-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

FAST PARALLEL DECODING ON SYSTOLIC ARRAY
ARCHITECTURE FOR CODES ON A CLASS OF
ALGEBRAIC CURVES (Algebraic Aspects of Coding Theory
and Cryptography)

Title

Author(s) | Matsui, Hajime; Sakata, Shojiro; Kurihara, Masazumi

Citation O000O0b0O0OD0OOD (2005), 1420: 193-205

Issue Date | 2005-04

URL http://hdl.handle.net/2433/47176

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39181848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obooooooOoooO 14200 20050 193-205

183

FAST PARALLEL DECODING ON SYSTOLIC ARRAY ARCHITECTURE
FOR CODES ON A CLASS OF ALGEBRAIC CURVES

mHF - BB H TR ER EM
HAJIME MATSUI SHOJIRO SAKATA MASAZUMI KURIHARA

ABSTRACT. We construct a two-dimensional systolic array implementing the Berlekamp~Massey-
Sakata algorithm to provide error-locator polynomials for codes on selected algebraic curves.
This array is constructed by introducing some new polynomials in order to increase the par-
allelism of the algorithm. The introduced polynomials are used in the majority logic scheme
by Sakata ef al. to correct errors up to the designed minimum distance without affecting its
high-speed. The arrangement of the nearest local connection of processing units in the systolic
array is obtained for the general case. Furthermore, shortened systolic arrays that reduce the
circuit scale and have the same function are constructed with only a slight modification of the
connections and controls; this enables the adjustment of the circuit scale for different types of
systems.

1. PRELIMINARIES

Let Zg be the set of non-negative integers. In this paper, we consider a one-point algebraic~
geometric code on Miura’s C? curve X over a finite field K := F,. For positive integers a and b
such that a < b and ged{a,b) = 1, a C? curve is defined by the polynomial equation

(1) D(z,y) =1y + e’ + > X(ni )@y =0, e#0

{m ,nz)ezg, nia+nob<lab

over K. It is known [9] that X is always absolutely irreducible and has no singular point except
at a single infinite point Py. For simplicity, we consider a non-singular C? curve although
'it is possible to argue singular cases similarly [9]. Then, the genus g of X' is given by g =
(a — 1)(b — 1)/2; moreover, the residue class ring K[X] := K|z,y]/(D(z,y)) consists of all the
algebraic functions having no poles except at Puo.

Let {P;}1<j<n be a set of n K-rational points except Peo; we denote the pole order of F' €
K[X] at P as o(F). For m € Zo, the K-linear subspace L(mPy) = {F € K[X]jo(F) <
m} U {0} has dimension m — g + 1, provided m > 2¢g — 2 by Riemann-Roch Theorem. In
this paper, we assume that m > 2g — 2 for simplicity. Our code C{m) is defined as C(m) :=
[(eg) € K" | Sy eF () = 0, F € L(mPro) }.

Given a received word (rj) = (¢;) + (e;), where e; # 0 only for j € {41,-++ ,j¢} corresponding
to £ = {P},}1<y<t, We want to find a Grobner basis of the error-locator ideal I(€) := {F €
K[X]|F(P;) =0, P;, € £}. Then, the set of common zeros of all the elements in the Grobner
basis agrees with £, and the error values {e;, }1<,<: are obtained by 0’Sullivan’s formula in {10].

In this paper, we do not use any special fonts to represent vectors. For any element n € 73,
n, and ny denote the first and second components of vector n. Let B(A) = {n € Z&|n2 < A}
for A € Zo. Then, an element of K[X] is uniquely expressed as Flz,y) = Zn@(a) F a™ym2.
We denote z™y™ by 2*; furthermore, we define o(n) := o(z") = nia + n2b for n € Z%, where
o(-) is defined on both Z§ and K[X], and we remember that o(F) = max{o(n)| F, # 0} if
F= Zn@b(a) Fpa" € K[X]

For A, A' € Zy, we denote ®(4, A') := {n € ®(A)]o(n) < A'}, where Figure shows an example
of ®(2a—1, A") for A’ = 31 and (a,b) = (4,5). From a given received word (r;), we can calculate

the syndrome {u;} for [ € ®(2a — 1,m) by w = 3 7 4 rj2 (P;), where u; = Zi,zl e;, 2 (Pj,)
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Figure. Pole orderson ®(7,31) and 94,31 {0<i<3)

according to the definition of C{m). For {uy,} with n € ®(2a — 1,m)\®(a,m), we may decide
syndromes by the linear dependency among the elements of K[X] induced by the curve defining
equation (1). More precisely, if n € ®(2a ~ 1,m)\®(e,m) and | € ®(a, m) with o(n) = o(l},
we see that n' := n — (0,a) satisfies n’ € ®(a — 1,m — ab) and | = (b,0) + n’; we then have
Un + €U + 3 cq(o,ab—1) XrUrin' = 0.

For ®@(a) := (0,i) + ®(a) = {(n1,np) € Z%|i <mg <i+a—1} with 0 <i<a—1, we have
d(2a—1) = Ji=; @9 (a) (non-disjoint union). Furthermore, it should be noted that o(n) # o(n')
if and only if n # n' for n, n’ € ®9(q). Similarly, for ®?(a, 4’) := {n € ®P(a)lo(n) < A'},
we have ®(2a — 1, 4") = |J¢Z; 8 (a, 4’). Note that &) (a) = &(a) and 3 (a, A"} = &(a, A").
Figure shows an example of &% (a, A’) for A’ = 31 and (a,b) = (4,5).

The standard partial order < on Z2 is defined as follows: for n = (n1,ny), n' = (nf,n}) € 72,
n < n' if and only if n; < ) and ny < nb. Let I € 3 (q, A") be o(IM) = o(l) for I € B(a, A")
if there exists such an I for [ and i. Then, {® is uniquely determined for each I and i if it
exists. Note that {(®) = from its definition.

We define degree deg(F) € ®(a) of F € K[X] by o(deg(F)) = o(F), and let s := deg(F).
From now on, ®(a,o0(s)) is abbreviated as ®(a,s). Defining dF} := 3= 4.4 5 Fnlyppienr_s i
s < 102) and dF} := 0 otherwise, we call dF} discrepancy of F € K[X] at | € ®(a). Let
V{u, A') be the set of bivariate polynomials whose discrepancies are zero at every [ € ®(a, A'),
and let V(u, ~1) := K[X]. In order to obtain the Grébner basis [1} of I(£), we compute the set
of minimal elements in V'(u, B) in the meaning of deg(-) concerning < for a sufficiently large
B € Zyg. 1t is shown that B = 2t + 49 — 2 + ¢ is sufficient for correcting t errors from the facts
that F' € I(E) if 3 co(q,s) Fruntt = 0 for all I € ®{a) with o(l) < ¢+ 29 — 1 ([12], proof of
Lemma 2) and that the pole orders of the minimal elements in I(£) are less than or equal to
t+2g — 1+ a ([3], proof of Lemma 5). From now on, we set B := 2t + 4g — 2 + a.

If we design a code that can correct up to t errors, the minimum distance dpin of the code
must be greater than or equal to 2¢ + 1. It is well-known that the Goppa designed distance
dg of C{m), which is the lower bound of dp;, and agrees with the Feng-Rao designed distance
drr if m > 4g — 2, is equal to m — 2g + 2. Thus, we can set m = 2t + 2g — 1 and obtain
V(u,m) by using {u;}icq(q,m). Therefore, to obtain I(£), 2g — 1 + a syndromes of {u1hice(q) for
2t + 29 — 1 < o(l) <2t + 4g — 2+ a are required. These are called unknown syndromes.

2. BMS ALGORITEM VIA KAMIYA-MIURA FOR CODES ON C? CURVES

Before stating Berlekamp-Massey—Sakata (BMS) algorithm, we introduce certain important
quantities such as 7 for 0 <4 < a — 1 to the updating of BMS algorithm and the construction
of systolic array in this paper. By the assumption gcd(a,b) = 1, we have an integer b~! such
that 0 < b7} < a—1,bb7! = 1 (moda). For 0 < N < B, we define a unique integer 7 in
{0,1,--- ;a—1} by 7= b"'N ~ i (moda), which depends on not only 7 but also N; however,
N is not clearly indicated. If there exists I = (z&”,lg’)) € ®%(a, B) with N = o(I()), then
7= 1" — i since I = b=1N (mod a). Note that 7 = 4, and that, if I(*) exists, then I also exists
and we have (9 = [ gince lgi) = lg) by 0 < l;i) -71=i<a—1.
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Next, we explain the quantities sgf,) = (s%{l,é) € ®(a) and cg\if) = (cg\z})i,é) € ®(a) U {(-1,4)}
for 0 <1 < a—1. At the first stage of BMS algorithm, IV, sgf,), and cg\? are initialized as 0, (0, ),
and (—1,1), respectively. Let [ € ®(a, B) and 1) € & (a, B) be N = o{l) = o(I)) if such [ and
1) exist. Then, we define d%) = d(F](\;))l for F}J) € K[X]. In N-updating of BMS algorithm,

sf,f,) and cgf,) are updated to sg?“ and c%) +1 as follows:

: * 1@ — cg\l,) otherwise,
3) CS\? = 4 c%) o if d%) =0or sgff) > 1@ - c%),
+ 1@ — sgf,) otherwise.
1f [V exists, then sg\? A —cgf,) is equivalel‘lt to 5%)} 2 Zgi) _(:5?71 since i = ly) —17. For simplicity,
we define the preserved condition (P) of sgf,) and cf,f,) as follows:
P) & dg\i,) =0 or sgf,) > @ — c%). ‘
Then the above condition “otherwise” indicates that dg? # 0 and 5%)‘1 < lgi) - cgf,)l.

In [7)[8], the BMS algorithm starts from (0,0) € ®(a, B), and is performed along with each
element of ®(a, B) in the total order o(-) as ordering. For later use, we describe here the
algorithm performed not along with the pole order in the pole order sequence o(®(a, B)) but
along with 0 < N < B including gap-numbers.

BMS Algorithm:

Input: {y} for I € &(2a - 1,m).

Output: Fr(ﬁi_l and G,(,l)ﬂ forall0 <i<a—1.

In each step, the indicated procedures are ca;ried out for all0<i<a— 1.

Step 0: (initializing) N := 0, 5% = (0,4) ¥ = (=1,4), F{ = ¢, G := 0.

Step 1: (computing discrepancy) If I® exists and 55\1,) <@ dg\i,) = Zne@(a X F]{?‘)nunﬂm S
O N v TN

otherwise, d¥ = 0.

Step 2: (N-updating) sgf,)ﬂ and c%) 1 as described above,
0 F) | e gt B ) oo 6,

i Gt if (P)
) G(Z) = SN ,
(5) N+1 { (d%))—lpz(\f) otherwise.

Step 3: If N < m, change N to N + 1 and go to Step 1; otherwise, stop algorithm. O

In (4), if 1) does not exist, we define Fxll = zsx’{kl—sx)ﬂ(\i).

The present form of the BMS algorithm, which is performed along with pole orders for the
syndromes from codes on C? curves, by Kamiya-Miura [2] is the reduced version of Sakata’s
algorithm [11]. As previously stated, the unknown syndromes must be determined to perform
Step 1-2 for m < N < B; the BMS algorithm including the determination of unknown syndromes
is described in a later section. From now on, N is called a processor number, which corresponds
to processor’s number in the two-dimensional systolic array described later in section 4. The

following theorem confirms that {F](;)}Ogiga,—l is a system of minimal polynomials.
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Theorem 1. We have F( € V{u,N -1 deg(F(z )= ! ,\and FY 5 = 1; moreover,
N N

’I\T

(6) min {cﬁ",}l]F € V(u, N - 1), deg(F) = (Cﬁepi) } =59,
(7) S.(N)I > s(l) > > sgg’ll). (]

The proof of Theorem 1 is referred to [2][11] or Appendix A, in which SSV> 1= cm +1 is also
proved for all IV, 4.

For later use, we describe a variant of the above algorithm. We associate F'(z) with a reciprocal
univariate polynomial F(Z) := > ned(as) F,7z06)-0(n) where s = deg(F). Note that the degree
of F must be presented together with F to reconstruct F(z) from F(Z). For example, Z% + 1
corresponds to 1+ z if (a,h) = (2,3) and s = (1,0), and also corresponds to z + 2?2 if s = (2,0).
Setting

F(z)=F(Z) and GY(2) = 2z¥-Mc0(2),

where M is the processor number at which the updating Ggf,) = (dg} )_IFI(J) occurs, or M :=0
if GE\? = 0: note that Z?E;‘,) = ZN-M (ds\J )) F(“" ) holdsA Thus, we obtain the univariate version of
the BMS algorithm by initializing Fw =1, G := 0, and replacing (4)(5) to the followings:

(8) 7o, =T - Va0,

a0 ZGY i (P),
N+1 - (d(@}) F() otherwise.

(9)

This form in which the algorithm updates the reciprocal univariate polynomials corresponds
to Kotter’s algorithm [3]. Furthermore, we apply this mechanism for calculating “candidate
value” of the unknown syndromes in later section.

3. DETERMINATION OF UNKNOWN SYNDROMES

The syndromes obtained with a received word are {un} only for n € ®(2a — 1,m), and
therefore, the N-updating for N > m needs the determination of unknown syndrome at Step
1 in the above algorithm to continue the loop until B. Through the restriction of curves and
reduction of computation, an effective parallel algorithm can be constructed.

From now on, we impose the following restriction of algebraic curves.

Assumption. In the defining equation D(z) = 0, D(z) = y® — ex? — Znecb(a,ab—l) xn2" of
the curve X, let mp = max{o(n)|n € ®(a,ab— 1), xn # 0}. Then we only adopt the curve
satzsfyzng mp < b and e =1 in the defining equation. This brings about the deﬁnmg equation

D( ) =y b”zneé(lb)){nz

For example, the condition is satisfied for the elliptic curves having a defining equation of the
form y? + azy = asz® + a1z + ag since (a,b) = (2, 3) in this case. The Hermitian curves are
another example. Let r be the power of a prime number, then a Hermitian curve is defined by
the equation y" + y = 21! over K = F,2; this curve has r® + 1 K-rational points including a
single infinite point, which attain the Hasse-Weil bound ¢ + 1 + 2¢,/4.

This restriction leads to a useful property of linear dependency among {2"} and consequently
the syndromes {u,}. As previously stated, if n € ®(2a — 1, B)\®(a, B) and [ € ®(a, B) with
o(n) = o(l), then n' := n — (0,a) satisfies n’ € ®(a — 1,B — ab) and | = (b,0) +n'. By the
above assumption, we have u, = ZTE‘D(M) XrUprin + Uy, where the sum is computed at Step 0
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(initializing) without the unknown syndromes in the algorithm since r+n' € ®(a, m). Therefore,
for all n € &(2a — 1, B), u, can be represented as u, = pn + 1, where

0 ifn=1¢€ ®2a-1,B)N2¥(a, B),

o = Z XrlUr4+n Otherwise.
red(1.h)

If i) ¢ ) (q, B) with o(I)) = N exists and sgf,) < 1, we define candidate b%) of unknown

G Fo

) e
syndrome as by = a6y g

o + . Note that u
v

K

. L - I3
2one B(asd) o s not an unknown

n#s%)
syndrome since o (n + 16 - s(]f,)) < N —1. After u; is determined, it follows that b%) = d%) —uy.

nHllD—s

It is worth to notice that, in [12]{13], the candidate of unknown syndrome was defined by omitting
o) from bgz,), which agrees with d(,i,) ~ uy. In the following majority logic scheme ($), which

is quoted from [12][13] with this modification, and which is similar to that of Kotter [3], our
definition makes it possible to classify the set {bg:,)} into equivalence classes according not to
the linear dependency as in [12][13] but to the easier equality relation. Our technique is, under

the restriction of curves, the combination of this modification and further V%)., ﬁ_’(;z) to realize

parallel computation of bg\? on systolic array.

{$): Let Z be the set of bgé) for which 1) exists and ssf,) <19, and let {B,}, By = {b{]\i,)},;eh_
be the set of equivalence classes dividing Z by the equality relation. For each v, define the
number of votes h, as hy = 3 .. [, max {0,, 1§” — Cg?,l - 9(,3)1} Then, there is a unique
largest number of votes hs, and for 7 € I, u; = —bgf,) and d%) = 0 hold.

It is shown in [13] that hs > 27# h, for the largest number of votes hg, and thus. our

variant of candidate b([\i} from [13] also gives the correct unknown syndrome. To implement (&)

“on systolic array, the definition of ‘(](\1 )(z) and V('",(\f)(z) is adapted as follows:

Y (4 (i) _ A7) () +3(})¥n/
10) V (f) z2) = Z 1% (1) 277+S‘N' n W'z} := W ) ARl R
(10) V() Nt LWV = > W
ne®(){(a,B) n' €®li)(a,B)
-0 — Z (i) Z (@) )
(11) ‘N,n+s({;)—n " . FN,rurJrn—sS:.) + FJ\',rprJrn—sf,\'ﬁ)’
re@(a,sf,\‘,)) r§¢(a,s§,))
o(r—l—n—sf{))imax{m,N—]} o(r+n—s(fé))>max{m,1\’—l}
(@) — Z @ Z @) _
(12) W ]\"n+55‘i;)_n’ — GA,1TUT+H'—S(AJJ) + l GA?’Tpr’i‘nl"S(ﬂil)’
re@(a,s‘(,f!)) rei(a,ss\{))
o(r+n’—ss\"4))§max{m4,N~l} o('r+n’vs§;1f))>max{m,N»-1}

where 7 is a fixed element in ®(2a - 1) satisfying n 2 n for all n € ®(2a — 1, B). We regard as
deg(if’]sf )) =+ sg.f,) and deg(ﬁ"‘f(xf)) =9+ s%’,}. Then we define
W) Vizy = 3 vz, Wz = Y WO g

W) G)
Ny+sy' —n - Nptsy, —n
ned()(a,B) N n'€d()(a,B)

Note that, in (11), the coefficient of 217 with o{n) = N > m, ie., the coefficient of
7o) = ZN  equals the candidate bg{’,) of unknown syndrome. Then we obtain the following
theorem.
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Theorem 2. If N < m, then we have

s P =V - g
N P
; Z (&N TR i (@),
(15) V[ng)Jrl ( N_)-(g) N ( )
ZW y otherwise.

If N > m, then we have

(16) VSG)H - V( v Tu ZNF( V dgff) (WS? +uzZN—§§\€f)) )
(17) oo [ 2(a) (W +uzTY) @),
o Z (Wng) +wZ Nag\?) otherwise.

We postpone the proof of Theorem 2 until Appendix B.
Thus, we obtain the following version of BMS algorithm including the determination of un-
known syndromes, employing the majority logic scheme [12]{13], where the candidates of un-

known syndromes are computed parallelly by polynomials VE\;) and W W introduced above.

Parallel Version of BMS Algorithm (Complete Form):

Input: {u;} forl € @(20. —1,m).

Output: Fy) and Gy, forall 0 <i<a—1.

In each step, the indicated procedures are carried out for all 0 <7 <o — 1.

Step 0: (initializing) N := 0, s, o, Fi) .= 1, G¥ = 0, W == 0,

i"—'(i) = Zneéf‘?)(a,m) UnZO ) + Zn&’@(f){a,B),m<o(n) pnZ° °) as above.
Step 1: (determining unknown syndrome, checking discrepancy) While 0 < N < m, d%) =
V(i) if 1) exists and s(i) < 149, d(i) = 0 otherwise. While N > m, ({) is carried out,
and d,(N) =V )N + uy if 1) exists and 5( ) <1, d(” = 0 otherwise.

and

Step 2: {N-updating) sg\,)ﬂ, ‘Sv>+1v E(;)H, GS\?/H are the same as above. While 0 < N < m,
17(7') and VV( D are updated by (14) and (15). While m < N, V( ) and TV( ) are updated by
(16) and (17)

Step 3: If N < B, change N to N + 1 and go to Step 1; otherwise, stop algorithm. O

4. SYSTOLIC ARRAY FOR PARALLEL BMS ALGORITHM
In this section, we describe two-dimensional systolic array for the algorithm. The two-
dimensional systolic array is constructed by the following rules.
(i): it is organized by connected processors Py (0 < N < B) in a series
(ii): each PN contains a cells {C;’, }o<i<a
(iit): all {C } have input and output terminals

(iv): CN) is connected to Cg‘?ﬂ

(v): C%) is connected to Cgf,:zl, where ¢* is uniquely defined by i* = b1 4+ i(moda)
It should be noted that i* = b~! + i (mod a) is equivalent to 7 = b~ 1{N + 1) — i* (mod a), which
implies that 7 agrees with i* at N + 1. The cell C(i) calculates the right- hand sides of the
updating formulas, and transmlts the resulting values 55\,)+1, F SV) Y 5\,)_{_1 to G N1 through the

connection (iv), and Cgv) 13 Gt N +1, w 5\3 11 to CS\, 131 through the connection (v). All calculations

of the values and the coefficients of the polynomials in the cells are synchronized at each clock
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signal, and in the next section, we show the scheduling, that is, the calculations that are done
at each clock signal. _ ,

It is strongly desirable that the connection between cells satisfies local condition in the
sense that only the adjoining cells are connected; this is precisely defined as follows. Let
{{4, N)}o<j<a,0<N<B be a set of lattice points. For each N, the lattice points (0,N), (1,N),
-+, (a—1, N) are regarded as the positions of a cells {CS@}OSKG in one processor Py, although
cell Cg\j,) is not generally situated at (4, N). Two cells in Py and Py.; situated at lattice points
(j,N) and (5%, N +1) are said to be in neighborhood if |j — 57| < 1. The systolic array is said to
satisfy local condition if all the pairs of cells connected by rules (iv) and (v) are in neighborhood.

We first argue on the arrangement of cells for the decoding of codes on C? curves with

b= 1 (mod a); we then solve the general case including a, b with b # 1 (mod a). Let b = 1 (mod a),
then we define

18) i) a-2—= jv+Niseven,
18 NG =4 )
% j + N is odd,
i+ N 7+ N is even
(19) MOES 2na ’
o 17Nl L Nisodd,

9

4

where := indicates that ¢n(7), ¢N(j) are chosen in the range 0 < ¢n(j),¥n(j) < a—1Dby
moda. Then ¥n(j) = N — ¢n(j) (mod a) is easily checked. If ¢ (j) = 4, then Pn(j) =7 holds
since 7= N — i (moda) by b =1(mod a). '
Situating the cell CS.?N ) position (4, N), we see that connection (iv) implies that CS\?N 2
is connected to C%ﬁf(”) if ¢5(j) = on41(s"), and connection (v) implies that C%’N(J)) is

connected to Cgffj‘r’f 10 3¢ Yn(G) = ¥n41(4"). It can then be shown that the local condition is

_satisfied. More precisely, the following relations hold:

[ ¢n-1(a~1) j=a—1, j+ Nisodd

pn-1(j+1) j#a—-1,j+Nisodd
¢n_1(0) 7 =0, Niseven

L dn-1(f— 1) j#0, 7+ Niseven,

( Yn-1(a—1) j=a—-1, j+ Niseven

: {i+1) j#a-1, j+ Niseven

(@) i) =4 %zvbzvl_({(g)) ;io, N odd

| ¥n-1(j—1) j#0, j+Nisodd

Thus, we can design the arrangement of cells to satisfy the local condition in the special case
b=1(mode). In the general case, instead of ¢n(j) and ¥n(7), we take

(22) on(530) = b7 on (i), dn(Gib) = b7 P (d)-

If ¢n(j;b) = 4, then ¢n(j;b) = 7 holds since 7 = b"'N — i(moda). Moreover, we claim that
(20) and (21) are still valid for ¢x(j;b) and ¥n(j;b). By connecting the cells as described above
with ¢y (j;b) and ¢¥n(j;b) in place of on(j) and ¥n(j), the arrangement of cells for the local
condition is obtained.

én(j;b) and 9n(j;b) have notable properties. They have a period of 2a: dn12.(7;0) =
én(5;b) and ¥y 124(7;8) = ¥n(j; b). Furthermore, they have a kind of symmetry with respect
to j in the sense that ¢ni4(j;b) = én(7*;b) and Pn+a(fib) = Y (55 b) with j + 7% =a— 1

e

(20) on(j) =
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Table. Values of #v(/:8) and ¥~ (/38) with b=3(mod4) LS T TS TR I I A Py
i) wn(i;b) cOP cOR cOled O e P R O O c PR e - -
Nlo]1]2]3]a]s[6]7]s NTo[1]2]3]«[5]6]7]s fco ‘cho) Yool oo 1@1) Vel Yo ook Yook ---
ofof3j3j2fziif1]|ojo ofofoi3f{3f2]2fijtjo O Yoo C(zé) < .‘cﬁ” ® '\E ) B3 ‘:Cg)\ .
visiel2f3ft{2]e]1]3 t{t]sfoj2f3]1]2fo}t prd X (=it
20 1]z 0f1]3]e]2]3] BARBEDNBREE PP c el O e o C - P e
SH2i1]10i0]3]31212 sqzizytitjojejajslz Figure. Systolic array for codes on C,'! curves

These properties are utilized in [5] to reduce the scale of the systolic array. We can interchange
on{j;b) and ¥n(j;b) in order that the resulting systolic array still satisfies the local condition.

Table lists the values of ¢n(4;b) and ¥n(j;b) with b = 3 (mod 4). An example of the C?
curve with b = 3 (moda) that attains the Hasse-Weil bound is y* + y = z!! over Fauo, which
is in Miura’s list (9] of C® curves having many K-rational points. In Figure, we show the cell
arrangement and their connection in the systolic array constructed as above according to the
values ¢n(j;11) and ¢x(7;11) in Table, where the solid and double lines express the connection
according to ¢n(7;11) and ¥ (j;11), respectively.

We have applied the arrangement of cells on the three-dimensional systolic array described in
[14] to our two-dimensional systolic array, as in [7][8], and extended it to the general case for b.

5. SCHEDULING

In this section, we describe the scheduling of data in the algorithm on the systolic array. As
a result, the circuit scale of the systolic array in this section will be reduced to almost half the
scale with the same running time as in [5]. Although, in [7][8], ¢ gap-numbers Zg\o(®(a)) were
excluded from the processor numbers, we now include them in the processor numbers 0 < N < B
in order to regularize the arrangement of cells.
(1)

We define that, for 0 < N < B, fl(\;)ﬂ , and vg\l,)ﬂ’h {resp. N1k and wgf,)Hﬁ) are the values
in K received by (‘ell c'? . from ct¥ resp. @) from C¥) at clock h € Zy. We also define
]\ +1 N N +1

that, for N =0, f0 b U Olh goil and wé?h are the values in K inputted to cell Cé” at clock h € Zy.

Next, we define the coefficients V' @ N W ]f,) s —F(]\i,)’ 5, and 'éﬁ?h V (l). ﬁ_x), F%}, and @—(?)1
respectively, by

(23)
_ B o(s\y) (s )+ N i
v =S T,z WY ZW 2" Fy = Z Fzn o= S Gz
h=N h=N-M

TaY

Note that the coefficient of Z" for h < N in Vi ) has been omxtted since it is not necessary

in the algorithm; then, it follows from Wy W~ gN- M(d(j )) 1‘ that the lowest degree of Zh
in Wx,) equals N. Then, we give the scheduling for the computatxon of the coeflicients V! N’h,
W sv) m F §V)h, and "C'?“(l)h as follows:
Nh = UN Nth> Nh wN,I\’+h’ 1» h= f}\ 2N+h* N,h = N 2N+R

These imply that, for example, Vﬁé’,h is obtained at clock N + A in CS?. The validity of this
scheduling follows from the recurrence formulas (25)-(30) given below and the range of h for
Eyh w%)h, f](\;)h and gg\z)h given later.

Thus, the updating formulas (8), (9), (14), (15), (16), and (17) are changed to the following
(25), (26), (27), (28), (29) and (30), respectively.

v
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Parallel Version of BMS Algorithm (Scheduling):

Input: {u;} for I € ®(2a — 1,m).

Output: ng] and G%)H forall0<i<a-1.

In each step, the indicated procedures are carried out for all 0 < 1<a~1.

Step 0: (initializing) N := 0, S(N} = (0,1), ¢ (Z) = (—1,1), fNo = 1, g&)o = 0, wN)h = 0
(0 <h < B);

' 0 h¢ o(@(i)(a,B)) :
v%?h = U, h€o (Q(f)(a,B)) and 0 < h < m,
oo h€0(®W(a,B)) and m < h < B,

where n(9 is in ®(a, B) with h = o(n(¥)), and we have u,, = @, +uy for o(n®) = o(n)
with n € ®(a, B).
Step 1: (determining the unknown syndrome, checking discrepancy) While 0 < N < m,

%) = UN) if I exists and S(i) <, dy () .— 0 otherwise. While N > m, () is carried
()

out for bS\P = Unon and vy is obtained. Then, dg\, 1= vg\,)zj\ +uy if 119 exists and .s(]\i,) < 1,

d v = 0 otherwise.

Step 2: (N-updating) ‘9%')-5-1' CSQ_H are the same as in (2).

(25) fN+l h+2 (1) - dmg%)h
@
g]\, A lf (P)
(26 v = -
) IN+1h+3 (a’ ) IfN?h otherwise :
while 0 < N < m,
(27) “E\i')ﬂ,hﬂ = Ug)h - d(i}w@,h%
_ (2) if (P)
(28 w? = i ' ’
(28) N+1,h+2 (dg\’,)) v N) otherwise :
while m < N,
(29) "“’x")+1,h+1 = stz)h + “lfm - N ht “191\/ n) 5
() )
(30) wI\-H ha2 T (-1 .
(dy)~ (v + usz ) otherwise.
Step 3: If N < B, change N to N + 1 and go to Step 1; otherwise, stop algorithm. O

In view of the left-hand side of {25)-(30), we see that the number of registers for v%) b wﬁv)h.

./, and q(l in CY must be set to one, two, two, and three, respectively. In order to complete
1\ h N,h
(1)

the construction of the array, the range of h for v N . wg\? he SN R and 9§\«) must be indicated.
This is given from (23) as follows:

(31) 2N < h< N+ B for v( ) , and wgf,)!h,
(32) 2N <h < 2N + O(SN) for f](\i)h
(33) IN+N-M<h<2N+N-M+o(sf)) forgit),.

The validity of the scheduling follows from the observation that the values in the right-hand
side of (25)-(30) are obtained at clock h except for u; and d(h) which are obtained at clock
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2N < h, while the values in the left-hand side are obtained at clock > h. Thus, the systolic
array consisting of B + 1 processors has been constructed.

APPENDIX A. PROOF OF THEOREM 1

Theorem 1 is proved by the following three lemmas.
Lemma 1. Suppose that G(z) € V{(u, M — 1), Gy = 1, dGy # 0, and t < k with t = deg(G),
k € ®%)(a,B), and o(k) = M. Moreover, suppose that F(z) € V(u,M) and Fs = 1 with
s = deg(F). Then, it holds that at least one condition of s1 > ky —#1 +1 and so # ko —tp. O
Proof of Lemma 1. We suppose that s; < k1 — t; and s = ky — t2. Since G € V{(u, M — 1)
and F € V(u, M), we have
- Y Guupu=w for l€ (g, M - 1),t <1,
ne€®(a,t)\{t}
- Z Frpy =1 for le€ @(52)(@ M), s<lL
re®{a,s)\{s}

Since ng+ky—ty < a—1+sg and nt+k—t > n+s > sforn € &{a,t), we have n+k—t € <I>(32)(a, M)
and s < n+k -t for n € ®(a,t), and moreover,

- Z Grunik—t = Z G { Z F’"u'f+<”+kt)—5}

ned(a,t)\{t} ne®(a,t)\{t} r€®(a,9)\{s}

Z F, Z Gnun+(‘r+k~s)~t

re®{a,s)\{s} ne@{e,t)\{t}

= - Z Frtty 4 s,
re@(a,s)\{s}
where the last equality follows from r+k—s € ®®)(a, M ~1) and t < r+k—s for r € ®(a,s)\{s}
sincerg+ky—sy <a—1l+tgandr+k—s>r-+t>tforr € ®a,s), and the last sum agrees
with ug since s < kg =82+l <so+a—land k€ LID(SZ)(a, M). This contradicts dGy # 0. O

Lemma 2. We have sg\i,)l = cgf,)l + 1. ]

Proof of Lemma 2. We prove it by induction. The case of N = 0 follows from the initializing.

Assuming agv)l = cg\,)l + 1 -for all 4, we prove SEV)-H 1= cg\,)ﬂ | + L. If there is no {(), then also

no {9, and therefore, we may assume that there is _l“)“lQ It follows from the assumption of
the induction that 9%)1 > l§z) - CS:,)J if and only if .sgf,)’l > t%z) - cgf,)’l. Thus, we may assume that
.sg\z]):l < lg) c%)l, %),1 < lgf) — c%{l, and dg\i,) # 0 without loss of generality. If dE,? = 0, then it
contradicts Lemma 1 since F@ € V(u, N-1), F(E) € Vi{u,N), 5%)1 < l( g (i) yand 7 = l( g
Thus, we obtain d # (0 and s§\z,>+1 1 cg\‘,)ﬂ = 55\,)1 — CSV)1 | O
It follows from Lemma 2 that max {s%),l(” - N)} = (max {5%)17 10— .sgf,)’l + 1} ,i).
Lemma 8. Let F(z) € V(u,N — 1), s <1 with s = deg(F) for | € ®©2)(a, B), and let G(z) €

Vi{u,M—1),t <k with t = deg(G) for k € 3*)(a, B). Moreover, suppose that G # 0, dGy = 1,
]V[‘”‘O( )<N_O(Z) and ko — ty = ly — 59. Then,

H(z) = 2"°F — dFz" %G € V(u, N}
and deg(H) =7, wherer := s if dF; = 0, and r := mgx{s,l—k-{-t} = (max{s1,l1 — k1 + 11}, s2)

otherwise. O
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Proof of Lemma 3. Since

o (ZT"SF) -0 (zr—l-t-k*tG) =7ra+ S9b — (7’1 -+ kl)a — 12b
e O(Z) — O(k) > 0,

(34)

we obtain deg(H) = r. Next, since F € V{(u,N —1) and G € V(u, M — 1), we have

0 € d2) (g, N - 1), s <
Z Frupp- Sz{ng i:l ( hesp
ned(a,s) ’

(t2) (g, M — 1), <
> Gun+1)t“{(1) gii e hrse
ned(a,t) )

We may assume dF; # 0. Ifp € &(s2)(q, N~1) and r < p, then we have p—I+k € lt2) (g, M —1)
and t < p — [ + k, and moreover,

Z Hpunyp—r = Z Fn“n,+(r—s)+p—7'—dﬂ Z Gnur@+(r—l+k—t)+p—r

n€d(a,r) ne®(a,s) ned(a,t)
= Z Fn-“n—kp;s —dF; Z Gnun+(p—-l+k)—t
ne®{(e.s) ned(a,t)
_ 0 pedD(g N-1),r<p O
Tl dF,—-dF;-1=0 p=1L

Proof of Theorem 1. 1f d% # 0 and G = 0, then siy, ; : z“) +1and F{) = TR
Thus d%ﬁrl = ( and deg(F](@l) = sx,) .1 hold. Supposmg that G # 0, let M be the processor
pumber most recently satisfying GSV) = (d&,&) ) Flgf,), o(k\9) = M, and 7 = kéﬁ — 4, then

we have c() k) — S\{) Thus we can prove the theorem except for (6) and (7) by using

Lemma 3 since 1} — k) 4+ s (J ) = 1) (”. The minimality (6) is proved by induction. (6)

at N := 0 holds trivially. Supposmg that the equality is true for s N)lﬂ we prove it for SSV) 11

Let q() be the minimum of ¢N,1 in (6). If dgz,) = 0 or sgf,) < 1@ - X,), then s_(,\,)’ = §§v),1 <

§](\Z,)+H < sgf,)ﬂ L= 55\,)1, thus gﬁ)ﬂl = sgf,)ﬂl holds. If d%) # 0 and sgi,) > 100 cg), we have

(E\?_{_l 1 < 55-:})+1 | = l( Y 5 °) , + 1, and moreover, d( D # O(as in the proof of Lemma 2. Assuming
l

C§\zr>+11 < l() sgz,)l, Lemma 1 is again applied for Fy' € V(u,N —1), F € V{u,N) with

deg(F) = (gN Rt i). Then this leads contradiction and prove C§\7)+1 .= sg\,) 1, Lastly for the

proof of (7), supposmg sgv)l < sm with0<i<j<a-—1,y~ ‘F() is still in V{(u, N — 1) and

deg(1/~ ’F( ) = (s N.1»J), which contradicts the minimality of 5(,\,)1 u

We have proved Kamiya-Miura’s version with no use of figures shaped by sgv) and c_(,\,) and

along with the line of the proof in [4] of Berlekamp-Massey algorithm for one- d1men51onal case
more analogously than the original one.
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APPENDIX B. PROOF OF THEOREM 2

Before proving Theorem 2 for the present ‘i_s:) and ﬁ‘f,f’ , we change (11} and {12) by setting
MTi=r+n- s%) and 7 =1 +n' — sﬁf}, respectively, as follows:
(35)
v7(1) 3 {1)
V ]:' (Z):= Z 4 Z F](\;‘)ﬂ--’n.*-s({),liﬂ' + Z FN-’IF—TH—&S:,) ©on ZO(”),
ne®()(a,B) redlm2=") (a,n) N med(n2-i(q n) ‘
L o{m)<max{m,N—-1} o(m)>max{m,N-1}
(36)
.
57740 7 @ Y+ N-M
W Az’ (Z) = Z < Z Gg\?.w—n’-i—su)uﬁ + Z GN.rrwn’»%s(j}pw Zo{n a ’
n/eq)(])(a,B) We@(n&—])(a’nf> ' M WE@(",Q—J,)(G’”/) 4 A
\ o7 )<max{m,N-1} o(m)>max{m,N—1}

Note that, if Y # —1 and n:=n'+ 1% - k) € (g, B) with o(I'?) = N and o(kU)) = M
N1 ’
in (36), the coefficient of ZoW)1+N-M — zo(n) equals

0] ®
(37> Z GA’,ﬂ~n+l(i)_c(,z)U7r + Z G]V,ﬂ——n—{-l(i)*—cgf-) o
redlm2= an) ’ red(n2=(a,n)
o{m)<max{m,N—-1} o{m)>max{m,N—1}
since c%) = k) — sﬁ{}, ny,—j = ng — léi) + kéj) —j = ng — 1, and el y := 0 for

1\’,1r~n+l(")-c§f,
7€ dM2= (g, n) with o(r) > o(n').
(@) ;
Proof of Theorem 2. The coefficient of 27T iy Fﬁ‘fi}(z) equals
(¥) _ g8 (D)
FN,‘/ru-n-i—sX,) dN G/\"’,nmn—)-l“)»cg)’

(i) i)

which is regarded as F if 1%} does not exist. Substituting this into (35) for i , the
N,7r—n+s$:,) N+1
contribution of F” ) equals
N,?r—n—l—sN
F _ Jald) o
Z N,'ir—n%—sx.) tr t Z Nr—ntst) fom
redr2=D(an) red("2=(a,n)
of{m)<max{m,N} o{w)y>max{m,N}

If N < m, that is, max{m, N} = m, then this agrees with the coefficient of Z°(™ in F%) at (35).
If N > m, that is, max{m, N} = N and max{m, N — 1} = N — 1, then this agrees with

FO wer Y PO ertuwFY :

Z N—nts) " ‘ Nrnst) O T N a0

we€d{n2=(g,n) redM2-9(g,n) !
o{m)<N-1 o(m)>N—1

where the last term is regarded as zero if there is no {("2=9 ¢ &2~ (g, n) with o(I">~9) = N.
Since o (l("‘fi) —-n+ 55@)) = N + o(s(]z)) - o(n), uzF(l)

Ni(P2= oy

sl is the coefficient of Z°(™ in
SN

wZN 3% Similarly, the contribution of el . equals
Nar—n+lli—c}

60wt Y60
Z N,7r—n+l(")ﬁc§:.) m 4 N,?r—-an')—cf{v) o
7€P(2=(a,n) red("2=an) '
o{m)<max{m,N} o{n)>max{m,N}
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If N < m, then this agrees with the coefficient of Z°) in Wf) at (36), as noted there. If N > m,
then this agrees with

a® U+ Z Gt por +uGY o
cz)( Nyl = (ng—1) Nﬂ'—"-&-l(’)m-c(\”)m ! Nr2= ) op () )
nedin2" qg,n) rcd{n2-")(q,n) !
o(n)<N-1 o{m)>N—1

. (na—i) _ (i) _ (i)) N U _ Y (@)
Since o (l 2 n+l Cy N +o(sj/) —o(n) + N - M, ufGNJ("z*ﬂ~n+1<1')—cf,f,)

coefficient of Z°(") in U,gZNWSfr); thus (14) and (16) are proved. (15) and (17) are verified in a
similar manner. O

is the
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