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Abstract
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between an input distribution $P_{in}$ and the output distribution $P_{out}$ under some condition. On the other
hand, the ordinary probabilistic reasoning algorithms such as the BP or the HUGIN propagation have
been used for Type 2 reasoning.

The previous research only proposed reasoning methods $\mathrm{i}_{11}\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{a}11\mathrm{y}$, but we have not seen any
research discussing the relationship between them or proving the mathematical justification of them.
The justification of the methods has been only given by qualitative and intuitive explanation in the
previous research.

We think the lack of mathe matical justification is caused by a lack of a mathematical definition of the
reasoning problems. We have not seen any research defining Type 1 reasoning problems by mathem atical
formulas. If there is no mathematical definition of the input information and the target output, we cannot
evaluate the justification of reasoning algorithms.

The first objective of this paper is to give definitions of Type 1 and Type 2 reasoning problems
by mathematical formulas. We clarify the difference between Type 1 and Type 2 reasoning by tl ese
definitions. The defined reasoning problems include ordinary probabilistic reasoning problems.

Secondly we show the correct reasoning under the definition. Type 1 reasoning is solved by the
minimization of Ku 1ack-Leibler(K-L) information under the marginal distribution constraints repre-
sented by Type 1 evidence. Type 2 reasoning is exactly calculated by ordinary probabilistic reasoning
algorithms such as $\mathrm{B}\mathrm{P}$. Since we can use ordinary reasoning algorithms for Type 2 reasoning, we mainly
investigate Type 1 reasoning in the following sections.

Thirdly we propose basic procedures for Type 1 probabilistic reasoning. An efficient procedure called
the Iterative Scaling Procedure(ISP) [Csiszar 1975][Ireland and Kullback 1968] can be applied to the
reasoning procedure. Although some previous research applied ISP to the method of reasoning given
distribution evidence, we deduce the procedure using ISP from a simple assumption and the defi1litioll
without intuitive concepts.

Finally an efficient algorithm of Type 1 reasoning on Junction Trees(JT) [Aji and Mcliece 2000]
[Jensen 1996] is proposed. Tlle big clique algor $\mathrm{i}\dagger,1\mathrm{l}\mathrm{n}\mathrm{l}$ using ISP was proposed in the previous research
[Valtorta et al. 2002]. An effective implementation of ISP for thle maximum likelihood estimation on
contingency tables was also investigated ill the previous research [Jizousek and Preucil 1995]. The C0111-

plexities of the previous algorithms are higher than tl at of the proposed algorithm.

2 Formalization of Type 1 and Type 2 probabilistic reasoning
First, we define Type 1 and Type 2 probabilistic reasoning. Let $X_{i}\mathrm{i}\in I$ and $E_{\mathrm{j}}j\in I_{C}\subset I$ be discrete
random variables for sake of brevity and $E_{j}$ is called implicit evidence.

We assume each piece of $\mathrm{i}$ mplicit evidence $E_{j}$ gives us the information only about $X_{\mathrm{j}}$ not about
the other $X_{i}i\in I-\{j\}2$ . Formally, the ab ove mentioned condition is represented by the following
assum ption.

Assumption 13 Each piece of implicit evidence $E_{j}$ and every $X_{i}$ i $\in I-\{j\}$ are conditionally inde-
pendent given $X_{j}$ as follows:

$P(X_{1}, \ldots, X_{n}, E^{I_{C}})=\frac{P(X_{1},\ldots,X_{n})\prod_{j\in I_{C}\sim}P(X_{j},E_{j})}{\prod\vdash I_{C}{}_{j_{-}^{-}}P(X_{j})}$, (1)

where $E^{I_{C}}$ deno tes $(E_{1}, \ldots, E_{k})$ .

Now, we define Type 1 probabilistic reasoning.

Definition 1 Type 1 probabilistic reasoning is defined by the following input and$d$ output. The input is
given by a distribution $P(X_{1}$ , . . . , $X_{n})$ and the information of$X_{j}j\in I_{C}$ as $P^{*}(X_{j})= \sum_{i\neq j}P(X_{1}$ , $\ldots$ , $X_{n}|$

$?\sim$ It is easy to extend this assumption to the assumption that each piece of implicit evidence gives us the information
about $(X\mathrm{j}_{1}$ , . . . , $X_{j_{f}}$ $)$ .

$3\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ assumption is identical with the assumption of the previous research[Pearl 1995].
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$E^{I_{C}}=e^{I_{C}})=P(X_{j}|E^{I_{G}}=e^{I_{C}})$ , which is the marginal distribution of $X_{j}$ given evidence $E^{I_{C}}=$

$e^{Ic_{;}}$ where $E^{I_{C}}=e^{I_{C}}$ denotes $(E_{1}=e_{1}, \ldots , E_{k}=e_{k})$ . The target output $P_{out}$ is the distribution
$P(X_{1}, \ldots, X_{n}|E^{I_{C}}=e^{I_{C}})$ or the marginal distributions of $P_{out}$ .

The output of the defined Type 1 probab ilistic reasoning $P(X^{I}|E^{I_{C}}=e^{Ic})$ differs from the output
of the ordinary probabilistic reasoning, which is the conditional distribution $P(X^{I-I_{C}}|X^{I_{C}}=x^{I_{C}})$ .
However the conditional distribution $P(X^{I}|E^{I_{C}}=e^{I_{C}})$ includes $P(X^{I-I_{C}}, X^{I_{C}}=x^{I_{C}})$ as a special case.

If the distribution $P(Xj|E^{Ic}=\mathrm{e}^{I_{C}})$ is the point $\mathrm{m}\mathrm{a}s^{\neg}\mathrm{s}$ in $X_{i}=x_{i}$ , i.e., $P(Xj=x_{i}|E^{Ic}=\mathrm{e}^{I_{C}})=1$ ,
the information frolll the $\mathrm{i}_{1}\mathrm{z}\mathrm{z}\mathrm{p}\mathrm{i}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}$ evidence $e_{j}$ is the same as ”

$x_{i}$ occurred”, i.e., $X_{i}=x_{i}.$ . In this
case, the defined output distribution is identical with $P(X^{I-I_{\mathrm{C}}}, X^{I_{C}}=x^{I_{C}})$ . Thus, the defined Type 1

probab ilistic reasoning includes the ordinary probabilistic reasoning as a special case.
From Definzitioll 1, the given distr ibutions $P^{*}(X_{j})j\in Ic$ coincide with tlle marginal of the output

distribution $P_{ouf}(Xj)= \sum.{}_{i\neq j}P(X_{1}, .., , X_{n}|E^{I_{C}}=e^{I_{C}})$. This satisfies the requirement of the previous

research on Type 1 reasoning.

Next, we define Type 2 probabilistic reasoning.

Definition 2 TyPe 2 probabilistic reasoning is defined by the following input and output. The input is

$g\mathrm{i}\tau\}en$ by $od\dot{r}s$tribution $P(X_{1}$ , . .. ’
$X_{n})$ and information $P^{**}(Xj)=\alpha P(Xj’ Ej=ej)$ or $P(Xj,$ $E,$ $=$

$e_{j})/P(X_{j})$ in $F_{\mathit{0}7}m,ula$ (1). The target output $P_{out}$ is the distribution $P\{X_{1}$ , . . . , $X_{1},|F_{\vee}^{I_{C}}=e^{I_{C}}$ ) or the

marginal distributions of $P_{out}$ .

The difference between two types of reasoning pioblem$\mathrm{n}\mathrm{s}$ is the information of $X_{j}j\in Ic$ given by

implicit evidence. Thus, $P^{**}(X_{\mathrm{j}})$ does not alvvays coincide with the marginal of the output distribution
$P_{o\iota\iota t}(X_{j})= \sum_{i\neq j}P(X_{1}, \ldots, X_{n}|E^{Ic}=e^{lc})$ . We can easily prove that ordinary probabilistic reasoning

algorithms deduce the output distribution of Type 2 reasoning. That is the reason $\mathrm{w}\mathrm{i}_{1}\mathrm{y}$ the HUGI\rfloor \T

algorithm can be applied to the reasoning for indirect evidence or likelihood, i.e., Type 2 evidence.

Remark 1 In this problem setting, iT is important $\dagger ho.t$ $\mathit{7}l’ e\mathrm{A}\cdot now$ th $en$? arginal $dislrib?\iota t\dot{\mathrm{z}}o^{i}nsP(X_{1}, \ldots.X,| )$

as the input distribution but do not need the whole joint distribution $P(X_{1}, \ldots,X_{n}, E^{I_{C}})$ . Under As-
$s?\iota mpt\mathrm{i}on\mathit{1}$, we cory dete rmine the target output distribution $P(X_{1}, \ldots, X_{\mathfrak{l}},|E^{I_{G}}=e^{I_{C}})$ from the $\inf(\lambda 7^{\cdot}-$

$m,\mathit{0}$ tion $P(X_{j}|E_{j}=e_{j})$ and $P(X_{1}$ , .. . , $X_{n})$ without $P(X_{1}, \ldots, X_{n}, E^{I_{C}})$ . Although the problem is defined
on the probability space of $(X_{1\backslash }\ldots.X,, \{ E^{I_{C}})$ , $u’ e$ can treat the prol)lP,m as being on $l?/$ on the space of
$(X_{1}$ , $\ldots$ : $X_{n})$ , which is the same space as for $07$ $linary$ probabilistic reason$\iota \mathrm{i}7?g$ .

The output distributions calculated by Type 1 probabilistic reasoning are interpreted as generalized

posterior distributions given marginal distributions $P^{*}(X)j$ i.nstead of given strict $\mathrm{v}\mathrm{a}1_{11}\mathrm{e}\mathrm{s}X^{I_{C}}=x^{I_{C}}$ .
Generalized posterior distributions play the same role as posterior distributions do in statistical inference.

3 A Basic procedure for Type 1 probabilistic reasoning

3.1 Relationship between the output distribution and a prior distribution

We investigate the property of the output distribution deduced by the defined Type 1 probabilistic

reasoning. The relationship between the output distribution and a prior distribution is shown by the

following lem ma and theory.

Lemma 1 Under Assumption 1, the output distribution $P_{out}=P(X_{1}, \ldots,X_{n}|E^{Ic}=e^{I_{C}})$ that is de-

duced from an input $d\dot{\mathrm{z}}stribuXionP(X_{1}, \ldots,X_{\eta})$ and, $\mathrm{i}nforma\mathit{7}\mathrm{i}on$ $P^{*}(X_{j})=P(X_{j}|E^{I_{C}}=e^{I_{C}})j\in I_{C}$ by

Type 1 reasoning is given by
$P_{out}=\alpha P\langle X_{1}$ , $\ldots,X_{n}$ )

$j \prod_{\epsilon I_{C}\sim}\beta(X_{j})$

, (2)

where $\beta(Xj)>0$ .
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Proof:

$P_{out}$ $=$ $P(X_{1}, \ldots, X_{n}|E^{I_{C}}=e^{I_{C}})$ (3)
$=$ $\alpha P(X_{1}, \ldots, X_{n}, E^{I_{C}}=e^{I_{C}})$ (4)

$=$ $\alpha\frac{P(X_{1},\ldots,X_{n})\prod_{j\overline{[succeq]}}{}_{I_{C}}P(X_{j},E_{j}=e_{j})}{\prod_{j\overline{\epsilon}I_{C}}P(X_{j})}$ (5)

$=$
$\alpha P(X_{1}, \ldots, X_{\eta})\prod_{\mapsto j_{-}^{-}I_{C}}\beta(X_{j})$

. (6)

Formula(5) is given by Assumption 1.

Remark 2 If $P(y)\neq 0$ then the conditional probability $P(x|y)=P(x, y)/P(y)$ can be defined. So the
region $R(x^{I_{C}})$ of deteministic value of $X_{j}$ for the eviden ce of ordinary probabilistic reasoning is restricted
as follows:

$R(x^{I_{C}})=\{x^{I_{C}}|P(x^{I_{C}})\neq 0\}$ . (7)

In a similar fashion, the region of the value of the probability given as Type 1 evidence is restricted
as $folloutS$:

$R(P^{I_{C}})=$

$\{P^{I_{C}}|\exists\beta(X_{1})>0\cdots\exists\beta(X_{k})>0$ $\forall l\in I_{C}$

$P(X_{t})=, \sum_{\lambda\lrcorner\neq_{d}\mathrm{Y}_{l}}\alpha P(X_{1}$
, . . . ’ $X_{\}?}) \prod_{\vdash j_{\sim}^{-}I_{C}}\beta(X_{\mathrm{j}})\}$

, (S)

$\tau nhere$ $P^{I_{C}}=$ $(P(X_{1}), \ldots, P(X_{k}))$ .
If $P^{I_{C}}\in R(P^{I_{C}})$ then the generalized posterior distribution or the generalized conditional probability

given $P^{I_{C}}$ can be $defi^{J}n$ ed. It is regarded as a generalization of the condition under $u\prime li$ ich $tf\prime eord\mathrm{i}r\iota ar^{\vee}tJ$

conditional distribution $ccm$ be defined.
An important characteristic of the output distribution is shown by the following theorem.

Theorem 1 Let $I\{Ic$ be the set of the distr $.ibutior\prime s$ on th $e$ $r$ andom variables $X_{1}$ , $\ldots$ , $X_{7l}$ that satisfy the
marginal condition $P(X_{j})=P^{*}(X_{j})j\in I_{C}$ arId $P^{Ic}\in R(P^{I_{C}})$ . Under Assumption 1 the output
distribution $P_{out}=P(X_{1}, \ldots, X_{n}|E^{I_{C}}=e^{I_{C}})$ that is $ded$ uced by Type 1 reasoning is given by

$P_{ou\mathrm{t}\mathrm{g}}=\mathrm{a}\mathrm{I}^{\cdot}\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{n}I(P||P_{in})P_{-}^{-}arrow M_{C}$ ’ (9)

where $P_{i}$, is a prior $dis$ tribution $P(X_{1}, \ldots , X_{n})$ and $I(\cdot||\cdot)$ is $Kullbac\lambda$.-Leib $ler(K- L)$ information.
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$

Let $P_{M}$ be the distribution as follows:

$P_{M}=\arg \mathrm{n}1\mathrm{i}\mathrm{n}I(P||P_{in})P_{arrow}^{-}\vdash\Lambda \mathit{4}_{C}^{\cdot}$ (10)

We consider the following $T_{x_{i}}(X_{1}, \ldots, X_{n})$ as $T(x)\dot{\mathrm{z}}n$ Theorem 2.1 of the paper[Kidlback 1959].

$T_{x_{\mathrm{i}}}(X_{1}, \ldots, X_{n})=\{$
1 $X_{t}=x_{i}$

0 $X_{i}\neq x_{i}$ . (11)

Fkom Theorem 2.1 of the paper, $P_{M}$ is given by

$P_{M}= \frac{e^{\sum_{i=1}^{k}\tau_{x_{l}}}P(x_{1},\ldots,x_{n})}{\sum_{x_{1}}\cdots\sum_{x_{n}}e^{\sum_{x=1}^{k}\tau_{x_{1}}}P(x_{1},\ldots,x_{n})}$ . (12)
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Let us set $e^{\tau_{x_{\mathrm{i}}}}=\beta’(x_{i})$ .

$P_{M}(x_{1}$ , . . ., $x_{n})=\alpha’P(x_{1}, \ldots,x_{n})$ $\prod_{j^{-}\in I_{G}},\beta’(x_{j})$

, (13)

where
$P_{\Lambda I}(x_{j})=P^{*}(x_{j})j\in I_{C}$ . (14)

From Lemma 1 and Definition 1, $P_{out}$ is represented by

$P_{out}$ $(x_{1}$ , . . . , $x_{n})=$ a $P(x_{1}$ , . . . ,
$x_{n}) \prod_{j\in I_{C}}\beta(x_{j})$

, (15)

where
$P_{out}(x_{j})=P^{*}(x_{j})j\in I_{C}$ . (16)

Fr.om the uniqueness of $\beta’(x_{j})$ a.nxt $\beta(x_{j})$ , we obtain the following $fo$ rmula and the theorem can be

proved.
$P_{out}(x_{1}, \ldots, x_{n})=P_{M}(x_{1}, \ldots, x_{\eta})$ (17)

The tl eory shows that the distribution calculated by Type 1 probabilistic reasoning is the distri-

bution that is closest to the prior distribution with K-L information under the restriction of marginal

distributions.
Some previous research proposed the reasoning methods based on the principle of least change or the

minimum divergence principl$\mathrm{e}[\mathrm{W}\mathrm{e}\mathrm{n} 1990]$ that minimizes the divergence between prior distribution $P_{in}$

and output distribution $P_{out}$ under Some condition. However the correctness of the principle also 1as not

been justified in the research. There are a lot of measures of the divergence between two distributions.

For $\mathrm{e}\mathrm{x}\mathrm{a}$ mple, if we use K-L information as the divergence, which divergence $1\mathrm{S}\mathrm{c}\mathrm{o}\mathrm{r}\iota \mathrm{e}\mathrm{c}\mathrm{t}$ , $I(P_{in}||P_{\circ ut})$ or
$I(P_{out}||P_{i\cdot n})^{7}$ The selection of the measure has been still supported by a qualitative concept or one’s

intuition in the research. In this paper, justification of the minimum divergence principle can be proved

from the definition of Type 1 probabilistic reasoning and Assumption 1.

On the other hand, there was some previous research investigating tlle distribution given by mini-

mizing K-L information. The $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}’[\mathrm{K}\mathrm{u}11\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k} 1959]$ used in the proof of Th.eo.rel.n 1 is one example of

the previous research. The paper $\mathrm{s}1_{1}0\backslash \mathrm{v}\mathrm{e}\mathrm{d}$ $\mathrm{t}11e1\uparrow!$ the distribution given by mini mizing K-L information

under some linear restriction is represented by the product of some parameters and a prior distribution

as Formula (2). Inversely, the previous paper[Skyrms1985] claimed that if the target distribution is as-

sumed as the product of some para meters and a prior distribution then the distribution can be deduced

by minimizing K-L information under some restriction.
Since Type 1 reasoning was not defined by mathematical formalization in the previous research, tire

property of the output distribution was unclear. However, from Definition 1 and Lemma 1, we shows that

the output distribution of Type 1 reasoning can be represented by the product of some parameters and

a prior distribution. Thus we can also show that the output distribution can be deduced by minimizing

K-L information in Theorem 1.

3.2 A basic procedure for Type 1 probabilistic reasoning and ISP

Type 1 probabilistic reasoning problem shown in Theorem 1 is regarded as one of the conditional opti-

nlizatiou problems. The computational complexity for calculating an optimum solution in a conditional

optimization problem is generally very high. However, Iterative Proportional Fitting Procedure (IPFP)

or the Iterative Scaling Procedure (ISP) can be applied to the procedure of the defined Type 1 probabilis-

tic reasoning. ISP is used for computing the maximum likelihood estimators (MLEs) in a probabilistic

model of a contingency table[Ireland and Kullback 1968] under the condition that some marginal sums

are given. ISP is also applied to Type 1 probabilistic reasoning.
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[Procedure 1: ISP]
begi $\mathrm{n}$

$P(X_{1}, \ldots , X_{n}):=P_{in}(X_{1}$ , $\ldots$ , $X_{n}\rangle$ ;
$\mathrm{i}:=1$ ;
wh Ne $\exists_{j\in Ic}P(X_{j})\neq P^{*}(X_{j})$ do

begi $\mathrm{n}$

$j:=\mathrm{i}$ mod $|I_{C}|$ ;
$P(X_{1}, \ldots , X_{n}):=P(X_{1}, \ldots,X_{n})\frac{P^{*}}{P}\frac{(X)}{(X_{j}\}}$;
$i:=i+1$;
end

$P_{out}(X_{1}, \ldots, X_{n}):=P(X_{1}, \ldots,X_{n})\cdot$,
end

Lemma 2 if $P^{I_{C^{*}}}\in R(P^{I_{C}})$ then Procedure 1 halts and the value calculated by Procedure 1converges
to $P(X_{1},$

\ldots ,
$X_{n}|E^{Ic}=e^{I_{C}})$ .

Proof: It is obvious from Theorem 1 and the property of $ISPfCs\mathrm{i}s_{\sim}’ a,r1975$][Ireland and Kullback 196Sf.
ISP is a very simple iterative procedure for calculating generalized posterior distributions. ISP renews

the distribution by adjusting its marginal probability to each restricted marginal value $P^{*}$ at each cycle.
ISP repeats this renewal iteratively until tlle marginals of the calculated distribution converge to the
restricted values.

Procedure 1, i.e., the ISP for Type 1 probabilistic reasoning, differs from the ISP for MLE at several
points. Each joint probability $P(.’\iota_{1}, \ldots, x,, )$ corresponds to a cell of the contingency table of the ISP for
MLE. All cells of the contingency table at $\mathrm{e}$ set to a constant at the first stage in the ISP for MLE. The
given marginal distributions correspond to the marginal sums of given data in the ISP for MLE.

The application of Jeffry’s Rule to Type 1 reasoning was proposed by the previous research[Pearl 1990].
Procedure 1 is identical with Jeffry’s Rule in tlle case given one piece of Type 1 evidence. Some previous
research[Valtorta et al. 2002] applied ISP to the reasoning method. However tlze research has only pro
posed the method without defining the target output distribution. Although the previous research $1_{1}\mathrm{a}\mathrm{s}$

only given qualitative and intuitive explanations for applying ISP to tlle reasoning nlethod, we deduce
procedure 1 which is the procedure using ISP from Assumption 1, Definition 1 and Theorezn 1 with out
intuitive concepts.

4 An Efficient procedure on Junction Trees

4.1 Probability model of Junction Trees
A Junction $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}/\mathrm{T}\mathrm{r}\mathrm{e}\mathrm{e}$ is defined by a clique node set $S^{N}=\{N_{1}, N_{\mathit{2}}, \ldots N_{n_{N}}\}$ , an intersection node
set $S^{D}=\{D_{1}$ , . . . ’

$D_{n_{D}}\}$ and the neighboring node set $S^{N}(D_{rn})$ of every intersection node $D_{m},m=$
$1$ , . .. ’ $n_{D}$ .

Each intersection node is connected to all clique nodes in its neighboring node set with arcs in a
Junction $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}/\mathrm{T}\mathrm{r}\mathrm{e}\mathrm{e}$ . A Junction Tree(JT) is applied to the representation of the probability model
whose joint distribution factors into a product of several local functions of some subset of random
variables. A typical type of joint distributions represented by JTs are shown as follows:

$P(X_{1}, \ldots, X_{n})=\frac{P(N_{1})P(N_{2})\cdots P(N_{n_{N}})}{P(D_{1})\cdots P(D_{N_{D}})}$ , (18)

where $P(Nt)=P(X_{i_{1}(l)}, \ldots,X_{i_{n(l)(\ell\rangle}})$ and $P(Dm)$ $=P(X_{i_{1}(m)}, \ldots, X_{i_{n(m\}}(m)})$ .
$t(N_{l})=\{X_{i_{1}(l)}$ , . . . , $X_{i_{n(1)}(l)}\}l\in\{1$ , . . . , $n_{N}\}$ and $\mathrm{t}(\mathrm{D}\mathrm{m})=\{X_{i_{1}(m)}, \ldots,X_{i_{n(m)}(7n)}\}m\in\{1, \ldots,n_{D}\}$

are called clique elements and intersection elements respectively. Abbreviate $t(N_{l})$ , $t(D_{m})$ to $N_{\ell}$ , $D_{m}$

respectively. The distributions that can be represented by BN are included in this type of distributions.
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4.2 A propagation algorithm on Junction Trees

We propose a new propagation algorithm on JTs for calculating the marginal distributions of the output

distribution: $P_{out}(N_{l})= \sum_{X\not\in N_{1}}P(X_{1\gamma}\cdots, X_{n}|E^{Ic}=e^{I_{C}})$ , $l=1$ , $\ldots$ , $n_{N}$ . The JT used for the calcu-

lation of Type 1 reasoning is the same as that of ordinary probabilistic reasoning. So the JT does not
have the cliques including implicit evidence $E_{j}$ .

Before the propagation algorithm is explained, several terms are defined. First, restricted intersection
node(BJN) is defined. If the element of an intersection node is equivalent to a restricted random variable
as $D_{m}=\{X_{j}\}j\in I_{C}$ , the intersection node is called a restricted intersection node(RIN). If there

does not exist an intersection node satisfying $D_{m}=\{X_{g}\}j\in I_{C}$ , the RIN corresponding to every

such restricted random variable $X_{j}$ is produced and connected to an arbitrary clique node $N_{t}$ satisfying
$X_{j}\in N_{t}4$ . The set of all RINs is denoted by $S_{RIN}$ .

The restricted tree(RT) of aJT is defined as the $\mathrm{s}\mathrm{m}$ allest subtree whose leaves are all RINs in the
$\mathrm{J}\mathrm{T}5$ . All clique nodes on a RT are numbered in order of the depth first search from an arbitrary root as
in Fig 1. The intersection node between a clique node $N_{\alpha}$ and $N_{\mathrm{t}}$, is denoted by $D_{u,\iota},$ . Each node rnay

have multiple numbers. We numbers the clique nodes and the intersection nodes in a RT with a view

to simplifying and clarifying the procedure and the proof of Theorem 2. So the indexes of nodes in a

RT are different from those in Forlnula $(1\mathrm{S})$ . The maximum number of the numbered cliques in a RT is

denoted by $l_{RT}$ .

Example 1 Let a prior joint distribution be

$P(X_{1}, \ldots , X_{n})=$

$\frac{P\acute{(}X_{1},X_{4})P(X_{4},X_{5})P(X_{5},X_{6},X_{7})P(X_{2},X_{6})}{P(X_{2})P(X_{3})P(X_{4})}$

$\frac{P(X_{2\backslash }X_{8})P(X_{3},X_{7})P(X_{3}.X_{9})}{P(X_{5})P(X_{6})P(X_{7})}$ . (19)

Let $tbe$ restricted randorn, variables, $\mathrm{i}.e.$ , the variables whose distributions are given as Type 1 evidence

be $X_{1}$ , $X_{9}\lrcorner$ , $X_{3}$ . The RINs in the origir $nl$ $JT$ of the joint distribution men $t\mathrm{i}o7$’ $ed$ above ate $\{X_{2}\}$ , $\{/\mathrm{Y}_{3}\}$

and there is no intersection node $co$ responding to $X_{1}$ . So $u\prime e$ produce the nern $RIN\{X_{1}\}$ and connect it

to the $clitl?le$ node $\{X_{1},X_{4}\}$ as $\mathrm{i}7$? Fig 1.
The restricted tree(RT) of the $JT$ is shown in Fig 1. The leaves of the $RT$ are the intersection nodes

$\{X_{1}\}$ , $\{X_{-}.,\}$ , $\{X_{3}\}$ , which are all RINs. The $RT$ is constructed by deleting the clique nodes $\{X_{2},X_{8}\}$ ,

$\{X_{3},X_{9}\}$ frorn the $o$ riginal $JT$.

[The strategy of propagation]

1. Repeat the propagation of Procedure 2 on the RT until the values of all cliques converge to so me

value.

2. Propagate messages from the RT to the whole JT by an ordinary probabilistic reasoning algorithm.

[Procedure 2]
begin
$\acute{\iota}:=\min\{k|D_{k,k+1}\in S_{RIN}\}$ ;
while $\exists_{D_{-}^{-}S_{RIN}}arrow P(D)\neq P^{*}(D)$ do

begin
$u:=i\mathrm{m}\mathrm{o}\mathrm{d} l_{RT;}$

$v:=i+1$ mod $l_{RT;}$

if $D_{u,v}\in S_{RIN}$ then $P(D_{u,v}):=P^{*}(D_{u,\iota)})$

$\overline{4\mathrm{W}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{w}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{R}\mathrm{I}\mathrm{N}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}\mathrm{l}\mathrm{i}}\mathrm{q}\mathrm{u}\mathrm{e}$nodes, from the viewpoint of complexity, we should select the clique

nodes as the extended JT includes the smallest restricted tree.
$\mathrm{s}$ In the case where the given JT is divided into subtrees by disconnecting every middle RIN, we can calculate the target

distribution by applying the following propagation algorithm to the RT of each divided sub JT individually
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Figure 1: Numbered clique nodes and intersection nodes on a restricted tree and the route of propagation,
where tlle black box nodes are RINs,

else $P(D_{u,v}):= \sum_{X\not\in D_{u,v}}P(N_{u})$ ;

$P(N_{\iota},):=P(N_{11}) \frac{P(D_{\mathrm{u}v})}{\sum_{x\not\in D_{u,v}}P(N_{v})}$ ;

$\mathrm{i}:=i+1$ ;
end

$P_{oul}(N):=P(N)$ ;
end

Theoyem 2 if $P^{I_{C^{*}}}\in R(P^{I_{C}})$ then Procedure 2 halts and the value calculated by Procedure 2 converges
to $P(N_{1}|E^{J}=e^{J})$ in every clique.

$\mathrm{P}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{f}|$ $5ee$ Appendix.

4.3 lComparisons between Procedure 2 and previous research
The propose procedure propagates messages in nun erical order of the clique numb $\mathrm{e}\mathrm{r}\mathrm{s}$ . The calculation
at each clique is simple and similar to the HUGIN propagation. Although the HUG IN propagation
stops after a round trip between leaves and the root, i.e., Collect Evidence and Distribution Evidence,
Procedure 2 repeats the cycle until the calculated values converge to the target values. Needless to say,
the HUGIN algorithm can be applied to only ordinary reasoning and Type 2 reasoning, but not to Type
1 reasoning,

The space complexity of Procedure 2 is $O( \sum_{N_{-}^{-}S_{RT}^{N}},\prod_{X\in N}|X|)$ where $s_{RT}^{N}$ is the set of all clique nodes
in the RT and $|X|$ denotes the number of values in1 $X$ . The time complexity of multiplication in one cycle
of Procedure 2 is $2( \sum_{N_{\sim}^{-}S_{RT}^{N}}\succ\prod_{X\in N}|X|+\sum_{D\overline{arrow}S_{RT}^{D}\sim}\prod,\mathrm{v}\in D|X|)$ where $s_{RT}^{D}$ is the set of all intersection
nodes in the $\mathrm{R}\mathrm{T}$ . The time complexity of addition in one cycle of Procedure 2 is $2( \sum_{N\in S_{RT}^{N}}\prod_{X\in N}|X|)$ .

The space complexity for variables of Procedure 1 is $O( \prod_{i\overline{\vdash}I}-|X_{i}|)$ . $\mathrm{T}$ he time complexity of $\mathrm{l}\mathrm{n}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\sim$

cation in one cycle 6 of Procedure 1 1s $|I_{C}| \prod_{i\overline{arrow}I}|X_{i}|$ . So both the space and the time complexities of
Procedure 2 are extremely lower than those of Procedure 1, i.e., ISP.

The big clique algorithm, which applies ISP to the calculation of soft evidence reasoning on $\mathrm{J}\mathrm{T}\mathrm{s}$ , was
proposed in the previous research[Valtorta et al. 2002]. The algorithm uses the big clique that includes
the whole RT for the calculation. The algorithm applies an ISP directory to the big clique. So the space
complexity of the algorithm is more than

$O( \prod_{X\in\bigcup_{N\Leftarrow}- s_{R\mathcal{T}}^{N}N}|X|)$
. The time complexity of multiplication

$\overline{6}$One cycle $\mathrm{c}\mathrm{o}\mathrm{n}\cdot \mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s}$to $|Ic|$ loopsffom $J$ $=1$ to $|fc|$ in Procedure 1.
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in one cycle of the algorithm is $|Ic| \prod_{X\in\bigcup_{N\in S_{RT}^{N}}N}|X|$
and the time complexity of addition in one cycle

is
$|Ic| \prod_{X\in\bigcup_{N\in s_{R\mathcal{T}}^{N}}N}|X|$

. Thus both the space and the time complexities of the previous algorithm are

higher than those of Procedure 2.
An effective algorithm, which applies ISP for calculating maximum likelihood on a contingency table,

was proposed in a previous paper[Jirousek and Preucil 1995]. The message of each RIN is propagated
on a graph in order of satisfying tlle running intersection property. This method is interpreted as the
following procedure. Let a RIN be a root of the JT representing a prior probabilistic model. The
algorithm propagates the marginal restriction of the root RIN to the whole JT in the san$\mathrm{z}\mathrm{e}$ way as the
calculation of a clique in the HUGIN propagation. Next, let another RIN be a root of the $\mathrm{J}\mathrm{T}$ . And the
algorithm repeats the same manner of calculation until the values converge.

So the time complexity of multiplication in one cycle of the algorithm is $|Ic|( \sum_{N\in S^{N}}\prod_{X_{\sim}^{-}N}\mapsto|X|+$

$\sum_{D\in S^{D}}\prod_{X\in D}|X|)$ . the time complexity of addition in one cycle of the algorithm is $|I_{C}|( \sum_{N[succeq]>^{N}}-_{l}\urcorner\prod_{X\underline{\overline{\vdash}}N}$

$|X|)$ . Even if the RT of a JT is the same as the $\mathrm{J}\mathrm{T}$ , the time complexity of the previous algorithm is
higher than that of Procedure 2. The space complexity of the algorithm is $O( \sum_{N\in S_{RT}^{N}}\prod_{X\in N}|X|)$ . Thus
the space complexity of the algorithm is the same as that of the proposed algorithm.

5 CONCLUSION
We defined Type 1 and Type 2 probabilistic reasoning problem by mathematical formulas. The correct
reasoning under the definition of Type 1 reasoning is solved by the minim ization of K-L information
under the marginal distribution constraints. We showed ISP can be applied to Type 1 probabilistic
reasoning and proposed an efficient propagation algorithm on Junction Trees. Both the 1ime and the
space complexities of the proposed algorithm are lower than those of the previous algorithms using ISP.

Appendix: Proof of Theorem 2
First we show the following lemma for proving Theorem 2. $P_{1}^{\mathfrak{l}}(X_{1}, \ldots, X_{\mathit{1}},)$ denotes the $P(X_{1}\ldots., X_{1},)$

calculated at the Ith loop 7 $\mathrm{i}\mathrm{n}$ Procedure 1. $P_{2}^{h}(N)$ denotes the $P(N)$ that is calculated in Procedure 2
after messages have passed through $h$ RINs. We assume that the order of the RINs are $X_{1}$ , $\ldots\backslash X_{\mathrm{A}}$ .

Lemma 3 When a message reaches a clique N at h $=k$ in Procedure 2. the calctd atet) distribu than of
the clique N satisfies the following equation.

$P_{2}^{k}(N)= \sum_{arrow \mathrm{t}’\not\in N}P_{1}^{k}(X_{1}, \ldots, X_{n})$
. (20)

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$

We prove Lemma 3 by the inductive method. It is obvious at $h=0$ .
We assume that Lemma 3 holds in a clique node $N_{u}$ at $h=k$ .
1) In the case where the next intersection node is $\mathrm{C}l$ $RIN$

Let the next intersection node be $D_{u,v}$ . From the assumption.

$\sum_{X\not\in D_{\alpha,v}}P_{2}^{k}(N_{v})$

$=$
$\sum_{X\not\in D_{u,v}}P_{1}^{k}(X_{1}$

, . .. ’
$X_{n})$

$=$ $P_{1}^{k}(D_{u,\tau\}})$ . (21)

Remark $N_{u}=N_{v}$ , became $D_{u,\mathrm{t}}$, is a $RIN$.
Following Procedure 2, $P_{2}^{k+1}(N_{v})$ is calculated as follows:

$P_{2}^{k+1}(N_{v})=P_{1}^{k}(N_{v}) \frac{P^{*}(D_{u,v})}{P_{1}^{k}(D_{u,v})}$ . (22)

$7\prime \mathrm{r}\mathrm{h}\mathrm{e}$ index $i=l$ at the $l\mathrm{t}\mathrm{h}$ loop in Procedure 1.
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Procedure 1 calculates $P_{1}^{k+1}(X_{1}$ , . . . , $X_{n}$ $)$ as follows:
$P_{1}^{k+1}(X_{1}$ , . . . , $X_{n})$

$=$ $P_{1}^{k}(X_{1}, \ldots, X_{n})\frac{P^{*}(D_{u_{7}v})}{P_{1}^{k}(D_{u,v})}$. (23)

From the definition of $RTs$, the marginal distribution $P_{1}^{k+1}(N_{\mathrm{t}},)$ is given as follows:

$\sum_{x\not\in N_{v}}P_{1}^{k+1}(X_{1}$
, $\ldots$ . $X_{n})$

$=$

,

$\sum_{1^{r}\not\in N_{v}}P_{1}^{k}(X_{1}, \ldots, X_{n})\frac{P^{*}(D_{u,\{},)}{P_{1}^{k}(D_{u,\tau},)}$

$=$ $P_{1}^{k}(N_{v}) \frac{P^{*}(D_{u,\mathrm{z}\prime})}{P_{1}^{k}(D_{u,\iota\}})}$ . (24)

Thus, from Formulas (22), (24), For mula (20) holds in $N,$ , at $h=k+1$ as follows:

$P_{2}^{k+1}(N_{v})= \sum_{\backslash ^{r}\prime\not\in N_{v}}P_{1}^{k+1}(X_{1}, \ldots, X_{n})$
. (25)

2) In th $e$ case where the next intersec tion node is not a $RIN$

Let the next intersection node be $D_{u,\tau},$ . $RTU$ denotes the moximum subtree of the $RT$ that includes
$N_{u}$ and not $N_{\mathrm{t}}$, . Let $S_{N_{\mathrm{u}}}$ be the vector or the set of 7 andon? vcvr iables in $RT_{u}$ an$\prime d$

$S_{N_{\mathfrak{l}}}$, the vector or the
set of random variables in the complement tree of $RTU$ .

By using the intersection node $D_{u,v}$ , th $e$ joint distribution calculated at thle $kth$ loop in Procedure 1
can be represented as $foll\mathit{0}’nrs$ :

$P_{1}^{\mathrm{A}}$ $(X_{1}$ , . . . , $X_{1}.)= \frac{P_{1}^{k^{\sigma}}(S_{N_{u}})P_{1}^{k-r}(S_{N_{v}})}{P_{1}^{k-r}(D_{\omega,\mathrm{c}},)}$ , (26)

where 7 is the number of the clique nodes in $R,T_{u}$ .
The marginal distr ibution of $N_{v}$ with respect to the joint distribution of Formula(26) is given by

$. \sum_{1’\not\in N_{v}}P_{1}^{k}(X_{1}, \ldots, X_{n})=\frac{P_{1}^{\mathrm{A}-r}(N_{v})P_{1}^{k}(N_{u})}{P_{1}^{k-r}(D_{u,v})}$. (27)

From the assumption and the calculation process of Procedure 2,

$P_{2}^{k}(N_{u})$ $=$
$\sum_{X\not\in N_{u}}P_{1}^{k}(X_{1\cdot\}},..X_{n})=P_{1}^{k}(N_{u})$

,

$P_{2}^{k-r}(N_{v})$ $=$
$\sum_{\lambda’\not\in N_{v}}P_{1}^{k-r}(X_{1}, \ldots, X_{n})=P_{1}^{k-r}(N_{v})$

.

Following Procedure 2, $P_{2}^{k}(N_{v})$ is calculated as follows:

$P_{2}^{k}(N_{v})$ $=$ $P_{2}^{k-r}(N_{v}) \frac{P_{2}^{k}(D_{u,v})}{\sum_{X\not\in D_{\mathrm{u},v}}P_{9\sim}^{k-r}(N_{v})}$

$=$ $P_{1}^{k-r}(N_{v}) \frac{P_{1}^{k}(D_{u,v})}{P_{1}^{k-r}(D_{u,v})}$ . $(2\mathrm{S})$

Tints, from $Fo$ rmulas (27), (28), Formula (20) holds in $N_{v}$ , which is the next clique of. $N_{u}$ , at $h=k$ as
follows:

$P_{2}^{k}(N_{v})= \sum_{X\not\in N_{v}}P_{1}^{k}(X_{1}$
, . .. , $X_{n})$ . (29)

Thus, Theorem 2 can be proved from Lemma 2 and Lemm a 3.
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