京都大学
KYOTO UNIVERSITY

Title	Thermodynamic properties of gaseous ethane and ethene＋
Author（s）	Uematsu，Masahiko；Saegusa，Shogo；W atanabe，Koichi； Tanishita，Ichimatsu
Citation	The Review of Physical Chemistry of Japan（1975），45（1）：53 59
Issue Date	$1975-11-20$
URL	http：／hdl．handle．net／2433／47013
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

The Review of Physical Cifemistry of Japan, Vol. 45. No. 1, 1975

THERMODYNAMIC PROPERTIES OF GASEOUS ETHANE AND ETHENE ${ }^{+}$

By Masahiko Uematsi*, Shogo Saegusa*, Koichi Watanabe*
and Ichimatsu Tanishita**

Abstract

Based on the most probable values and additional recommended values proposed by the High Pressure Data Center of Japan, new equations of state for gaseous ethane and ethene are devised for the range of temperatures 273.15 K to 498.15 K and of pressures up to 30 MPa for ethane and for the range of temperatures 273.15 K to 423.15 K and oi pressures up to 80 MPa for ethene. The canonical functions are also derived from the new equations of state, and the thermodynamic property values are calculated by difierentiating these functions. The calculated values of compressibility factor, molar volume, molar enthalpy and molar entropy are tabulated in this paper.

Introduction

According to the critical evaluation of the $P-V \cdot T$ data the most probable values of compressibility factor for gaseous ethane and ethene were proposed by the High Pressure Data Center of Japan (HPDCJ) organized in the Society of Material Science, Japan, under the sponsorship of the Agency of Science and Technology ${ }^{1}$. As the next program of the HPDCJ. new equations of state for both ethane and ethene are formulated based on these most probable values in order to calculate the $P-V^{\prime}-T$ property values as well as other thermodynamic property values at respective states. In the present paper. new equations of state which cover the range of temperatures 273.15 K to 498.15 K and of pressures up to 30 MPa for ethane and that of temperatures 273.15 K to 423.15 K and of pressures up to 80 M Pa for ethene are described and the tables of thermodynamic property values are presented.

New equations of state

The skeleton table values of compressibility factor for gaseous ethane and ethene which were proposed by the HPDCJ cover the ranges shown in Figs. 1 and 2, respectively. These skeleton table values accompanied with estimated uncertainties are classified into two groups, such as the most pro-

[^0]

Fig. 1 The most probable values and additional recommended values for ethane

- most probable value
\odot : additional recommended value
\square : critical point (305.43 K .4 .880 MPa , $\left.6.75 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\right)^{2}$)

Fig. 2 The most probable values and additional recommended values for ethene

- most probable value, \odot : additional recommended value

口: critical point ($\left.282.36 \mathrm{~K}, 5.032 \mathrm{MPa}, 7.77 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\right)^{3}$)
bable values and additional recommended values, according to the derivation of these values. Both the most probable and additional recommended values were used as the basic data in the present study of devising new equations of state.

Because of the wide ranges of parameters as shown in Figs. 1 and 2, density and temperature are chosen as independent variables. As is well known, Benedict-Webb-Rubin (BWR) equation of state, which expresses pressure as a function of density and temperature, describes well the P - V - T properties of hydrocarbons. However, the BWR equation is limited in its validity in a maximum reduced density
of about 1.5 excluding the critical region owing to the fact that it has only 8 constants. Although the skeleton table for ethane covers the region of reduced density less than 1.5 and excluding the critical region, that for ethene is extended up to about 2.7 times larger than the critical density ${ }^{2}$. Therefore, additional terms are required to describe accurately the $P-V-T$ properties of ethene. After several possible additional terms had been applied, the following functional form, which was developed from the original BWR equation, was adopted for the present purpose:

$$
\begin{align*}
P= & R T \rho+\left(a_{1} T+a_{2}+a_{3} / T^{2}\right) \rho^{2} \\
& +\left(a_{4} T+a_{5}\right) \rho^{3} \\
& +\left(a_{6}+a_{7} / T^{5}\right) \rho^{4} \\
& +\left(a_{8}+a_{8} / T^{3}\right) \rho^{5} \\
& +\left(a_{10}+a_{11} / T\right) \rho^{0} \\
& +\left(a_{12}+a_{13} / T^{2}+a_{14} / T^{4}\right)\left(1+r \rho^{2}\right) \rho^{3} \exp \left(-r \rho^{2}\right) . \tag{1}
\end{align*}
$$

where $P=$ pressure in MPa ,

$$
\begin{aligned}
& R=\text { molar gas constant in } \mathrm{J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \\
& T=\text { temperature in } \mathrm{K}, T=t+273.15, \\
& t=\text { temperature in }{ }^{\circ} \mathrm{C} \text { on IPTS-68, } \\
& \rho=\text { molar density in mol } \cdot \mathrm{cm}^{-3}, \\
& a_{1}, a_{2}, \cdots, a_{14}, \gamma=\text { numerical constants. }
\end{aligned}
$$

Table I Numerical constants in Eqs. (1) and (2) for ethane and ethene

	Ethane	Ethene
r	1.2658363×10^{4}	1.3929979×10^{4}
a_{1}	5.0639348×10^{2}	5.7505391×10^{2}
a_{2}	-4.0180384×10^{5}	-3.9857311×10^{5}
a_{3}	$-1.8913502 \times 10^{10}$	$-1.0630701 \times 10^{10}$
a_{4}	8.4222162×10^{4}	4.0629605×10^{4}
a_{5}	-3.1167109×10^{7}	-3.0058264×10^{6}
a_{6}	0	2.3489094×10^{8}
a_{7}	0	6.8649318×10^{20}
a_{8}	0	$-2.8650224 \times 10^{10}$
a_{9}	0	$-6.3746747 \times 10^{17}$
a_{10}	9.0228835×10^{12}	4.1892581×10^{12}
a_{11}	0	$-1.0768430 \times 10^{14}$
a_{12}	0	-7.7042510×10^{6}
a_{13}	3.0699808×10^{12}	1.5572266×10^{12}
a_{14}	0	$-1.3328900 \times 10^{16}$
A_{1}	1.7464272×10^{3}	1.6711271×10^{2}
A_{2}	-1.7468344×10^{0}	5.2608796×10^{0}
A_{3}	1.7907139×10^{-1}	1.4293953×10^{-1}
A_{4}	$-5.3644526 \times 10^{-5}$	$-5.4900378 \times 10^{-5}$

2) A.P. Kudchadker, G. H. Alani, and B. J., Zwolinski, Chem. Rev., 68, 659 (1968)

Table 2 Average deviations from Eq. (1)

	Author	Number of data points	Average deviation (\%)*
Ethane	Skeleton table values ${ }^{1}$)	157	0.082
	Douslin and Harrison (73)*)	132	$0.143^{* *}$
	Michels et al. (54)")	89	0.085
	Reamer et ill. (44)6)	65	0.259
	Beattic et al. (39) ${ }^{9}$	54	0.140
	Sage el al. (37) ${ }^{10}$	148	0.406
	Beattic et al. (35) ${ }^{11}$	82	0.322
Ethene	Skeleton table values ${ }^{1}$)	170	0.060
	Lee and Edmister (70) ${ }^{12}$)	70	0.772
	Sass ef al. (67) ${ }^{13)}$	29	0.194
	Ku and Dodge (67) ${ }^{14}$)	25	0.242
	Thomas and Zander (66) ${ }^{15}$)	30	0.052
	Walters et al. (54) ${ }^{10}$	139	0.167
	Michels el al. (42) ${ }^{17}$)	217	0.091
	Michels at al. (36) ${ }^{18}$)	103	0.088

* Calculated by

$$
\theta[\% 6]=\frac{\sum\left|\left(Z_{\mathrm{exp}}-Z_{\mathrm{cn}}\right) / Z_{\mathrm{cn}}\right| \times 100}{n},
$$

where $Z_{\text {exp }}=$ original experimental values of compressibility factor,
$Z_{\text {cnl }}=$ calculated values by Eq. (1), $n=$ number of data points.

* Skeleton table values had been already determined, before these data were published.

The following values were adopted as the atomic weights recommended by IUPAC ${ }^{3}$) and molar gas constant recommended by CODATA ${ }^{4}$):

$$
\begin{aligned}
\mathrm{C} & =12.011 \pm 0.001 \\
\mathrm{H} & =1.0079 \pm 0.0001 \\
\mathrm{R} & =8.31441 \pm 0.00026\left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

In order to determine the numerical constants in Eq. (1), the skeleton table values were introduced as a set of input data into a least-squares procedure and the characteristics of the computed C_{p} values were also examined. In consequence of this procedure, the numerical constants for both ethane and ethene in Eq. (1) were fixed on as listed in Table 1.

When the C_{p} values were computed, the following $C_{p}{ }^{0}$ correlations for ethane and ethene which were newly correlated based on the values recommended by Touloukian and Makita ${ }^{5}$ were used :

$$
\begin{equation*}
C_{p}{ }^{0}=A_{2} / T+A_{2}+A_{3} T+A_{4} T^{2} \tag{2}
\end{equation*}
$$

[^1]This $C_{p}{ }^{0}$ correlations in $\mathrm{J} \cdot \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ reproduce the $C_{p}{ }^{0}$ values recommended by Touloukian and Makita within the deviation of 0.03% for the range of temperatures 273.15 K to 573.15 K both for ethane and ethene. The numerical constants in Eq. (2) are also tabulated in Table 1.

Comparison of the compressibility factor values computed from Eq. (1) with the skeleton table values and experimental data of both ethane ${ }^{6 \sim 11)}$ and ethene ${ }^{12 \sim 18)}$ was shown in detail in the previous paper ${ }^{19)}$. Table 2 shows that the computed values are in satisfactory agreement with the skeleton table values and experimental data ${ }^{7.17 .18)}$ which were evaluated to be the most reliable by the HPDCJ1). The computed compressibility factor values as well as their comparison with the skeleton table values are tabulated for ethane and ethene in Tables 3 and 4, respectively.

As for experimental C_{p} data of ethane and ethene, there do not exist any reliable C_{p} data except that of Bier $e l a l .20$. for ethane as far as our present survey could determine. The average percentage deviation of these C_{p} data from the computed C_{p} values is 0.73% (61 data points) by using the same $C_{p}{ }^{0}$ values.

Canonical function

When density and temperature are chosen as the independent variables. the expressions for pressure and all other thermodynamic properties can be derived directly by the partial differentiation of the canonical function $A=A(\rho, T)$, where A is molar Helmholtz function. In the present study, molar Helmholtz function A in $J \cdot \mathrm{~mol}^{-1}$ is derived from Eqs. (1) and (2) as follows :

$$
\begin{aligned}
A & =B_{0}+B_{1} T+B_{2} T^{2}+B_{3} T^{9}+B_{4} \ln T+B_{5} T \ln T \\
& +R T \ln \rho \\
& +\left(b_{1} T+b_{2}+b_{3} / T^{2}\right) \rho \\
& +\left(b_{4} T+b_{5}\right) \rho^{2} \\
& +\left(b_{6}+b_{7} / T^{5}\right) \rho^{3} \\
& +\left(b_{8}+b_{9} / T^{3}\right) \rho^{4}
\end{aligned}
$$

[^2]Table 5 Numerical constants in Eq. (3) for ethane and ethene

	Ethane	Ethene
B_{0}	-1.5168402×10^{4}	-8.2217326×10^{3}
B_{1}	6.1635642×10^{1}	1.0307823×10^{2}
B_{2}	$-8.9535695 \times 10^{-2}$	$-7.1469765 \times 10^{-2}$
B_{3}	8.9407543×10^{-5}	9.1500630×10^{-6}
B_{4}	1.7464272×10^{3}	1.6711271×10^{2}
B_{5}	1.0061244×10^{1}	3.0535304×10^{0}
γ	1.2658363×10^{4}	1.3929979×10^{1}
b_{1}	5.0639348×10^{2}	5.7505391×10^{2}
b_{2}	-4.0180384×10^{5}	-3.9857311×10^{5}
b_{3}	$-1.8913502 \times 10^{10}$	$-1.0630701 \times 10^{10}$
b_{4}	4.2111081×10^{4}	2.0314802×10^{1}
b_{5}	-1.5583555×10^{7}	-1.5029132×10^{6}
b_{6}	0	7.8296980×10^{7}
b_{7}	0	2.2883106×10^{20}
b_{8}	0	-7.1625560×10^{3}
b_{9}	0	$-1.5936687 \times 10^{17}$
b_{10}	1.8045767×10^{12}	8.3785162×10^{11}
b_{11}	0	$-2.1536860 \times 10^{13}$
b_{12}	0	-7.7042510×10^{6}
b_{13}	3.0699808×10^{12}	1.5572266×10^{12}
b_{14}	0	$-1.3328900 \times 10^{16}$

$$
\begin{align*}
& +\left(b_{10}+b_{11} / T\right) \rho^{5} \\
& +\left(b_{12}+b_{13} / T^{2}+b_{14} / T^{4}\right)\left[1 / \tau-\left(\rho^{2} / 2+1 / \tau\right) \exp \left(-\gamma \rho^{2}\right)\right] \tag{3}
\end{align*}
$$

The numerical constants in Eq. (3) are listed in Table 5. The numerical values of B_{0} and B_{1} in Eq. (3) are fixed due to the following conditions:
(i) $S=0\left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ at 298.15 K and 0.101325 MPa ,
(ii) $H=0\left(\mathrm{~J} \cdot \mathrm{~mol}^{-1}\right)$ at 298.15 K and 0 MPa .

Derived functions

According to the general thermodynamic relations, the pressuse P in MPa , the molar entropy S in $\mathrm{J} \cdot \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, the molar enthalpy H in $\mathrm{J} \cdot \mathrm{mol}^{-1}$, the molar heat capacity at constant volume C_{v} in J -$\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ and the molar heat capacity at constant pressure C_{p} in $\mathrm{J} \cdot \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ can be calculated by the following expressions:

$$
\begin{align*}
& P=\rho^{2}(\partial A / \partial \rho)_{T} \tag{4}\\
& S=-(\partial A / \partial T)_{\rho} \tag{5}\\
& H=A-T(\partial A / \partial T)_{\rho}+\rho(\partial A / \partial \rho)_{T} \tag{6}\\
& C_{v}=-T\left(\partial^{2} A / \partial T^{2}\right)_{\rho} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
C_{P}=T\left[-\left(\hat{\sigma}^{2} A / \partial T^{2}\right)_{\rho}+\frac{\rho\left(\hat{\partial}^{2} A / \partial \rho \partial T\right)^{2}}{2(\partial A / \partial \rho) T+\rho\left(\partial^{2} A / \partial \rho^{2}\right) T}\right] . \tag{8}
\end{equation*}
$$

In addition, the compressibility factor Z and the molar volume V in $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ can be calculated from Eqs. (9) and (10). respectively.

$$
\begin{align*}
& Z=P / \boldsymbol{R} T \rho \tag{9}\\
& V=1 / \rho \tag{10}
\end{align*}
$$

Calculated thermodynamic properties

By difierentiating the new equations of state expressed in the canonical forms for gaseous ethane and ethene, Eq. (3). thermodynamic properties are calculated. The calculated molar volume, the molar enthalpy and the molar entropy both for ethane and ethene are tabulated in Tables 6 and 7, respectively.

Conclusion

As a part of the activity of the High Pressure Data Center of Japan, new equations of state, Eq. (1), both for gaseous ethane and ethene are formulated based on the most probable values and additional recommended values proposed by the HPDCJ. These values cover the range of temperatures 273.15 K to 498.15 K and of pressures up to 30 MPa for ethane and that of temperatures 273.15 K to 423.15 K and of pressures up to 80 MPa for ethene. The thermodynamic property values in these ranges can be calculated by differentiating the canonical functions, Eq. (3), for both ethane and ethene which are derived from the new equations of state. The calculated values of the compressibility factor, the molar volume, the molar enthalpy and the molar entropy are tabulated in Tables 3. 4.6 and 7.

Acknowledgment

The present work was discussed by the following members and cooperators of the Working Committee of the High Pressure Data Center of Japan :
J. Osugi. Y. Takezaki (K yoto Univ.) :
H. Iwasaki, S. Takahashi, K. Date (Tohoku Univ.);
T. Makita, Y. Tanaka (Kobe Univ.);
A. Nagashima (Keio Univ.),
to whom the authors wish to express their sincere appreciation for their valuable suggestions and discussions. They also wish to express their thanks to Mr. K. Matsui, Keio University, for his assistance in part of formulating the equation of state for ethane. As for the financial support to the present work, they are partially indebted to the sponsorship of the Agency of Science and Technology.

Pressure MPa (atm)		Temperature $\mathrm{K}\left({ }^{\circ} \mathrm{C}\right)$						
		$\begin{gathered} 273.15 \\ (0) \end{gathered}$	$\begin{gathered} 298.15 \\ (25) \end{gathered}$	$\begin{aligned} & 323.15 \\ & (50) \end{aligned}$	$\begin{gathered} 348.15 \\ (75) \end{gathered}$	$\begin{array}{r} 373.15 \\ (100) \end{array}$	$\begin{array}{r} 398.15 \\ (125) \end{array}$	$\begin{array}{r} 423.15 \\ (150) \end{array}$
0.101325	(1)	$\begin{aligned} & 0.99242 \\ & 0.99242 \\ & 0.000 / 0.030 \end{aligned}$	$\begin{aligned} & 0.99443 \\ & 0.99426 \\ & 0.017 / 0.030 \end{aligned}$	$\begin{aligned} & 0.99571 \\ & 0.99557 \\ & 0.01 .4 / 0.030 \end{aligned}$	$\begin{aligned} & 0.99661 \\ & 0.99654 \\ & 0.008 / 0.030 \end{aligned}$	$\begin{aligned} & 0.99727 \\ & 0.99726 \\ & 0.001 / 0.030 \end{aligned}$	$\begin{gathered} 0.99779 \\ 0.99781 \\ -0.002 / 0.030 \end{gathered}$	$\begin{array}{r} 0.99822 \\ 0.99824 \\ -0.002 / 0.030 \end{array}$
1.0133	(10)	$\left\{\begin{array}{l} 1.2 \\ 0.9215 \\ 0.91999 \\ 0.163 / 0.10 \end{array}\right.$	$\begin{aligned} & 0.9406 \\ & 0.94055 \\ & 0.005 / 0.11 \end{aligned}$	$\begin{aligned} & 0.9546 \\ & 0.95470 \\ & -0.011 / 0.05 \end{aligned}$	$\begin{aligned} & 0.9647 \\ & 0.96485 \\ & -0.016 / 0.04 \end{aligned}$	$\begin{aligned} & 0.9720 \\ & 0.97236 \\ & -0.037 / 0.03 \end{aligned}$	$\begin{gathered} 0.9778 \\ 0.97807 \\ -0.027 / 0.10 \end{gathered}$	$\begin{aligned} & 0.9821 \\ & 0.98248 \\ & -0.039 / 0.10 \end{aligned}$
2.0265	(20)	$\left\{\begin{array}{l} 0.8284 \\ 10.82774 \\ 0.080 / 0.10 \end{array}\right.$	$\begin{aligned} & 0.8749 \\ & 0.87564 \\ & -0.085 / 0.12 \end{aligned}$	$\begin{aligned} & 0.9066 \\ & 0.90686 \\ & -0.029 / 0.07 \end{aligned}$	$\begin{aligned} & 0.9283 \\ & 0.92856 \\ & -0.028 / 0.05 \end{aligned}$	$\begin{aligned} & 0.9438 \\ & 0.94430 \\ & -0.052 / 0.03 \end{aligned}$	$\begin{aligned} & 0.9555 \\ & 0.95607 \\ & -0.060 / 0.10 \end{aligned}$	$\begin{gathered} 0.9645 \\ 0.96511 \\ -0.063 / 0.10 \end{gathered}$
3.0398	(30)		$\begin{aligned} & 0.8030 \\ & 0.80337 \\ & -0.046 / 0.13 \end{aligned}$	$\begin{aligned} & 0.8552 \\ & 0.85607 \\ & -0.102 / 0.10 \end{aligned}$	$\begin{aligned} & 0.8904 \\ & 0.89109 \\ & -0.078 / 0.06 \end{aligned}$	$\begin{aligned} & 0.9153 \\ & 0.91586 \\ & -0.061 / 0.03 \end{aligned}$	$\begin{gathered} 0.9334 \\ 0.93410 \\ -0.075 / 0.10 \end{gathered}$	$\begin{gathered} 0.9471 \\ 0.94794 \\ -0.089 / 0.10 \end{gathered}$
4.0530	(40)		$\begin{gathered} 0.7195 \\ 0.72034 \\ -0.116 / 0.15 \end{gathered}$	$\begin{aligned} & 0.8013 \\ & 0.80185 \\ & -0.068 / 0.15 \end{aligned}$	$\begin{aligned} & 0.8518 \\ & 0.85248 \\ & -0.079 / 0.07 \end{aligned}$	$\begin{aligned} & 0.8866 \\ & 0.88717 \\ & -0.064 / 0.04 \end{aligned}$	$\begin{gathered} 0.9114 \\ 0.91227 \\ -0.095 / 0.10 \end{gathered}$	$\begin{aligned} & 0.9302 \\ & 0.93108 \\ & -0.095 / 0.10 \end{aligned}$
5.0662	(50)		$\begin{gathered} 0.6190 \\ 0.61969 \\ -0.112 / 0.16 \end{gathered}$	$\begin{aligned} & 0.7436 \\ & 0.74369 \\ & -0.011 / 0.19 \end{aligned}$	$\begin{aligned} & 0.8124 \\ & 0.81282 \\ & -0.052 / 0.08 \end{aligned}$	$\begin{aligned} & 0.8579 \\ & 0.85839 \\ & -0.057 / 0.05 \end{aligned}$	$\begin{aligned} & 0.8898 \\ & 0.89070 \\ & -0.101 / 0.10 \end{aligned}$	$\begin{aligned} & 0.9136 \\ & 0.91463 \\ & -0.112 / 0.10 \end{aligned}$
6.0795	(60)		$\begin{aligned} & 0.4844 \\ & 0.48496 \\ & -0.116 / 0.17 \end{aligned}$	$\begin{aligned} & 0.6818 \\ & 0.68137 \\ & 0.063 / 0.24 \end{aligned}$	$\begin{aligned} & 0.7723 \\ & 0.77244 \\ & -0.018 / 0.11 \end{aligned}$	$\begin{aligned} & 0.8295 \\ & 0.82977 \\ & -0.033 / 0.06 \end{aligned}$	$\begin{gathered} 0.8688 \\ 0.86957 \\ -0.088 / 0.10 \end{gathered}$	$\begin{gathered} 0.8977 \\ 0.89869 \\ -0.110 / 0.10 \end{gathered}$
7.0928	(70)		$\begin{aligned} & 0.3409 \\ & 0.34062 \\ & 0.083 / 0.18 \end{aligned}$	$\begin{aligned} & 0.6171 \\ & 0.61595 \\ & 0.186 / 0.28 \end{aligned}$	$\begin{aligned} & 0.7323 \\ & 0.73196 \\ & 0.047 / 0.14 \end{aligned}$	$\begin{aligned} & 0.8017 \\ & 0.80167 \\ & 0.003 / 0.07 \end{aligned}$	$\begin{aligned} & 0.8484 \\ & 0.84909 \\ & -0.081 / 0.10 \end{aligned}$	$\begin{aligned} & 0.8825 \\ & 0.88339 \\ & -0.101 / 0.10 \end{aligned}$
8.1060	(80)		$\begin{aligned} & 0.3170 \\ & 0.31753 \\ & -0.165 / 0.20 \end{aligned}$	$\begin{aligned} & 0.5541 \\ & 0.55235 \\ & 0.317 / 0.32 \end{aligned}$	$\begin{aligned} & 0.6934 \\ & 0.69253 \\ & 0.125 / 0.15 \end{aligned}$	$\begin{aligned} & 0.7749 \\ & 0.77458 \\ & 0.042 / 0.09 \end{aligned}$	$\begin{gathered} 0.8290 \\ 0.82951 \\ -0.061 / 0.10 \end{gathered}$	$\begin{aligned} & 0.8682 \\ & 0.86889 \\ & -0.079 / 0.10 \end{aligned}$

$\underset{\sim}{\underset{\sim}{N}} \underset{\sim}{\underset{\sim}{u}}$	$\begin{aligned} & N \\ & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	- N	$\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\infty}} \underset{\sim}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { un } \end{aligned}$	$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	号	$\begin{aligned} & \text { r } \\ & \text { ís } \\ & \text { (} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\underset{N}{*}}}$	$\underset{\sim}{\text { N }}$	F $\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\sim}{\omega}}$	-
N	$\begin{aligned} & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{E} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 气. } \\ & \text { O} \end{aligned}$	$\begin{gathered} \mathrm{E} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	F	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\theta}}$	ت	충	$\stackrel{E}{\circ}$	$\begin{aligned} & \text { F} \\ & \hline 8 \end{aligned}$	$\stackrel{\bigcirc}{0}$

0.3273	10.5017	0.6572	0.7497	0.8108	0.8548
0.32769	0.50134	0.65598	0.74911	0.81112	0.85533
-0.120/0.22	0.071/0.35	0.185/0.17	0.079/0.11	-0.039/0.10	-0.062/0.10
	1				
0.3451	10.4706	0.6255	0.7268	0.7942	0.8425
0.34535	0.47168	0.62461	0.72601	0.79423	0.84286
-0.071/0.23	-0.230/0.38	0.142/0.18	0.109/0.12	-0.003/0.10	-0.043/0.10
0.3656	0.4605	0.6012	0.7074	0.7793	0.8314
0.36574	0.46109	0.60048	0.70602	0.77915	0.83165
-0.037/0.25	-0.129/0.41	0.120/0.20	0.196/0.13	0.019/0.10	-0.030/0.10
0.3872	0.4622	0.5847	0.6913	0.7665	0.8218
0.38737	0.46272	0.58451	0.68977	0.76618	0.82183
-0.043/0.27	-0.112/0.43	0.033/0.22	0.222/0.14	0.042/0.10	-0.003/0.10
0.4096	0.4711	0.5756	0.6793	0.7559	0.8136
0.40961	0.47140	0.57626	0.67764	0.75555	0.81352
-0.003/0.28	-0.063/0.46	-0.114/0.23	0.245/0.15	0.047/0.10	0.010/0.10
0.4321	0.4841	0.5731	0.6712	0.7478	0.8070
0.43217	0.48418	0.57445	0.66968	0.74739	0.80681
-0.016/0.30	-0.017/0.48	-0.236/0.24	0.226/0.15	0.055/0.10	0.024/0.10
0.4549	0.4996	0.5770	0.6668	0.7421	0.8020
0.45488	0.19946	0.57765	0.66568	0.74175	0.80175
$0.005 / 0.32$	0.029/0. 50	-0.112/0.25	$0.167 / 0.16$	0.047/0.10	0.031/0.10
0.4777	0.5166	0.5839	0.6657	0.7388	0.7987
0.47764	0.51630	0.58458	0.66522	0.73858	0.79836
$0.013 / 0.34$	0.058/0. 52	-0.116/0.25	0.072/0.16	0.030/0.10	0.043/0.10
0.5005	0.5346	0.5937	0.6679	0.7379	0.7969
0.50040	0.53416	0.59426	0.66779	0.73774	0.79661
0.021/0.36	0.082/0.54	-0.093/0.26 \|	0.016/0.16	0.022/0.10	0.036/0.10
0.5233	0.5533	0.6055	0.6728	0.7391	0.7969
0.52312	0.55272	0.60596	0.67290	0.73903	0.79645
0.035/0.38	0.106/0.55	-0.076/0.28	-0.015/0.16	0.009/0.10	0.056/0.10
0.5460	0.5724	0.6188	0.6801	0.7422	0.7980
0.54578	0.57174	0.61916	0.68010	0.74225	0.79779
0.041/0.40	0.116/0.56	-0.058/0.28	0.000/0.16	1-0.007/0.10	0.027/0.10
0.5687	0.5906	0.6333	0.6889	0.7470	0.8007
0.56836	0.59108	0.63348	0.68899	0.74716	0.80052
0.060/0. 43	-0.081/0.57	\|-0.028/0.29	-0.014/0.15	-0.022/0.10	$0.023 / 0.10$
10.6798	0.6898	0.7149	0.7494	10.7896	0.8309
0.67994	0.68993	0.71442	0.74957	0.79006	0.83104
1-0.020/0.48	-0.019/0.59	0.067/0.30	-0.022/0.14	-0.059/0.10	-0.017/0.10

Table 7 Calculated values of molar volume, molar enthalpy and molar entropy for gaseous ethene

Pressure MPa (atm)		Temperature $\mathrm{K}\left({ }^{\circ} \mathrm{C}\right)$						
		$\begin{gathered} 273.15 \\ (0) \end{gathered}$	$\begin{gathered} 298.15 \\ (25) \end{gathered}$	$\begin{gathered} 323.15 \\ (50) \end{gathered}$	$\begin{gathered} 348.15 \\ (75) \end{gathered}$	$\begin{array}{r} 373.15 \\ (100) \end{array}$	$\begin{array}{r} 398.15 \\ (125) \end{array}$	$\begin{array}{r} 423.15 \\ (150) \end{array}$
0.101325	(1)	$\begin{aligned} & 22244 \\ & -1109 \\ & -3.73 \end{aligned}$	24325 -45 0.00	$\begin{array}{r} 26399 \\ 1034 \\ 3.64 \end{array}$	$\begin{array}{r} 28469 \\ 2278 \\ 7.19 \end{array}$	$\begin{array}{r} 30536 \\ 3536 \\ 10.68 \end{array}$	32599 4855 14.10	34661 6236 17.47
1.0133	(10)	$\begin{array}{r} 2062.1 \\ -1632 \\ -24.20 \end{array}$		2531.5 725 -16.28	$\begin{array}{r} 2756.4 \\ 1971 \\ -12.57 \end{array}$	$\begin{array}{r} 2977.3 \\ 3269 \\ -8.97 \end{array}$	3195.4 4621 -5.47	3411.4 6028 -2. 04
2.0265	(20)	$\begin{array}{r} 927.64 \\ -2312 \\ -31.77 \end{array}$	1071.1 -1000 -27.17	1202.4 \square -22.99	$\begin{array}{r} 1326.4 \\ 1612 \\ -19.07 \end{array}$	$\begin{array}{r} 1445.7 \\ 2962 \\ -15.33 \end{array}$	1561.8 4355 -11. 71	1675.5 5794 -8. 21
3.0398	(30)		655.15 -1602 -32.03	756.67 -169 -27.41	$\begin{array}{r} 848.56 \\ 1233 \\ -23.23 \end{array}$	$\begin{array}{r} 934.77 \\ 2644 \\ -19.32 \end{array}$	1017.3 4081 -15.59	1097.2 5555 -12.00
4.0530	(40)		$\begin{array}{r} 440.58 \\ -2319 \\ -36.26 \end{array}$	531.56 -682 -30.98	$\begin{array}{r} 608.84 \\ 830.2 \\ -26.48 \end{array}$	$\begin{array}{r} 679.12 \\ 2312 \\ -22.37 \end{array}$	$\begin{array}{r} 745.12 \\ 3800 \\ -18.51 \end{array}$	808. 24 5313 -14.82
5.0662	(50)		$\begin{array}{r} 303.22 \\ -3239 \\ -40.60 \end{array}$	$\begin{array}{r} 394.40 \\ -1255 \\ -34.19 \end{array}$	$\begin{array}{r} 464.42 \\ 402 \\ -29.25 \end{array}$	$\begin{array}{r} 525.67 \\ 1968 \\ -24.91 \end{array}$	$\begin{array}{r} 582.00 \\ 3513 \\ -20.90 \end{array}$	$\begin{array}{r} 635.16 \\ 5067 \\ -17.11 \end{array}$
6.0795	(60)		$\begin{array}{r} 197.75 \\ -4620 \\ -46.08 \end{array}$	$\begin{array}{r} 301.1 \\ -1904 \\ -37.26 \end{array}$	$\begin{array}{r} 367.79 \\ -55 \\ -31.77 \end{array}$	$\begin{array}{r} 423.45 \\ 1611 \\ -27.14 \end{array}$	$\begin{array}{r} 473.49 \\ 3220 \\ -22.97 \end{array}$	$\begin{array}{r} 520.08 \\ 4819 \\ -19.08 \end{array}$
7.0928	(70)		119.05 -6682 -53.51	$\begin{array}{r} 233.39 \\ -2644 \\ -40.41 \end{array}$	$\begin{array}{r} 298.72 \\ -539 \\ -34.12 \end{array}$	$\begin{array}{r} 350.67 \\ 1243 \\ -29.18 \end{array}$	$\begin{array}{r} 396.29 \\ 2922 \\ -24.82 \end{array}$	438. 19 4569 -20.81
8.1060	(80)		$\begin{array}{r} 97.104 \\ -7623 \\ -57.03 \end{array}$	183.08 -346? $-43.5 s$	$\begin{array}{r} 247.30 \\ -1048 \\ -36.38 \end{array}$	$\begin{array}{r} 296.46 \\ 866.2 \\ -31.06 \end{array}$	338.76 2620 -26.51	377.12 4317 -22.38
9.1192	(90)		$\begin{array}{r} 89.079 \\ -8029 \\ -58.71 \end{array}$	$\begin{array}{r} 147.71 \\ -4278 \\ -46.63 \end{array}$	$\begin{array}{r} 208.22 \\ -1570 \\ -38.53 \end{array}$	$\begin{array}{r} 254.86 \\ 484 \\ -32.83 \end{array}$	$\begin{array}{r} 294.44 \\ 2318 \\ -28.07 \end{array}$	329.99 4067 -23.81
10.133	(100)		84.490 -8272 -59.82	$\begin{aligned} & 125.07 \\ & =-4963 \\ & -49.17 \end{aligned}$	$\begin{array}{r} 178.44 \\ -2085 \\ -40.58 \end{array}$	$\begin{array}{r} 222.30 \\ 103 i \\ -34.50 \end{array}$	$\begin{array}{r} 259.48 \\ 2016 \\ -29.53 \end{array}$	$\begin{array}{r} 292.66 \\ -\quad 3818 \\ -25.15 \end{array}$
11.146	(110)		$\begin{array}{r} 81.344 \\ -8439 \\ -60.66 \end{array}$	111.15 -5473 -51.12	$\begin{array}{r} 155.95 \\ -2570 \\ -42.45 \end{array}$	$\begin{array}{r} 196.53 \\ -270 \\ -36.07 \end{array}$	231.41 1719 -30.90	$\begin{array}{r} 262.52 \\ 3572 \\ -26.39 \end{array}$
12.159	(120)		78.975 -8563 -61.34	$\begin{array}{r} 102.25 \\ -5843 \\ -52.60 \end{array}$	$\begin{array}{r} 139.15 \\ -3003 \\ -94.13 \end{array}$	$\begin{array}{r} 176.00 \\ -627 \\ -37.53 \end{array}$		237.80 3332 -27.55
13.172	(130)		$\begin{array}{r} 77.087 \\ -8658 \\ -61.93 \end{array}$	$\begin{array}{r} 96.153 \\ -6117 \\ -53.76 \end{array}$	$\begin{array}{r} 126.64 \\ -3376 \\ -45.58 \end{array}$	$\begin{array}{r} 159.61 \\ -961 \\ -38.88 \end{array}$	189.88 1152 -33.39	217.29 3099 -28.65
14.186	(140)		75.523 -8733 -62.44	$\begin{array}{r} 91.707 \\ -6326 \\ -54.70 \end{array}$	$\begin{array}{r} 117.22 \\ -3689 \\ -46.84 \end{array}$	$\begin{array}{r} 146.47 \\ -1266 \\ -40.11 \end{array}$	174.41 888 -34.52	$\begin{array}{r} 200.10 \\ 2874 \\ -29.68 \end{array}$
15.199	(150)		74.191 8793 -62.89	$\begin{array}{r} 88.293 \\ -6490 \\ -55.49 \end{array}$	$\begin{array}{r} 110.02 \\ -3950 \\ -47.92 \end{array}$	135.89 -1541 -41. 23	161.56 641 -35.57	$\begin{array}{r} 185.59 \\ 2660 \\ -30.65 \end{array}$
16.212	(160)		$\begin{array}{r} 73.035 \\ -8841 \\ -63.31 \end{array}$	85.566 -6622 -56.17	$\begin{array}{r} 104.38 \\ -4167 \\ -48.85 \end{array}$		150.81 412 -36.54	$\begin{array}{r} 173.26 \\ 2456 \\ -31.56 \end{array}$
17.225	(170)		$\begin{array}{r} 72.014 \\ -8881 \\ -63.69 \end{array}$	83.319 -6729 -56. 76	99.863 4349 -49.67	120. 28 1999 -43. 15	$\begin{array}{r} 141.78 \\ 202 \\ -37.44 \end{array}$	$\begin{array}{r} 162.71 \\ 2265 \\ -32.41 \end{array}$

18.239	(180)	$\begin{array}{r} 71.101 \\ -8913 \\ -64.04 \end{array}$	$\begin{array}{r} 81.423 \\ -6818 \\ -57.30 \end{array}$	$\begin{array}{r} 96.172 \\ -4502 \\ -50.39 \end{array}$	$\begin{array}{r} 114.47 \\ -2188 \\ -43.97 \end{array}$	134.14 10 -38.27	$\begin{array}{r} 153.64 \\ 2086 \\ -33.21 \end{array}$
19.252	(190)	$\begin{array}{r} 70.276 \\ -8939 \\ -64.36 \end{array}$	$\begin{array}{r} 79.792 \\ -6892 \\ -57.78 \end{array}$	$\begin{array}{r} 93.096 \\ -4631 \\ -51.04 \end{array}$	$\begin{array}{r} 109.60 \\ -2353 \\ -44.72 \end{array}$	$\begin{array}{r} 127.63 \\ -164 \\ -39.04 \end{array}$	$\begin{array}{r} 145.79 \\ 1919 \\ -33.97 \end{array}$
20.265	(200)	$\begin{array}{r} 69.525 \\ -8959 \\ -64.67 \end{array}$	78.367 -6955 -58.22	$\begin{array}{r} 90.487 \\ -4742 \\ -51.63 \end{array}$	$\begin{array}{r} 105.48 \\ -2498 \\ -45.40 \end{array}$	122.05 -322 -39.75	$\begin{array}{r} 138.98 \\ 1765 \\ -34.67 \end{array}$
25.331	(250)	$\begin{array}{r} 66.539 \\ -9007 \\ -65.98 \end{array}$	$\begin{array}{r} 73.179 \\ -7149 \\ -60.01 \end{array}$	$\begin{array}{r} 81.638 \\ -5103 \\ -53.91 \end{array}$	$\begin{array}{r} 91.805 \\ -2997 \\ -48.07 \end{array}$	103.25 -900 -42. 63	115.42 1164 - 37.60
30.398	(300)	$\begin{array}{r} 64.359 \\ -8993 \\ -67.05 \end{array}$	69.771 -7226 -61.36	$\begin{array}{r} 76.358 \\ -5279 \\ -55.56 \end{array}$	$\begin{array}{r} 84.046 \\ -3265 \\ -49.98 \end{array}$	92.640 -1237 -44.72	101.88 784 -39.79
35.464	(350)	$\begin{array}{r} 62.649 \\ -8942 \\ -67.96 \end{array}$	67.270 -7239 -62.48	$\begin{array}{r} 72.722 \\ -5357 \\ -56.87 \end{array}$	$\begin{array}{r} 78.938 \\ -3406 \\ -51.46 \end{array}$	85.808 -1431 -46.34	93.190 550 -41.51
40.530	(400)	$\begin{array}{r} 61.247 \\ -8867 \\ -68.76 \end{array}$	65.311 -7211 -63.43	$\begin{array}{r} 69.999 \\ -5376 \\ -57.96 \end{array}$	$\begin{array}{r} 75.248 \\ -3469 \\ -52.67 \end{array}$	80.982 - 1535 -47.66	B7. 118 414 -42.91
45.596	(450)	$\begin{array}{r} 60.061 \\ -8774 \\ -69.48 \end{array}$	63.709 -7155 -64. 27	$\begin{array}{r} 67.846 \\ -5355 \\ -58.90 \end{array}$	$\begin{array}{r} 72.411 \\ -3482 \\ -53.71 \end{array}$	77.349 -1578 -48.77	
50.663	(500)	$\begin{array}{r} 59.035 \\ -8668 \\ -70.13 \end{array}$	62. 360 -7079 -65. 32	$\begin{array}{r} 66.079 \\ -5306 \\ -59.74 \end{array}$			
55.729	(550)	$\begin{array}{r} \text { SB. } 133 \\ -8551 \\ -70.73 \end{array}$	61.198 -6988 -65.70	$\begin{array}{r} 64.588 \\ -5237 \\ -60.49 \end{array}$			
60.795	(600)	$\begin{array}{r} 57.329 \\ -8427 \\ -72.30 \end{array}$	$\begin{array}{r} 60.180 \\ -6884 \\ -66.34 \end{array}$	$\begin{array}{r} 63.304 \\ -5152 \\ -61.17 \end{array}$	1st 1 2nd 1	molar molar	lume thalpy
65.861	(650)	$\begin{array}{r} 56.603 \\ -8295 \\ -71.83 \end{array}$	$\begin{array}{r} 59.275 \\ -6771 \\ -66.92 \end{array}$	$\begin{array}{r} 62.179 \\ -5054 \\ -61.81 \end{array}$	3 rd 1	molar	neropy
70.928	(700)	55.944 -8159 -72. 32	58.462 -6651 -67.47	$\begin{array}{r} 61.180 \\ -4946 \\ -62.39 \end{array}$			
75.994	(750)	$\begin{array}{r} 55.339 \\ -8018 \\ -72.80 \end{array}$	$\begin{array}{r} 57.725 \\ -6524 \\ -67.99 \end{array}$				
81.060	(800)	54.782 -7873 -73.25	$\begin{array}{r} 57.051 \\ -6391 \\ -68.48 \end{array}$				

[^0]: (Received February 6, 1975)

 * Department of Mechanical Engineering, Faculty of Engineering, Keio University, Yokohama 223, Japan
 ** Department of Mechanical Engineering, Faculy of Engineering, Nihon University, Koriyama 913. Japan
 + Part of the present paper has been presented at the 4th International Conference on High Pressure (AIRAPT), Kyoto, November, 1974

 1) K. Date, K. Watanabe, and M. Uematsu, This Journal, 43, 92 (1973)
[^1]: 3) Pure and Appl. Chem., 37, 589 (1974)
 4) CODATA Bull.. No. 11 (1973)
 5) Y. S. Touloukian, and T. Makitan. "Specific Heat-Nonmetallic Liquids and Gases, (Thermophysical Properties of Matters)", The TPRC Data Series vol. 6, IFI/PLENUM, New York (1970)
[^2]: 6) D. R. Douslin, and R. H. Harrison, J. Chem. Thermodynamics, 5, 491 (1973)
 7) A. Michels, W. Van Straten, and J. Dawson, Physica, 20, 17 (1954)
 8) H. H. Reamer, R. H. Olds, B. H. Sage, and W. N. Lacey. Ind. Eng. Chem., 36, 956 (1944)
 9) J. A. Beattie, G. J. Su, and G. L. Simard, J. Ame. Chem. Soc., 61, 926 (1939)
 10) B. H. Sage, D.C. Webster, and W. N. Lacey, Ind. Eng. Chem., 29. 658 (1937)
 11) J. A. Beattie, C. Hadlock, and N. Pofienberger, J. Chem. Phys., 3, 93 (1935)
 12) R.C. Lee, and W. C. Edmister, AIChE J., 16, 1047 (1970)
 13) A. Sass, B. F. Dodge, and R. H. Bretton, J. Chem, Eng. Data, 12, 168 (1967)
 14) P. S. Ku, and B.F. Dodge, ibid., 12, 158 (1967)
 15) W. Thomas, and M. Zander. Z. angew. Phys., 20, 417 (1966)
 16) R. J. Walters, J. H. Tracht, E. B. Weinberger, and J. K. Rodgers. Chem. Eng. Progress, 50, 511 (1954)
 17) A. Michels, and M. Geldermans. Physica, 9. 96? (1942)
 18) A. Michels, J. De Gruyter, and F. Niesen, ibid., 3, 346 (1936)
 19) M. Uematsu, S. Saegusa, K. Watanabe, and I. Tanishita, Proceedings of the 4 th International Conference on High Pressure, Kyoto, Japan, November, 1974 ,p. 561
 20) K. Bier, G. Maurer et al., Private communication, will be published in Chemical Engineering Science, vol. 30 (1975)
