we take a(l) =
0,b(m) = 1,¢(n) = 1+, and impose the following constraint on 7({,m, n):

{l,m,n) =7 —M,m—1,n).
If we define o := 7(s — 1,0,n), (3.3) turns into
s+M-1 s

s—1 .8 s+M s

a, ag g (o) g, [
n+1 n+1 n n+l n n41
s+M _s—1 (1 + 5n+1) 0_3_105 = nt+l" M (34)
Opnt1 On+i n+1-n ngn+1 .
Furthermore, we define U} and K, as
s+1 M
US = n41%n L= 41 H Ui+t
n s+1 °? g ‘T Un n
(1 + 5’”-}-1) O_?Lgn+l Kn g=1

and impose the following periodic condition on Up:

- s __ §
Us =Us,n.

63



64

Then, from (3.4), we have

N &k Us-—M
n—jg
Z H Ks-—l.
U; k=1j=1""n—j+1 3.5)
K;‘i‘l N-—1 [s—M ( ’

To take the ultradiscrete limit, we put US = e¥n/¢ KS = /¢ 1/8,,1 =
ef»/¢. Then, we found

Theorem 3.2 ([9])

The ultradiscrete limit of the constrained ndKP equation (3.4) with the pe-
riodic boundary condition coincides with the time evolution equation of the
GPBBS (3.2). O

4 Conserved quantities of ndKP equation

In Ref. [9] we derived the Lax representation for the ndKP equation when
it has period N in the spatial variable n. In short, the equation (3.5) is
equivalent to the matrix equation

M(s)L(M;s) = L(M;s — 1)M(s)

where M(s) = Gu.s — T,

L(M;s) = (*GK;S + T) (GU;s—MJrl - 17) (GU;st+2 - T’) e (GU;S - 'Y') ;
(4.1)



p- _l~ -
K3 )
K3 .
GK;s = K} ,
1
B K
r 1 7
Us N
Us 1
GU,S = Ug 3
1
0%
(1+én)-n ]
146,
"Y* e 1469 :
i 14+60n-1 i

here, 7 is an arbitrary parameter.
This means

det (\I + L(M;s)) = det (Al + L(M;s —1));
therefore, the coefficients ex of the characteristic polynomial

det (M + L(M; 5))
= AV ey AV T f ey AN 24 e At e

are conserved in time s. Furthermore, since 7 is arbitrary and e contain 7,

if we define eg] by

=Y el (4.2)
J
then eE] are also conserved.
N
Let A= [ [(1+ &),
i=1
i nA |
1
T:= 1 ,

65
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and

1441
(1+81)(1+83)

[Ta+s)

L =1 .

It follows that
Y = (Ds)"! Y D;.
Hence, we have the following Lemma.

Lemma 4.1 ([9])
Let

Lo(M;s) == (—Ggs + 1) (Guis—m41 — ¥) (Guis—m42 — 1) - (Guys — X))

Then, it holds that
det(A + L(M;s)) = det(A + Lo(M; s)). (4.3)

From theorem 2.1, we obtain a combinatorial formula for eE]

ately.

immedi-

Theorem 4.1
Put

1 1
Tn,0 = ?f:’ Tnm = W (m # 0)

in (2.4) and put p = nA. Then, fork =0,1,... ,Nandj =0,1,..., {EN_’QNE( M+1)]’
it holds that

, o N-k N M
o = (-1*In7 N > I &),
1<dy <da <o (Pl PN k) 1=1 n=1m=0

= <AN-k SN ep()dy,....dpy_z)

where £(k,j) == (j + 1)N — (k + j + k7). O



5 Conserved quantities of GPBBS

Using the results in section 4, we construct the conserved quantities of the
GPBBS.

For £k = 0,1,... ,N and j = 0,1,... ,[(LV_—__@A(T._[_WLIA], the ultradiscrete
[7] ;

limit of e i is

= i ()
_ N-k N M
= — lim elog | A7 Z z H H Enm(F)
, e—+0 1§d1<d2<... (Pl,...,PN__k) i=1 n=1m=0

ANk SN epl)(dy,.. . dy_k)
Since 6, is the capacity of the nth box,

N

i s —6;/eY _ .. .

lim elogA? = j ggriloEIOgIIl(l+€ i )_3 E max|[0, —6,]
J:

e—+0
= 0.

Therefore, from theorem 4.1, ueE] is given by

Theorem 5.1
Put

Ino = Ky, Tnm = ufl—M+m (m #0)

in (2.4). Then, fork=0,1,... ,N and j =0,1,..., [@’%”il—)} it holds
that

N~k N M
ueg} = min min Z Z Z bnm(Pi)
1<d <da <>+ (P i PN k)
i=1 n=1m=0

<AN-k SN | ep@dy,..dy_g)

Remark 5.1
The conserved quantity ue,[col (0 < k < N) is trivial. Since j = 0, all paths
are vertical lines. Hence we have

N—k M
uef] = min Z kS, + Z s Mm
1<dy <da < - . d;

r<dy <N L=l =1

"N—k
= min Z Ba, 1 -
1<di<da <>

<dy_ <N L=l
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As 8, is the capacity of the nth box, ue}co] dose not depend on the time steps.

So we are not interested in them.

Remark 5.2

If a quantity A;(t) is conserved in terms of the original time step t, that
is, Vt, A1(t) = A1(0), we can always associate it with the quantities By(s)
(k=1,2,..., M) which are conserved in s, that is, 's, Bi(s) = Bx(0) (k=

1,2,... ,M). Thereason is as follows. First we note that A;(t) = F({u}M*+*}M ) =

F{uS}M ). If we put A;(t) = F({uﬁ"’“s}iifl), since the time evolution
rule for the GPBBS at time step s is just the same as that at s+ 1, A;(t)
is also conserved in terms of the original time step t. Hence if we denote by
By (s) the kth elementary symmetric polynomial of {A;(t) jf‘il, Bi(s) is a
conserved quantity in terms of s. We should also note that the number of
independent conserved quantities in {A;};Z, is equal to that of {By}L,.

N-k N M
An easy way to read off Z Z Z £nm(P;) is as follows: Associate

i=1 n=1m=

values x2,ul, ... ,uffM *1 with boxes of Cy ar+1 as shown in Fig. 6. For
(Pi,... ,Py_g) € PU(dy,... ,dn_k), summing up the values corresponding
N-k N M

to the vertical lines of the paths, we get the value Z Z Z bnm(F;)-

=1 n=1m=0

s 8 s P s 8

u1 uz us un-1 N

H 51 1 1

M-1 w1 w2 u3 un-1 unN
sM+2 s-M+2 sM+3 e s M+2 s-M+2

2 wi juz juas unN-i1 |u N
s'h+1 s"M+1 M+1 -M+1 M1

1 i jute |futs e N {u'N
0 k1| k2| k3 KNi| KR
1 2 3 N-1 N

Figure 6:

Example 5.1
For a state in Fig. 7 (N = 10,M = 5), we obtain a table in Fig. 8. For
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paths shown in Fig. 9,

N-k N M

SN tam(P)

i=1 n=1m=0
=0+0+1)+(0+14+0+0)+(0+0+0+0)
+0+1+0)+(0+0+1)+(0+1+0)+(14+0)
= 6.
N-k N M
Occasionally these paths minimize Z Z Z &n,m(F;); thus, uegﬁ is 6.

i=l n=1m=0

s RN

4 xgxxgw\‘\l 1% 2%"%“1 01 1&%\;&

3 09 1\“’%«? | 2 2N ;\.2;21:! :

2 é 11 ilela]i A 0

SRR VIR

0 \4%%@\‘«%? 2 é é 15%%\
1 2 3 45 6 7 8 9 10

Figure 9:

6 Affine Wyle group, integrable lattice models and
GPBBS

Let 7 be the set of N x (M + 1) rectangular tableaux with integer entries,
and sy (£ € Z/(M + 1)Z) and 7 be mappings: 7T — 7. For a tableau Y,

YiM YoM |- | YNM

Y = ,
Yi,1 | Y2,1 |- | YN,
Y1,0 Y20 { | YUND




these mappings are given as

se(yin) | se(y2,n) se(yn,m)
SZ(Y) — . N N
se(yr,1) | seya1) se(yn,1)
se{y1,0) | se(yo0) se(yn,0)
7(yar) | 7(y2,m) 7(YynM)
2(Y) = : : :
W(yl,l) 7(y2,1) (yn,1)
m(y10) | 7(y20) T(Yng)
where
Sﬂ(y'n,m) = Ynm+1 T Qn,m - Qn——l,m (m =/{ mod M + 1):
Sl(yn,m+l) = Yn,m + Qn-—l,m - Qn,m (m ={ mod M+ 1):
$6(Unm) =Ynm (M#LL+1 mod M+ 1),
W(yn,m) = Yn,m+1,
and

= Imax
Qn,m B

Here we extend the indices n,m of y, ., for n,m € Z by the condition

Un+Nm = Unm+M+1 = Unm-

For example,

h—1
Z YUnt+km+1 +
k=1

N
Z Yn4k,m

k=h+1

YN,M

YiMm

Yo, M

so(Y) = y1

,2

Y2,2

UN2

Y10+ Qno— @10

y2,0 + Q1,0 — Q20

yno +Qn-10—UnNo

Y11+ Qio—Qnpo | Y21+ Q20— Quo | yn1+Qno—QN-1p0
Yi,M-1 1 Y2,M~-1 YUN,M -1
7(Y) = :
Y1,0 42,0 YN0
iM Y2, M YNM

The following theorem is proved by direct calculations.

Theorem 6.1 ([14, 15])

The mappings s (£ € Z/(M +1)Z) and 7 defined as above give a realization

of the affine Weyl group W(A%I)).
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Remark 6.1 ’

The affine Weyl group W(A;lll) is defined as the group generated by the
simple reflections sg,s1,-.. ,Sn—1 and diagram rotation m subject to the
fundamental relations

s?=1,

(j £4,i+1 modn),
(j=i+1 modn),

8i85 = 8584
8i848; = 8§48,8;

TS; = Si41T,
where we understand the indices for s; as elements of Z/(M + 1)Z.

When we put

_ . s—M+m
yn,m - U‘n

(m # 0), (6.1)

we get the following theorem which gives a relation between the GPBBS
and the affine Weyl group.

S
yn,D - ’{"n, 3

Theorem 6.2
TSM—18M—2 -+ 8o gives the time evolution which concerns with time t, i.e.

TSM—-15M-2"" 50 ; ' ,
s—M+1 s—M+1 s—M-+1
Uy Uy Uy
K3 K3 |- Ky

s+M s+M s+

’LLl U ’!.LN
= s+1 s+1 s+1
= M 2 M uNM

S+ s+ s+

K] Ko Ky

The BBSs can be reformulated as integrable lattice models at tempera-
ture zero from the crystal theory and the combinatorial R matrix [17, 18].
The PBBS with one kind of ball and box capacity one has also been refor-
mulated into two types of lattice models, a periodic Agl) crystal lattice and

a twisted A%)—l crystal chain, where N denotes the number of the boxes
in the system [8]. It is straightforward to extend this result to the case of
the GPBBS. Here, we will briefly show how the GPBBS is reinterpreted as
some integrable lattice systems. Since the proofs for the statements below
are almost the same as those in Ref. [8], we will omit them here.



Let By be the classical crystal of Ué(AS&[)) corresponding to the k-fold
symmetric tensor representation of U, (Apr). As a set it consists of the single
row semistandard tableaux of length k on letters {1,2,... ,M + 1}:

Bo={[ala]  al[i<a<i<  <i<M+1},

An element b

b=l |2 | - | 0] € Bk

is also denoted as a series of M +1 integers b = (zM+D) M) (@) 21,
where z/) is the number of letters j in b. A state |¢); of the GPBBS is
naturally identified with

W), = Bebe - b
E B&1®B(?2®"'®BQN7

where

b= (kS US_MJ_rl,qu_M*Z,... ,us) (m=1,2,...,N).

[ 7y '

For the BBS without the periodic boundary condition, time evolution is
given by the isomorphism induced by the combinatorial R matrices:

T: Boo®(Bgl®Bgz®-~®BeN)—>(Bgl®ng®---'®BgN)®Bw,
T: {0}) ®|¢¥): — [¥)e+1 ® [{O})

where |{0}) is the highest weight vector of B,. For the GPBBS, by taking
the trace of the auxiliary state in By, T := Trp_7, we have the time
evolution

T: By, ® Bg, ® -+ ® By, — By, ® By, @~ ® By,
T: |)e = |¥)t+1-

As the Agl) crystal, the operator T maps |1); to the unique tensor product

of Ag\}f) crystal that exactly corresponds to the state of the GPBBS at ¢ + 1.
The GPBBS is also reformulated as a twisted lattice of M vertical axes
in terms of Ué(Ag\lr)_l) crystals. In this case, a state {¢); is identified

l'w)t = bltz®(bfu®bfw®'“bfu\4)
€ By®(Bp, ® B, ®...Bny,)

where
t £} 8
by = (KN:KN-1:--- s”l)’_
1 s—M+j | s—M+j s—M+j .
by, = (WS M WS M Yy (1=1,2,...,M),

13
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k= Znle k5 and n; := Zf____l us" ¥, The time evolution is determined by

the isomorphism induced by the combinatorial R-matrix for A%)_l crystal:
be (b, ob, ®...0h )= (Bt et e. W) bt

In Fig. 10, we schematically show the twisted crystal lattice associated with
the GPBBS.

/

71

i
[

7

1

7
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Figure 10: The twisted crystal lattice associated with the GPBBS.

7 Concluding remarks

In this article, using a path description of characteristic polynomial of partic-
ular matrices and an algorithm to construct the conserved quantities using
the Lax representation of the ndKP equation, we showed explicit form of
the conserved quantities of the GPBBS. Relations to the affine Wey1 group
action and the crystal theory were also clarified. An advantage to reformu-
late the PBBS as crystal lattices is that we can extend it to the crystals
associated with other root systems.

Since the GPBBS is composed of a finite number of boxes and balls, it
can only take on a finite number of patterns. Hence its trajectory is always
periodic and a fundamental cycle, i.e. the shortest period of the periodic
motion, exists for any given initial state. In the case where the box capacity
is one everywhere and only one kind of ball exists, the formula used to
calculate the fundamental cycle is explicitly obtained using the conserved
quantities and some rescaling properties of the states [16]. Hence, using the
results in this article, we may get the formula to calculate the fundamental
cycle for the GPBBS, which is a problem we wish to address in the future.
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