

Title	Thermodynamic properties of gaseous methane
Author(s)	Tanishita, Ichimatsu; Watanabe, Koichi; Kondo, Hiroshi; Nakashima, Atsushi
Citation	The Review of Physical Chemistry of Japan (1973), 42(2): 125-134
Issue Date	1973-04-30
URL	http://hdl.handle.net/2433/46977
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

THE REVIEW OF PHYSICAL CHEMISTRY OF JAPAN, VOL. 42, No. 2, 1972

THERMODYNAMIC PROPERTIES OF GASEOUS METHANET

By Ichimatsu Tanishita*, Koichi Watanabe**, Hiroshi Kondo***
and Atsushi Nakashima****

Based upon the most probable values of the compressibility factor for gaseous methane proposed by the High Pressure Data Center of Japan (HPDCJ). the Society of Material Science Japan, a new formulation of the equation of state was devised for the ranges of temperatures between 0 and 225°C and of pressures up to 350 atm. The computed results of the compressibility factor obtained by this new equation of state were then compared with those of available experimental data to evaluate the existing thermodynamic properties data of this substance.

Additionally, the specific volume, the specific enthalpy, the specific entropy and the isobaric specific heat capacity were also calculated using the present formulation established.

Introduction

As is well known, methane is one of the most important substances among the various kinds of hydrocarbons which are currently utilized in modern chemical industry and technology. Therefore, it becomes necessary and important to collect an enough amount of knowledge for the thermophysical properties of gaseous methane which should have sufficient accuracy in case of designing the chemical processes and equipments under the extreme conditions.

Hence, the High Pressure Data Center of Japan (HPDCJ) has nominated working committee ****** for the compilation and evaluation of the thermophysical properties data of various important hydrocarbons since 1970 with the sponsorship of the Agency of Science and Technology. This working committee has worked on the compilation and evaluation of the available compressibility factor data for gaseous methane as its first project and then the skeleton table values of the most probable com-

(Received November 28, 1972)

**** Members of this working committee:

Jiro Osugi (Chief) Kyoto University, Yoshimasa Takezaki Kyoto University, Tadashi Makita Kobe University, Ichimatsu Tanishita Nihon University, Hiroji Iwasaki Tohoku University

Cooperated with following members:

Koichi Watanabe Keio University, Akira Nagashima Keio University, Shinji Takahashi Tohoku University, Kaoru Date Tohoku University

[†] Part of this paper was read at the 14th High Pressure Conference of Japan, Oct. 23-25, 1972, in Osaka.

^{*} Faculty of Engineering, Nihon University

^{**} Faculty of Engineering, Keio University

^{**} Fujinetsugaku-kogyo Co., Ltd., Osaka

^{****} Graduate School of Engineering, Keio University

pressibility factor for this substance were proposed recently1).

In cooperation with this project, the authors have started the analytical study for the establishment of the formulations of the thermodynamic properties of gaseous methane in order to make it convenient for the practical applications to chemical industry and technology. Therefore, the thermodynamic properties including calorimetric properties of gaseous methane for the ranges of temperatures between 0 and 225°C and pressures up to 350 atm could be revealed, as is described in details in the present paper.

Basic Data Source Used

The working committee of the HPDCJ described above had searched out systematically almost all of the available data for the *PVT* relations of methane, and chose 9 original experimental works^{2~10)} as the distinguished data source to be evaluated in its project. The process and method of evaluation for these 9 papers were described in details in the previous paper¹⁾, and the most probable values of the compressibility factor were proposed at the respective grid point.

Hence, these skeleton table values of compressibility factor were used as the basic data source in the present study of formulation. But, the highest pressures in the skeleton table are different with respect to each isotherm and this is not a convenient fact to get the accurate formulation covering the whole ranges of parameters up to 600 atm. Accordingly, we decided to devise the formulation for the ranges of state parameters described above and also utilized several graphically interpolated values only along 25°C isotherm besides these skeleton table values.

Formulated Equation of State

Taking into consideration the convenience and easiness for the practical application, the compressibility factor Z=Pv/(RT) is expressed as a function of pressure P and temperature T, i.e., Z=Z(P,T). The basic functional form of the established equation of state was determined after working out to find several possible functional forms by applying the least squares procedure with the aid of an electronic computer. In this procedure of preliminary consideration, we adopted to use similar functional form of

¹⁾ J. Osugi, Y. Takezaki and T. Makita, This Journal, 41, 60 (1971)

²⁾ F. G. Keyes and H. G. Burks, J. Am. Chem. Soc., 49, 1403 (1927)

³⁾ H. M. Kvalnes and V. L. Gaddy, ibid., Soc., 53, 394 (1931)

⁴⁾ A. Michels and G. W. Nederbragt, Physica, 2, 1000 (1935); 3, 569 (1936)

⁵⁾ R. H. Olds, H. H. Reamer, B. H. Sage and W. N. Lacey, Ind. Eng. Chem., 35, 922 (1943)

⁶⁾ H. W. Schamp, Jr., E. A. Mason, A. C. B. Richardson and A. Altman, Phys. Fluids, 1, 329 (1958)

⁷⁾ K. Date, G. Kobuya and H. Iwasaki, Proc. Chem. Res. Inst. Non-Aqueous Solutions, 10, 67 (1961)

⁸⁾ D. R. Douslin, R. H. Harrison, R. T. Moore and J. P. McCullough, J. Chem. Eng. Data, 9, 358 (1964)

⁹⁾ L. Deffet and F. Ficks, "Advances in Thermophysical Properties at Extreme Temperatures and Pressures", p. 107, ASME, N. Y. (1965)

¹⁰⁾ S. L. Robertson and S. E. Babb, Jr., J. Chem. Phys., 51, 1357 (1969)

127

equation of state which was previously devised by us for the formulation of the thermodynamic properties of fluorocarbon refrigerant R-22 (difluorochloromethane)^{11,12)}.

Thus, the final form of the established equation of state is determined as the following polynomial form with pressure P.

$$Z = \frac{P_v}{RT} = 1 + \sum_{i=1}^{6} \{A_{i0} + A_{i1}/\theta + A_{i2}/\theta^5 + A_{i3} \exp(-5\theta)\} \beta^i, \tag{1}$$

where θ and β are the so-called nondimensional reduced temperature and reduced pressure, defined by T/T_c and P/P_c , respectively. And here T_c and P_c are the critical temperature and the critical pressure for methane adopted as the most suitable values in the present study. The numerical constants including the critical properties are tabulated in Table 1.

Table 1 Numerical constants in Eqs. (1) and (2)

	OR AND ON THE PROPERTY OF THE
A_{10} = 0.988087262 × 10 ⁻¹	$A_{40} = -0.253916438 \times 10^{-1}$
$A_{11} = -0.255124704 \times 10^{0}$	$A_{41} = 0.721976267 \times 10^{-1}$
A_{12} = 0.124906418 × 100	$A_{42} = -0.441023599 \times 10^{0}$
$A_{13} = -0.669677397 \times 10^2$	A_{43} = 0.664298600 × 10 ²
$A_{20} = -0.128343854 \times 10^{0}$	$A_{50} = 0.333739070 \times 10^{-2}$
A_{21} = 0.366379394 × 10°	$A_{51} = -0.951080464 \times 10^{-2}$
$A_{22} = -0.208751103 \times 10^{1}$	$A_{52} = 0.584019932 \times 10^{-1}$
$A_{23} = 0.285724445 \times 10^3$	$A_{53} = -0.899333171 \times 10^{1}$
A_{30} = 0.857043134 × 10 ⁻¹	$A_{60} = -0.159161534 \times 10^{-3}$
$A_{31} = -0.242998762 \times 10^{6}$	$A_{61} = 0.454169217 \times 10^{-3}$
A_{32} = 0.147562337 × 10 ¹	$A_{62} = -0.279911843 \times 10^{-2}$
$A_{33} = -0.212299033 \times 10^3$	A_{63} = 0.435287250 × 10°
$C_0 = 0.628315913 \times 10^0$	$P_c = 45.80 \mathrm{atm}$
$C_1 = 0.752532535 \times 10^6$	$v_c = 6.154 \text{cm}^3/\text{g}$
$C_2 = 0.582779030 \times 10^0$	$T_c = 190.65 \mathrm{K}$
$C_3 = 0.820437682 \times 10^{-1}$	
$C_4 = -0.107734575 \times 10^{-1}$	

It should be noted that Eq. (1) has the same temperature function in their form for respective pressure term. And it is also selfexplanatory that Eq. (1) tends exactly to the ideal gas state of Z=1, when both pressure P and density ρ tend to zero at the limit of the ideal gas state,

Correlation of the Isobaric Specific Heat Capacity in the Ideal Gas State

As is well known in the general treatment of the thermodynamic properties derivation, especially

¹¹⁾ I. Tanishita, K. Watanabe, H. Kondo, A. Nakashima and T. Ozawa, "Preprint of the 1972 Annual Meeting of the Japanese Association of Refrigeration", Nov. 7~8, in Tokyo

¹²⁾ I. Tanishita, K. Watanabe, K. Oguchi and H. Kondo, Refrigeration, 47, 24 (1972)

for obtaining the calorimetric properties, it is quite essential to establish the correlation formula of the isobaric specific heat capacity in the ideal gas state C_P^0 . As for the available data source of C_P^0 values for gaseous methane, quite extensive works of compilation, evaluation and correlation have been recently conducted by Makita¹³⁾. Therefore, a new correlation formula for C_P^0 values of gaseous methane was devised by the authors, based upon the set of the most probable C_P^0 values recommended by Makita. This correlation is effective for the range of temperatures between 0 and 225°C and is expressed in a dimensionless form as follows:

$$C_{P}^{0}(\theta) = C_{0}/\theta + C_{1} + C_{2}\theta + C_{3}\theta^{2} + C_{4}\theta^{3},$$
 (2)

where C_0 , C_1 , C_2 , C_3 , C_4 are the numerical constants as given in Table 1.

The maximum and average deviation between the calculated C_P^0 values by Eq. (2) and the recommended values due to Makita were found as 0.057% and 0.026% respectively for the range of temperatures of present interest.

Canonical Function and Derived Functions

The various kinds of thermodynamic properties are not independent of each other. For example, when pressure P and temperature T are chosen as the independent variables of formulation as in the present study, then the expressions (here called derived functions) for the specific volume v, the specific entropy s, the specific enthalpy h and all other thermodynamic properties of the substance may be derived directly by partial differentiation of the so-called canonical (or characteristic) function g=g (P,T), where g is the specific Gibbs free energy. Similarly, when the specific volume v and temperature T are chosen as the independent variables, then the expressions for the pressure P and all other thermodynamic properties may be derived by the similar manner of partial differentiation of the canonical function f=f(v,T), where f is the specific Helmholtz free energy.

Therefore, the formulation of the thermodynamic properties of gaseous methane is then presented in terms of the canonical function g=g(P,T) in its form, thereby maintaining the thermodynamic consistency as well as the practical convenience in the derivation of other important thermodynamic properties. And it should be noted that the canonical function g=g(P,T) provides the definitive expression of the present formulation and that the derived functions such as the specific volume v, the specific entropy s, the specific enthalpy h and the isobaric specific heat capacity C_p are for practical use and are secondary to the canonical function.

If the canonical function of the present formulation is defined as g=g(P, T), then the following derived functions could be easily derived based upon the known general thermodynamic relations

specific entropy:
$$s = -(\partial g/\partial T)_P$$
 (3)

specific volume:
$$v = +(\partial g/\partial P)T$$
 (4)

specific enthalpy:
$$h=g+Ts$$
 (5)

¹³⁾ Private communication to the authors

isobaric specific heat capacity:
$$C_P = -T(\partial^2 g/\partial T^2)_P$$
 (6)

Considering the convenience for the systematic calculation in practical applications, these derived functions given by Eqs. (3)~(6) could be rewritten in the following reduced dimensionless forms with the aid of the definition for the reduced specific Gibbs function as $\zeta = g/(AP_c v_c)$. Here A is a sort of conversion factor and is equal to 9.8692 atm⁻¹·J/cm³ in the present study, because the pressure P is in atm, the specific volume v in cm³/g, temperature T in K, the specific enthalpy h in J/g, specific entropy s and isobaric specific heat capacity C_P are in J/(gK), respectively.

reduced specific entropy:
$$\sigma = s/(AP_c v_c/T_c) = -(\partial \zeta/\partial \theta)\beta$$
 (7)

reduced specific volume:
$$\chi = v/v_c = +(\partial \zeta/\partial \beta)_\theta$$
 (8)

reduced specific enthalpy:
$$\varepsilon = h/(A P_o v_o) = \zeta + \theta \sigma$$
 (9)

reduced isobaric specific heat capacity:

$$\lambda_{\beta} = C_P / (A P_c v_c / T_c) = -\theta (\partial^2 \zeta / \partial \theta^2)_{\beta}$$
 (10)

Therefore, taking into consideration the above definitive expressions of the derived functions, the following reduced specific Gibbs function could be obtained from Eqs. (1) and (2).

$$\zeta = (T_c/AP_c v_c)[(C_0 - C_1\theta) \ln(\theta/\theta_0) + (C_0 - C_1\theta_0 - (C_2\theta_0^2/2) - (C_3\theta_0^3/3) - (C_4\theta_0^4/4))
+ \theta\{-(C_0/\theta_0) + C_1 + C_2\theta_0 + (C_3\theta_0^2/2) + (C_4\theta_0^3/3)\}
- (\theta^2/2)\{C_2 + (C_3\theta/3) + (C_4\theta^2/6)\}] + [\sum_{i=1}^{6} \{A_{i0}\theta + A_{i1} + (A_{i2}/\theta^4) + A_{i3}\theta \exp(-5\theta)\}
\times (\beta^i/i) + \theta(\ln P_c + \ln \beta)]/Z_c$$
(11)

Calculated Thermodynamic Properties

Using the established equation of state for gaseous methane given by Eq. (1), the compressibility factor Z at each grid point in the skeleton table of the most probable Z values proposed by Osugi et $al.^{1)}$ were calculated with an electronic computer. These results obtained are tabulated in Table 2 with those of the most probable Z values. It is clear that the present computed results are quite satisfactory in their coincidence with the most probable compressibility factor values, even considering the standard deviation estimated in the previous paper¹⁾.

Besides the comparison of Z with the most probable values, the compressibility factor Z corresponding to respective data point of available 9 data sources already mentioned were also calculated in order to compare the computed Z values ($Z_{\rm calc}$) directly with available experimental data reported in the original papers. In Figs. 1 \sim 3, the comparison of $Z_{\rm calc}$ values with respective Z values, including the most probable compressibility factor values, are shown in percentage deviation for three different typical isotherms given in the skeleton table by the previous work.

From the direct comparison of Z_{cale} values with available experimental data values, it becomes clear that the present formulated equation of state for gaseous methane is quite in satisfactory agree-

Thermodynamic Properties of Gaseous Methane

Table 2 Calculated values of the compressibility factor Z for gaseous methane and their comparison with the skeleton table values

	and their	compar	isoli with	the ske	leton ta	ble value				
Temperature (°C)	0	25	50	75	100	125	150	175	200	225
Pressure (atm)			+							
Ĭ	0.99759	0.99830	0.99876	0.99908	0.99933	0.99952	0.99968	0.99981	0.99994	1.00004
10	0.97599	0.98291	0.98756	0.99087	0.99336	0.99530	0.99688	0.99819	0.99930	1.00027
20	0.95211	0.96525 0.96577 -52/30	0.97467 0.97515 -48/32	0.98192	0.98699		0.99400 0.99399 1/3	0.99650	0.99858	1.00033
30	0.92835	0.94846 0.94877 -31/39	0.96297	0.97326	0.98094	0.98669 0.98680 -11/19			0.99795	1.00036
40		0.93206 0.93211 -5/46	0.95116	0.96498	0.97526				0.99744 0.99748 -4/25	
50		0.91620 0.91598 22/48	0.93988	0.95718	0.96999		0.98701	0.99273	0.99732 0.99724 8/31	
60	0.85950	0.90101 0.90057 44/50		0.94991	0.96516		0.98526	0.99218	0.99744 0.99726 18/35	
70	0.83798	0.88650 0.88607 43/72	0.91986	0.94355 0.94325	0.96065 0.96081	0.97381	0.98388	0.99177 0.99152	0.99782 0.99756 26/41	
80	0.81776	0.87308 0.87263 45/88	0.91080	0.93760 0.93722	0.95681	0.97159	0.98286	0.99167	0.99843 0.99814 29/50	1.00371
90	0.79920	0.86088 0.86041 47/57	0.90259	0.93210 0.93187	0.95348	0.96977	0.98215	0.99181	0.99927 0.99901 26/54	1.00510
100	0.78267	0.84999 0.84954 45/48	0.89529	0.92748 0.92722	0.95065	0.96842	0.98174 0.98177	0.99227 0.99207	1.00033 1.00015 18/57	
120	0.75693	0.83236 0.83225 11/73		0.92011 0.92010	0.94666	0.96687	0.98212	0.99398	1.00320 1.00320	1.01040
140	0.74244 0.74207	0.82069 0.82134 -65/43	0.87602	0.91592 0.91593	0.94490	0.96706 0.96711	0.98379 0.98388	0.99679 0.99689	1.00694 1.00714 -20/92	1.01494 1.01535
160	0.73870 0.73787	0.81600 0.81697 -97/100	0.87332	0.91469 0.91472	0.94547	0.96904 0.96912	0.98706	1,00096	1.01167 1.01187 -20/137	1.02056
180	0.74544	0.81892	0.87403 0.87439	0.91603 0.91641	0.94827 0.94841	0.97264 0.97286	0.99123 0.99160	1.00580 1.00607	1.01716 1.01733 -17/133	1.02634 1.02619
200	0.75968	0.82662	0.87913	0.92106 0.92089	0.95323 0.95327	0.97799 0.97826	0.99702 0.99745	1.01200 1.01218	1.02366	1.033 0 0 1.032 3 1
250			0.90653	0.94395	0.97406 0.97398	0.99814	1.01661 1.01726	1.03171 1.03175	1.04348 1.04277	1.05285
300			0.95080	0.98016 0.97967	1.00537 1.00516	1.02663 1.02628	1.04329	1.05690 1.05718	1.06780 1.06823 -43/37	1.07716
350		9		1,02519	1.04437	1.06091		1.08624	1.09593 1.09572 21/24	

1st line; skeleton table values $(Z_{\rm st})$, 2nd line; calculated values $(Z_{\rm cnlc})$, 3rd line; deviation $(Z_{\rm st}-Z_{\rm calc})/(3\times {\rm std.dev.})$

I. Tanishita, K. Watanabe, H. Kondo and A. Nakashima

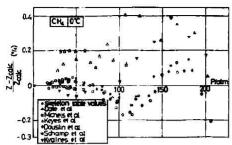


Fig. 1 Comparison of the calculated compressibility factor with the most probable values and with the experimental data along 0°C isotherm

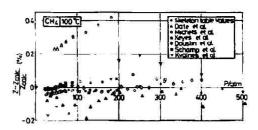


Fig. 2 Comparison of the calculated compressibility factor with the most probable values and with the experimental data along 100°C isotherm

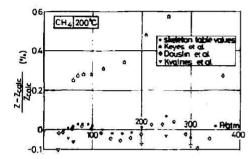


Fig. 3 Comparison of the calculated compressibility factor with the most probable values and with the experimental data along 200°C isotherm

ments with the most probable values of the compressibility factor proposed previously. And among the available PVT experimental data^{2~10} in the ranges of state parameters of present interest, it is obvious that the best coincidence with the present formulation were obtained for three sets of data^{4,6,8} which were considered to be the most reliable and the highest weight has been given to in the previous evaluation. Next to those three sets of data mentioned above, reasonable agreements with the present formulation were obtained with respect to three other sets of experimental data^{5,7,9} to which the weight second to the above three sets of data had been given. As for the other two sets of earlier works^{2,3}, it was found that there exists some considerable amount of discrepancies between their experimental data and the present formulation.

Using Eq. (8) with Eq. (11), the calculations of the specific volume v of gaseous methane were conducted. In Table 3, the calculated results of them are tabulated for respective common temperature and pressure, considering the convenience in practical applications.

The calculation of the calorimetric property values, such as the specific entropy s, the specific enthalpy h and the isobaric specific heat capacity C_P were calculated with the aid of Eqs. (7), (9) and (10), respectively. In case of these calculations of the calorimetric property values, the standard temperature T_0 which is corresponding to $\theta_0 = T_0/T_c$ in Eq. (11) was chosen as 25°C under the atmospheric pressure in accordance with the selected values of the specific entropy and enthalpy recommended by recent NBS compilation¹⁴). The calculated results thus obtained are shown in Figs. 4~6, for the specific

¹⁴⁾ D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey and R. H. Schumm, NBS Tech. Note, 270-23 (1968)

Thermodynamic Properties of Gaseous Methane

Table 3 Calculated values of the specific volume v(cm3/g) for gaseous methane

1393.7 1522.4 1650.8 1779.1 1907.3 2035.5 2163.6 2291.7 241 1393.7 1522.4 1650.8 1779.1 1907.3 2035.5 2163.6 2291.7 241 139.15 149.89 163.23 176.44 189.59 202.69 215.76 228.80 22 43.233 48.228 53.054 57.769 62.406 66.985 71.522 76.025 31.603 35.536 39.303 42.958 46.534 50.048 53.515 56.946 62.405 22.405 22.405 22.405 22.405 22.405 14.283 25.598 28.192 30.701 33.146 33.541 37.897 42.724 45.510 16.725 19.303 21.708 23.995 26.197 28.334 30.421 32.468 22.405 16.725 19.303 21.708 23.495 20.223 21.945 22.535 22.407 22.405 16.725 10.305 14.792 16.511 18.147 19.721 21.249 22.740 22.740 16.4430 7.7866 9.0216 10.180 11.281 12.335 14.340 11.600 11.281 23.308 6.3028 7.2669 8.1991 9.0969 9.9608 10.794 11.600 2.308 2.3048 6.7196 7.4355 8.1322 8.8066 9.4598 2.3049 2.	Temperature (°C)						1				
193.7 1522.4 1680.8 1779.1 1907.3 2035.5 2163.6 2291.7 244 139,15 149.89 163.23 176.44 189.59 202.69 215.76 228.80 22 66,500 73,638 80.588 87,425 94,187 100,90 107,56 114.21 11 43,233 48,228 83,034 47,958 46,534 50.048 53,515 56,946 66,885 71,522 76,025 89 24,637 27,937 31,069 34,089 37,026 39,899 42,724 45,510 4 20,010 22,889 25,598 28,192 37,026 39,899 42,724 45,510 4 16,725 19,303 21,708 23,995 26,197 28,344 30,421 31,468 35,541 31,468 14,285 16,534 10,303 21,708 23,899 24,734 32,468 35,541 37,897 44,510 10,941 10,941 10,941	Pressure (atm)	0	25	20	75	001	125	150	175	200	225
139,15 149,89 163,23 176,44 189,59 202,69 215.76 228,80 22,80 66,509 73,638 80,888 87,425 94,187 100,90 107,56 114,21 11 43,233 48,228 53,054 57,769 62,406 66,985 71,522 76,025 8 31,603 35,536 39,303 42,958 46,534 50,048 53,515 56,946 6 24,637 27,937 31,069 34,089 37,026 39,899 42,724 45,510 4 20,010 22,889 25,598 28,192 30,701 31,416 35,541 37,897 4 16,725 19,303 21,708 22,801 26,197 28,334 30,421 32,468 35,541 37,897 4 16,725 19,303 21,708 20,861 22,839 24,735 26,590 28,407 3 12,413 14,579 16,567 18,438 20,223 21,945 <td></td> <td>1393.7</td> <td>1522.4</td> <td>1650.8</td> <td>1779.1</td> <td>1907,3</td> <td>2035.5</td> <td>2163.6</td> <td>2291.7</td> <td>2419.9</td> <td>2548.0</td>		1393.7	1522.4	1650.8	1779.1	1907,3	2035.5	2163.6	2291.7	2419.9	2548.0
66,509 73,638 80,588 87,425 91,187 100,90 107,56 114,21 11,21 43,233 48,228 53,054 57,769 62,406 66,985 71,522 76,025 8 31,603 35,536 39,303 42,958 46,534 50,048 53,515 56,946 6 24,637 27,937 31,069 34,089 37,026 39,899 42,724 45,510 <td>10</td> <td>139,15</td> <td>149.89</td> <td>163.23</td> <td>176.44</td> <td>189,59</td> <td>502.69</td> <td>215.76</td> <td>228.80</td> <td>241,83</td> <td>254.86</td>	10	139,15	149.89	163.23	176.44	189,59	502.69	215.76	228.80	241,83	254.86
43.233 48.228 53.054 57.769 62.406 66.985 71.522 76.025 31.603 35.536 39.303 42.958 46.534 50.048 53.515 56.946 24.637 27.937 31.069 34.089 37.026 39.899 42.724 45.510 45.510 42.910 42.924 45.510	20	605'99	73,638	80,588	87.425	94,187	100.90	107.56	114.21	120,83	127,44
31,603 35,536 39,303 42,958 46,534 50,048 53,515 56,946 24,637 27,937 31,069 34,089 37,026 39,899 42,724 45,510 45,510 42,724 45,510 45,510 42,724 45,510 45,510 42,724 45,510 46,510 30,001 31,146 35,541 37,897 46,510 31,414 35,541 37,897 46,510 31,414 35,541 37,897 46,510 31,414 35,541 37,897 46,510 31,414 35,541 37,897 46,510 32,408 32,418 37,897 46,511 31,414 36,411 32,468 32,418 32,418 32,418 32,468 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,468 32,418 32,418 32,468 32,418 32,448 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418 32,418	30	43.233	48,228	53.054	57.769	62.406	66.985	71.522	76,025	80.503	84.961
24,637 27,937 31,069 34,089 37,026 39,899 42,724 45,510 20,010 22,889 25,598 28,192 30,701 31,146 35,541 37,897 16,725 19,303 21,708 23,995 26,197 28,334 30,421 37,897 14,285 16,634 18,807 20,861 22,830 24,735 26,590 28,407 12,413 14,579 16,567 18,438 20,223 21,945 23,618 25,235 10,942 12,955 14,792 16,511 18,147 19,721 21,249 22,740 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 7,4053 8,9465 10,346 11,650 12,885 14,061 16,408 15,710 16,322 6,4430 7,7866 9,0216 10,180 11,281 11,340 11,340 16,340 5,3088 6,3028 7,2669 8,1991 9,0969 9,0608 10,794 11,600 11,39 5,3049	40	31,603	35,536	39,303	42.958	46,534	50.048	53.515	56.946	60,349	63.730
20,010 22,889 25,598 28,192 30,701 31,146 35,541 37,897 16,725 19,303 21,708 23,995 26,197 28,334 30,421 32,468 14,285 16,634 18,807 20,861 22,830 24,735 26,590 28,407 12,413 14,579 16,567 18,438 20,223 21,945 26,590 28,407 10,042 12,055 14,792 16,511 18,147 19,721 21,249 22,740 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 6,4430 7,7866 9,0216 10,180 11,281 12,335 14,340 5,3088 6,3028 7,2669 8,1991 9,0969 9,608 10,794 11,600 5,3088 6,3028 7,2669 8,1991 9,0969 9,6068 7,459	20	24.637	27,937	31,069	34,089	37,026	39,899	42.734	45.510	48.267	51.001
16,725 19,303 21,708 23,995 26,197 28,334 30,421 32,468 14,285 16,634 18,807 20,861 22,830 24,735 26,590 28,407 12,413 14,579 16,567 18,438 20,223 21,945 23,618 25,255 10,942 12,955 14,792 16,511 18,147 19,721 21,249 22,740 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 6,4430 7,7866 9,0216 10,180 11,281 12,335 14,340 1 5,7772 6,9379 8,0290 9,0668 10,056 11,006 11,923 12,812 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 5,3349 5,3349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1339	09	20.010	22,889	25.598	28,192	30.701	33,146	35.541	37.897	40.224	42.526
14,285 16,534 18,807 20,861 22,830 24,735 26,590 28,407 12,413 14,579 16,567 18,438 20,223 21,945 23,618 25,255 2 10,942 12,955 14,792 16,511 18,147 19,721 21,249 22,740 2 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 2 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 1 6,4430 7,7866 9,0216 10,180 11,281 12,335 14,340 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9668 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9668 10,794 11,600 1 5,3349 5,3349 5,8150 6,9665 7,5275 8,0775 8,0775	70	16.725	19,303	21,708	23.995	26.197	28,334	30,421	32,468	34,488	36.483
12,413 14,579 16,567 18,438 20,223 21,945 23,618 25,255 10,942 12,055 14,792 16,511 18,147 19,721 21,249 22,740 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 1 6,4430 7,7866 9,0216 10,180 11,281 12,335 13,352 14,340 1 5,7772 6,9379 8,0290 9,0658 10,056 11,006 11,923 12,812 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9668 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,0966 7,4356 8,1322 8,0066 9,4598 1 4,7423 5,2159 5,6950 6,1728 6,1738 7,1139 </td <td>80</td> <td>14.285</td> <td>16,634</td> <td>18,807</td> <td>20,861</td> <td>22,830</td> <td>24.735</td> <td>26.590</td> <td>28.407</td> <td>30,194</td> <td>31.959</td>	80	14.285	16,634	18,807	20,861	22,830	24.735	26.590	28.407	30,194	31.959
10,942 12,955 14,792 16,511 18,147 19,721 21,249 22,740 8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 2 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 1 6,4430 7,7866 9,0216 10,180 11,281 12,335 13,352 14,340 1 5,7772 6,9379 8,0290 9,0658 10,056 11,006 11,923 12,812 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9668 10,794 11,600 1 5,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,4660 7,1139	06	12.413	14.579	16.567	18.438	20.223	21.945	23,618	25.255	26.863	28.449
8,8180 10,576 12,170 13,654 14,901 16,408 17,713 18,985 7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 1 6,4430 7,7866 9,0216 10,180 11,281 12,335 13,352 14,340 1 5,3088 6,9379 8,0290 9,0658 10,056 11,006 11,923 12,812 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 7,269 8,1991 9,0969 9,9668 10,794 11,600 1 5,3088 6,3029 6,1196 7,4356 8,1322 8,8066 9,4598 1 5,2349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	100	10,942	12.955	14.792	16,511	18.147	19,721	21.249	22.740	24.204	25,647
7,4053 8,9465 10,346 11,650 12,885 14,068 15,210 16,322 6,4430 7,7866 9,0216 10,180 11,281 12,335 13,352 14,340 1 5,7772 6,9379 8,0290 9,0658 10,056 11,006 11,923 12,812 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 7,2669 8,1991 9,09608 10,794 11,600 1 5,304 6,7196 7,4356 8,1322 8,8066 9,4598 1 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	120	8,8180	10.576	12.170	13,654	14,901	16,408	17.713	18,985	20.232	21,459
6,4430 7,7866 9,0216 10,180 11,281 12,335 13,352 14,340 1 5,7772 6,9379 8,0290 9,0658 10,056 11,006 11,923 12,812 1 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 1 5,3088 6,3028 6,3034 6,7456 8,1322 8,8066 9,4598 1 5,2349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	140	7,4053	8,9465	10,346	11,650	12.885	14,068	15.210	16.322	17.409	18.479
5,308 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 11 5,3088 6,3028 7,2669 8,1991 9,0969 9,9608 10,794 11,600 11 5,9934 6,7196 7,4356 8,1322 8,8066 9,4598 11 5,2349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	160	6,4430	7,7866	9,0216	10,180	11.281	12,335	13.352	14,340	15.305	16,252
5.3088 6,3028 7.2669 8.1991 9,0969 9,9608 10,794 11,600 1 5,9934 6,7196 7,4356 8,1322 8,8066 9,4598 1 5,2349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	180	5.7772	6,9379	8,0290	9,0658	10,056	11,006	11.923	12,812	13,678	14.526
5,9934 6,7196 7,4356 8,1322 8,8066 9,4598 1 5,2349 5,8150 6,3947 6,9665 7,5275 8,0775 4,7423 5,2159 5,6950 6,1728 6,6460 7,1139	200	5.3088	6,3028	7.2669	8,1991	6960.6	8096.6	10,794	11.600	12.385	13.151
5.2349 5.8150 6,3947 6,9665 7,5275 8,0775 4,7423 5.2159 5.6950 6.1728 6,6460 7.1139	250			5,9934	961199	7.4356	8,1322	8,8066	9,4598	10.094	10.713
4,7423 5,2139 5,6950 6,1728 6,6460 7,1139	300			5,2349	5.8150	6,3947	6,9665	7,5275	8,0775	8,6172	9,1484
	350			4.7423	5.2159	5.6950	6.1728	6.6460	7.1139	7.5763	7,0297

entropy s, the specific enthalpy h and the isobaric specific heat capacity C_P of gaseous methane*), where the temperature was chosen as the parameter. It may be easily understood that the present formulation could satisfactorily reproduce these calorimetric properties tracing after these diagrams. And it is also noteworthy that the isotherm of 250°C could present pretty reasonable tendency in these calorimetric property values, and even it is 25°C beyond the valid temperature range of the present formulation.

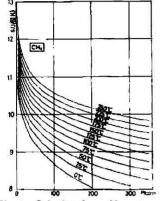


Fig. 4 Calculated specific entropy for gaseous methane

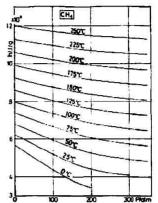


Fig. 5 Calculated specific enthalpy for gaseous methane

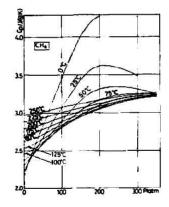


Fig. 6 Calculated isobaric specific heat capacity for gaseous methane

Conclusion

In accordance with the tasks of the compilation, evaluation and dissemination of the thermophysical property data for important hydrocarbons by the working committee of the High Pressure Data Center of Japan, the equation of state for gaseous methane has been formulated for the ranges of temperatures between 0 and 225°C and of pressures up to 350 atm. The basic data source used for the present formulation are the skeleton table values of the most probable compressibility factor adopted by this

^{*)} Calculated results were confirmed being in satisfactory agreements with those given by Din 15).

¹⁵⁾ F. Din., ed., "Thermodynamic Functions of Gases", 3, 6, Butterworths (1961)

134

working committee and reported previously1).

Using this established formulation, coupled with the new correlation for the isobaric specific heat capacity in the ideal gas state, the compressibility factor, the specific volume, the specific entropy, the specific enthalpy and the isobaric specific heat capacity have been calculated. The obtained results are quite satisfactory for all of these thermodynamic properties of gaseous methane.

Hence most of the essential and fundamental thermodynamic property values for gaseous methane can be revealed thoroughly by the present study for the ranges of state parameters mentioned above and they may be useful in practical applications involving this substance.

Finally, it should be noted that some more extensive experimental works on PVT relations for this substance especially in lower temperature regions below 0°C might be necessary and urgent to be conducted in near future, because there exists few reliable experimental data in this region at the present moment.

Acknowledgment

The authors wish to express their sincere appreciation to the members of the working committee of the HPDCJ for their continuous suggestions and encouragements given to the authors.

The authors are so grateful to Prof. T. Makita for his kindness to give the authors his accurate and well-furnished information about C_P ° values.

As for the financial support to the present study, the authors are partially indebted to the spon-sorship of the Agency of Science and Technology. And one of the authors (K. W.) is also partially supported by the Kawakami Memorial Research Funds for the completion of the present work.