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Group configurations in simple theories (Part.l)

Hisatomo MAESONO 前園 久智

1. Introduction
Group configuration theorem is one of the most important theorems of

geometric stability theory. This theorem is proved in full generality by
Hrushovski [1] following ideas of Zilber. It states that if some dependence
$/\prime \mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ situation exists, there is anon-trivial group behind it. ${\rm Re}$

cently, this theorem is generalized to the simple theory context by Wagner
et $\mathrm{a}1[2][3]$ . In this note, we introduce the results.

In stable case, the proof can be decomposed into two main steps ;
1. Obtain ageneric group chunk whose elements are germs of generic func-
tions, and whose product is the composition.
2. Apply the Weil-Hrushovski generic group chunk theorem.
In simple theories, the theorem is also proved through the two steps. There
are two papers accordingly. In this note, we give asummary of the next
paper at first [2] ;
“Group configurations and germs in simple theorioe.” by Itay Ben-Yaacov.
This paper is concerned with the generalization of the first step in the sta-
ble case. But they could not obtain ageneric group chunk this time. They
construct ageneric polygroup chunk, that is ageneric group chunk whose
product is defined up to abounded number of possible values.

2. Germs of generic actions
Alike in the stable $\mathrm{c}\overline{\mathrm{a}}\mathrm{s}\mathrm{e}$, generic functions and their compositions are treated

from now on. But in the simple context, compositions of complete types (as
generic functions) are not necessarily complete. It is due to the lack of
stationarity of types. Therefore generic functions (actions) are defined as
partial types. And their compositions are also partial types.

Definition 1Apartial type $\pi(x)$ over $A$ has definable independence if for
any partial type $\pi’(y)$ over $A,$ $n\pi(x)$ A $\pi’(y)\wedge x\backslash \mathrm{L}_{Ay}$”is $\mathrm{t}\mathrm{y}\mathrm{p}\triangleright \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ .
Remark 2Every complete type has definable independence. If $\pi(x)$ has
definable independence and $E$ is ahyperdefinable equivalence relation, then
$\pi(x)/E$ has definable independence.
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Definition 3Let $\pi(x, y, \approx)$ be apartial type in three hyperimaginary vari-
ables over ahyperimaginary parameter. We say that $\pi$ is ageneric action,,
if:
1. $\pi\lceil_{x},$ $\pi\lceil_{y}$ and $\pi\lceil_{\nu}\sim$ have definable independence.
2. $\pi(x,y, z)$ implies that $x,$ $y,$ $\approx \mathrm{a}\mathrm{r}\mathrm{e}$ pairwise independent.
3. For any $f,$ $a$ there is at most boundedly many $b$ such that $\pi(f, a,b)$ , that
is $\pi(f, a, z)$ is abounded (possibly inconsistent) type. We note $f(a)$ the set
of a.ll such $b$ .

We note Func(yr) $=\pi\lceil_{x},$ $\mathrm{A}\mathrm{r}\mathrm{g}(\pi)=\pi\lceil_{y}$ , Val(yr) $=\pi\lceil_{\approx}$ , namely the functions,
arguments and values of $\pi$ . If $f$ is afunction, we note $\mathrm{G}\mathrm{r}(f)(y, \mathrm{s})$ $=\pi(f, y, z)$ .
Note that $f\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\mathrm{v}\mathrm{r})$ $\Leftrightarrow \mathrm{G}\mathrm{r}(f)\neq\emptyset-$ .

Definition 41. We say that $\pi$ is trivial if $\pi(x, y, z)$ implies that $x,$ $y,$ $\approx$

are an independent triplet.

2. We say that $\pi$ is $i_{l}n,vertible$ if every function sends at most boundedly
many arguments to any given value.

3. We say that $\pi$ is corn.plete if for any $f\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi),$ $\mathrm{G}\mathrm{r}(f)$ is aLascar
strong type. ( $\mathrm{i}.\mathrm{e}$. an a.malgamation base) over $f$ .

4. We say that $\pi$ is reduced if it is complete, and whenever $\mathrm{G}\mathrm{r}(f)$ and
Gr(g) have acommon non-forking extension, then $f=g$ .

Definition 5Suppose that $\pi(x, y, z),$ $\pi’(t, z, w)$ are generic actions. Then
we define $\pi’0\pi(xt, y, w)$ to be the pa.rtial type such that $\pi’0\pi(fg, a,c)$ if
and only if:
1. $f,$ $g,$ $a$ are independent.
2. $c\in g\circ f(a)$ , that is, there is $b$ such that $b\in f(a)$ and $c\in g(b)$ .

Proposition 6 $\pi’0\pi_{-}$ aluyays exists (provided that the sorts match) and it is
a generic action.

Proof. $\pi’0\pi$ is the partial type ” $x\backslash \mathrm{L}t\wedge\exists z[y\downarrow xt\Lambda\pi(x,y,z)\wedge\pi(t, z,w)]$
” $1$

Proposition 71. Suppose $\pi$ is a generic action, and note $\pi^{-1}(x, y, z)=$

$\pi(x,$z, y). Then $\pi$ is invertible if and only if $\pi^{-1}$ is a generic action.

2. Any composition of two invertible functions is invertible, and $(\pi’0$

$\pi)^{-1}=\pi^{-1}0\pi^{\prime-1}$ .
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Proposition 8Let $\pi,$
$\pi’$ be generic actions on sorts such that $7\mathrm{r}’\mathrm{o}\pi$ is

defined. Suppose furthermore that $Aw(\pi’)=Val(\pi)$ and these are Lascar
strong types. Then for any independent $f\in Func(\pi)$ and $g\in Func(\pi’)$ , we
have $g\mathrm{o}f\in Func(\pi’0\pi)$ . If furthermore $\pi’$ is non-trivial, the so is the
composition.

Proof. Now $f\downarrow g$ and $\mathrm{A}\mathrm{r}\mathrm{g}(\pi’)=\mathrm{V}\mathrm{a}1(\pi)$ is aLascar strong type. By the
independence theorem, there is $b$ such that $b\downarrow fg$ and $b\models \mathrm{A}\mathrm{r}\mathrm{g}(\pi’)=\mathrm{V}\mathrm{a}1(\pi)$ .
Thus there are $a$ and $c$ such that $b\in f(a)$ and $c\in g(b)$ . We may assume
that a $\mathrm{L}_{bfg}$ . By $b\backslash \mathrm{L}fg,$ $a\cdot f|g$ . Then $g\mathrm{o}f$ is defined on $a$ . 1

As we saw above, the composition of two complete actions need not be
complete. Thus graphs need not have the same type. However the passa.ge
to germs requires the action to be complete. In case it is not, we construct its
“completion”. Every graph of afunction is replaced by Lascar strong types
over the same parameter.

Fact 9For any two variables $x$ and $y_{1}$ let $LS(x, y, x’,y’)$ be the partial type
saying that $y=y’$ and there are $y$-indiscernible sequence $(x_{i} : i<\omega)$ and
$(x_{i}’ : i<\omega)$ such. that $x=\mathrm{a}_{0}.,$ $x’=x_{0}’$ and $x_{1}=x_{1}’$ .
Then we have (taking $LS$ on the right sorts):
1. $LS$ is $a$ (type-definable) equivalence relation on the sort of $x,$ $y$ .
2. lstp(a/b) $=1\mathrm{s}\mathrm{t}\mathrm{p}(a’/b)$ if and only if $LS(a, b, a’, b)$ .

Definitioh 10 Let $\pi(x, y, z)$ be ageneric action. Consider the hyperdefin-
able equivalence relation $LS(yz, x, y’\approx’, x’)$ from Fact 9on the sort of $y_{\sim}$” $\mathrm{a}*$ .
Note the quotient sort by $\underline{x}=(yz, ai)/LS$. An element of this sort can be
viewed as apair that we shall note $f_{p}$ , where $f$ is an element in the sort of
$x$ , and $p$ is aLascar strong type over $f$ in the variables $y\approx$ . Now let $\underline{\pi}(\underline{x}, y, z)$

be defined as :
$\underline{\pi}((y’\approx’,x)/LS,$ $y,\approx)=\pi(x,y, z)$ A $LS(yz, x,y^{\iota}\approx’, x)$

So $\models\underline{\pi}(f_{p}, a, b)$ if and only if $b\in f$ (oe) and lstp(ab/f) $=p$ .
We call $\underline{\pi}$ the completion of $\pi$ . For afunction $f$ , we write $\underline{f}=\{(ab, f)_{LS}$ :
$b\in f(a)\}=\{f_{lstp(ab/f)} : b\in f(a)\}$ , that is the set of consistent completions
of $f$ , or the set of extensions of $\mathrm{G}\mathrm{r}(f)$ to acomplete Lascar strong type over
$f$ . Note that this is abounded hyperdefinable set.

Remark 11 As $\underline{x}$ is abounded extension of $x$ , all the properties of indepen-
dence and definable independence are preserved.

After the “completion”, we can pass to germs. This procedure, called
”reduction”, is essentially the same as in the stable case. We replace each
function with the canonical base for its graph.
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Definition 12 Let $\pi$ be acomplete generic action. We can construct its
”reduction” as follows :If $f,g\models \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi)$ , define $f\sim g$ if $\pi(f, x, y)$ and
$\pi(g, x, y)$ ha.ve acommon non-forking extension. By the usual argument
of simple theo$\mathrm{r}\mathrm{y}$, the transitive closure of $\sim \mathrm{i}\mathrm{s}$ atype-definable equivalence
relation, noted $E(x, y)$ . Putting $\overline{f}=f_{E}$ and $\overline{\pi}(\overline{x}, y, z)=\exists x’[\pi(x’, y, z)\wedge$

$E(x, x’)]$ , we obtain $\models\overline{\pi}(\overline{f}, a, b)$ if and only if $\models\pi(f, a,b)_{\wedge}\mathrm{a}\mathrm{n}\mathrm{d}$ $\overline{f}=\mathrm{C}\mathrm{b}(ab/f)$ .
We call $\overline{f}$ the germ of afunction $f$ . If $\pi$ is not complete, $f$ is the set of germs
of all the completions of $f$ . That is $\hat{f}=\{\overline{f}’ : f’\in\underline{f}\}$ . The set of germs of
$\pi$ is Germ(\pi ) $=\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\overline{\pi})$ .

Definition 13 1. We say that $\pi(x, y, z)$ and $\pi’(x’,y, \sim’)$ are isomorphic if
there is a(hyper)definable bijection $\overline{\phi}$ :Func(\pi ) $arrow \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi’)$ such that
$\mathrm{G}\mathrm{r}(f)=\mathrm{G}\mathrm{r}(\phi(f))$ for every $f\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi)$ .
2. We say that two generic actions are equivalent if their reductions are
isomorphic. We note it $\pi\approx\pi’$ .

3. Elimination in compositions
We pass to considering compositions. In order to get asuitable set of germs,

we need ageneric action $\hat{\pi}$ such that agerm of the composition $\hat{\pi}0\hat{\pi}$ is also
agerm of $\hat{\pi}$ . In stable case this is done by defining $\hat{\pi}=\pi^{-1}0\pi$ . For this $\hat{\pi}$ , it
is proved that the two middle terms can be eliminated from the composition
$(\pi^{-1}0\pi)\mathrm{o}(\pi^{-1}0\pi)$ . The stable proof fails in the simple case since anon-
forking extension of aLascar strong type is not necessarily Lascar strong.
Therefore they defined the technical notion of ageneric action being strong
on the left or on the right. And they realized the required “elimination”
under some strong assumption.

Lemma 14 Let $f\in Func(\pi),$ $g\in Func(\pi’),$ $f\backslash \mathrm{L}g$ , and $h\in Germ(\pi’0\pi)$ .
Suppose furtherm.ore that $abc\models Gr(f)(x, y)\cup C_{I}r(g)(y, \approx)\cup Gr\langle h$) $(x, z)$ . Then
the following are equivalent :
1. $h\in \mathrm{b}\mathrm{d}\mathrm{d}(fg)$ and $af\backslash \mathrm{L}_{b}cg$ .
2. $h\in \mathrm{b}\mathrm{d}\mathrm{d}(fg)$ and $ac\backslash \mathrm{L}_{h}fg$ .
S. $a\backslash \mathrm{L}fgh$ .

Proof. 1 $\Rightarrow 3,3\Rightarrow 2$ , and $2\Rightarrow 1$ are proved in turn by forking
calculation and property of canonical base. 1

Definition 15 When $abc$ satisfy the conditions of Lemma 14 (that is, all of
the initial assumptions as well

$\mathrm{a}\underline{\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{y}}$
of the equivalent conditions 1\sim 3), we

say that they witness that $h\in g\mathrm{o}f$ .
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Lemma 16 Under the hypothesis of Lemmal4, h $\in\overline{g\mathrm{o}f}$ if and only if there
are witnesses to it.

Definition 17 1. We say that ageneric action $\pi$ is $conn,ected$ if $\pi(x,y, z)$

is acomplete type.

2. We say that ageneric action $\pi$ is strong on the left(resp. on $th,e$ right)
if $\pi(x, y, z)$ implies that $\mathrm{t}\mathrm{p}(xz/y)(resp. \mathrm{t}\mathrm{p}(xy/\approx))$ is aLascar strong
type.

3. We say that acomposition $\pi’\circ\pi$ is generic if for every independent
$f\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi),$ $g\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi’)$ , and for every $h\in\overline{g.\circ f\cdot},$ $h$ is independent
both of $f$ and $g$ .

Lemma 18 Cornsider a composition $\pi’$ 0 $\pi$ , and f $\in Func(\pi),$ g $\in Func(\pi’)$ ,
h $\in Germ(\pi’0\pi)$ .

1. If $\pi$ is invertible, and f $\downarrow g,$ $f\backslash \mathrm{L}$ h, then : h $\in\overline{g\mathrm{o}f}\Leftrightarrow g\in h\overline{\mathrm{o}f^{-1}}$ ,
and abc utitness the first if and only if bac witness the second.
2. If $\pi’$ is invertible, and $f^{\mathrm{L}}\backslash g,$ $h[perp]_{g},$ th,en : h $\in\overline{g\mathrm{o}f}\Leftrightarrow f\in g^{-1}\overline{\circ}h$ ,

and abc witness the first if and only if acb witness th.e second.

Proof. 1. The first statement is equivalent to $a[perp] fgh,$ , while the second to
$b\mathrm{L}fgh$ . We can prove their equivalence easily.
2. Both statements are equivalent to $a^{\backslash [perp]}fgh$ . 1

We now see when ageneric action and its inverse can be eliminated from a
composition.

Definition 19 1. Let $\pi,$ $\pi’,$ $\pi^{\prime/}$ be generic actions, $\pi’$ invertible, on sorts
such that the compositions $\pi’-10\pi$ and $\pi’’0\pi_{\sim}’$ exist and generic. Then
we say that they form an elimipation context.

2. Let $\pi,$ $\pi’,$ $\pi’’$ form an elimination context. Suppose $f\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi’)$ , $go\in$

Germ(\pi ), $g_{1}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi")$ , $h_{0}\in\underline{\mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(}\pi^{\prime-1}0\pi),$ $h_{1}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi’’\underline{\mathrm{o}\pi’)}$ .
Suppose that $adb$ witness $h_{0}\in f^{-1}\mathrm{o}g_{0}$ , and $bdc$ witness $h_{1}\in g_{1}$ of.
Suppose furthermore that $ag_{0}h_{0}\backslash \mathrm{L}_{bdf}cg_{1}h_{1}$ . Then $abcdfg_{0}g_{1}h_{0}h_{1}$ form
an elimination diagram.

3. Let $\pi,$ $\pi’,$ $\pi’’$ form an elimination context. For independent $h_{0}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}$

$(\pi^{\prime-1}0\pi),$ $h_{1}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi’’0\pi’),$ $\mathrm{E}\mathrm{l}\mathrm{i}\mathrm{m}(h_{0}, h_{1})$ is the set of all the germs of
$h_{1}\mathrm{o}h_{0}$ obtained by elimination diagrams, i.e. germs of $1\mathrm{s}\mathrm{t}\mathrm{p}(ac/h_{0}h_{1})$

taken from an elimination diagram abcdf$g_{0}g_{1}h_{0}h_{1}$ .
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Lemma 20 Let $\pi,$ $\pi’,$ $\pi’’$ form an elimination corntext, and $abcdfg_{0}g_{1}h_{0}h_{1}$ be
an elimination $diag\underline{mm}$for it. Then :
1. $abd$ witness $g_{0}\in f\mathrm{o}h_{0}$ , and $dbcu’ itnessg_{1}\in h_{1}.\overline{\mathrm{o}f^{-1}}$ .
2. $g_{0}g_{1}[perp],$ $h_{0}\Downarrow h_{1}$ , and $a[perp] fg_{0}g_{1}h_{0}h_{1}$ .
3. The germs of $g_{1}\mathrm{o}g_{0}$ and of $h_{1}\mathrm{o}h_{0}$ given by $ac$ are $th,e$ sam.e.
4. Note $th,is$ com.mon germ $h$ . Then $abc\cdot \mathfrak{l}\mathit{1}’ itnessh\in\overline{h_{1}\mathrm{o}h}_{0_{J}}$ and $adc$ witness
$h\in\overline{g_{1}\mathrm{o}g_{0}}$ .
5. $h$ is independen$t$ of each of $g_{0},$ $g_{1},$ $h_{0},$ $h_{1}$ .
6. $Elim(h_{0}, h_{1})\subseteq h_{1}\mathrm{o}h_{0}\cap Germ(\pi’’0\pi)$ .

Sketch of $th,e$ proof.
From Lemma 18 and the genericity of $\pi^{\prime-1}\mathrm{o}$ yr and $\pi’’0\pi’$ . These are

proved by the argument about witness and forking calculation. 1

Theorem 21 Let $\pi,$ $\pi’,$ $\pi’’$ form an $elim,ination$ context and suppose $f.unher\sim$

more that $\pi’$ is connected and strong on th.e left.
1. For independent $h_{0}\in\underline{Germ(}\pi^{\prime-1}0\pi$ ), $h_{1}\in Germ(\pi’’0\pi’)$ :

$Elim(h_{0}, h_{1}.)=h_{1}\circ h_{0}$

2. Th.e $com,position(\pi’’0\pi’)\mathrm{o}(\pi^{\prime-1}0\pi)$ is generic, and :
Germ $((\pi" 0\pi’)\circ(\pi^{\prime-1}\circ\pi))\subseteq Germ(\pi’’0\pi)$

S. If we $furth,er$ suppose $that=Vall(\pi)\wedge Ary(\pi’’)\vdash Vall(\pi’).$’we have $eq\prime uality.$
’

that is :
$(\pi’’0\pi’)\mathrm{o}(\pi^{\prime-1}0\pi)\approx\pi’’0\pi$

Sh.etch of the proof. 1. We show $\overline{h_{1}\mathrm{o}h}_{0}\subseteq \mathrm{E}\mathrm{l}\mathrm{i}\mathrm{m}(h_{0}, h_{1})$ . Let $h\in\overline{h_{1}\mathrm{o}h_{0}.},$ $h_{0},\in$

$f^{\overline{-1}}\mathrm{o}g_{0},$ $h_{1},\in\overline{g_{1}\mathrm{o}f}’$ . We $\mathrm{r}\mathrm{e}$-choose their witness by Lemma18 and the inde
pendence theorem. And we can get an elimination diagram for $h\in \mathrm{E}\mathrm{l}\mathrm{i}\mathrm{m}(h_{0}, h_{1})$.
2. By Lemma 20. 5, 6and 1. above.
3. By 2. above, we show Germ$((\pi" 0\pi’)\mathrm{o}(\pi^{\prime-1}0\pi))\supseteq \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi’’0\pi)$. Let
$h\in\overline{g_{1}\mathrm{o}g_{0}}$ where $g_{0}\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi),$ $g_{1}\in \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}(\pi’’)$ and $g_{0}^{\Downarrow}g_{1}$ . After some ar-
gument, we can get an elimination diagram containing $h_{0}$ and $h_{1}$ where
$h\in h_{1}\mathrm{o}h_{0},$ $h_{0}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi^{\prime-1}0\pi)$ and $h_{1}\in \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}(\pi’’0=\pi’)$ . 1

4. Generic multi-chunk

Definition 22 We say that ageneric action $\pi$ is ageneric multi-chunk if
$\pi$ is reduced, $\mathrm{A}\mathrm{r}\mathrm{g}(\pi)$ is Lascar strong, $\pi$ is invertible satisfying $\pi=\pi^{-1}$ , and
the composition $\pi 0\pi$ is generic satisfying $\pi^{2}\approx\pi$ .
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So Theorem 21 gives :

Corollary 23 Let $\pi$ be an $in^{l}uert,ible$ generic action, and let $\pi’$ be $po\mathrm{c}\mathrm{s}S’ibl^{1}y$

another invertible generic act.ion which is connected and strong on the left,
such that $A\uparrow g(\pi)$ and $Val(\pi)$ are Lascar $st|^{\backslash }ong_{f}$ and $\pi^{-1}0\pi’\approx\pi^{\prime-1}0\pi\approx$

$\pi^{-1}0\pi$ are all generic $com,positions$ (so $A\eta(\pi’)=Ary(\pi)$ ). Note $\hat{\pi}=\overline{\pi^{-1}0\pi}$.
Then $\pi,$ $\pi’,$ $\pi^{-1}$ form an elim.ination context, and $\hat{\pi}$ is a generic multi-ch.unk.
If $\pi$ is non-trivial, so is $\hat{\pi}$ .
Proof. By TheOrem21 and Proposition 7we can see by letting $\{\pi, \pi’, \pi^{-1}\}$

be $\{\pi, \pi’, \pi’’\}$ of Theorem 21. 1

Usually we would have $\pi’=\pi$ .
We will show that ageneric multi-chunk almost satisfies the hypothesis

of the Weil-Hrushovski group chunk theorem, except that multiplication is
many-valued. They call such astructure $\langle P, *\rangle$ ageneric polygroup chunk.

Theorem 24 Let $\pi$ be a generic m.ulti-chunk. Let $P=Germ(\pi)$ . Th.en the
composition $\pi^{2}\approx\pi$ induces a hyperdefinable $function*$ : $P\cross Parrow P$ ,
which is defined up to a bounded non-zero nurnber of possible values. This
function satisfies the hypothesis of the $generali\approx ed$ Hrushovski-Weil th.eorem
[4], in the following sense :

1. Generic independence:If $f^{\mathrm{L}}\backslash g$ and $h\in f*g$ , then $f,$ $g,\grave{h}$. are pairwise
independent.

2. Generic associativity:Suppose f, g, h are independent. Then $f*(g*$
$h)=(f*g)*h$ (as sets).

3. Generic surjectivity :For any independent $f,$ $g$ , there is $h$ such that
$g\in f*h$ . $\Lambda foreover$, for any $f,$ $g,$

$h$ : $g\in f*h$. $\Leftrightarrow h\in f^{-1}*g$ .
Sketch of the proof. Let $f*g=\overline{gof}$ .
1. Clear by definition.
2. Both sides of inclusion are proved by Lemma 14 and the independence
theorem. It is too long to contain here.
3. Easily checked by Proposition 8and Lemma 18. 1

5. Quadrangle

Up to this time, we defined ageneric function generally, and deduced a
generic polygroup chunk. In stable case, ageneric group chunk is obtained
from group configuration, i.e. from some quadrangle structure. In simple
theory, we can also start the argument from aquadrangle structure.
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Definition 25 Let e be some hyperimaginary parameter, and (f,g, h., a, b, c)
atuple whose elements we put on adia.gram as follows :

Then $(f,g, h,, a, b, c)$ is aalgebraic $qu\dot{a}$drangle over $e$ if it satisfies the fol-
lowing conditions :
1. Every non-collinear triplet is e-independent.
2. $\mathrm{b}\mathrm{d}\mathrm{d}(fge)=\mathrm{b}\mathrm{d}\mathrm{d}(fhe)=\mathrm{b}\mathrm{d}\mathrm{d}(gh.e)$ (i.e. any two of $f,g,$ $h$ are e-interbounded
over the third).
3. $a,$ $b$ are $fe$ -interbounded, $b,$ $c$ are $ge$-interbounded, $a,$ $c$ are he-interbounded.
4. $f$ is $e$ -interbounded with $\mathrm{C}\mathrm{b}(ab/fe)(=\mathrm{C}\mathrm{b}(1\mathrm{s}\mathrm{t}\mathrm{p}(ab/fe)),$ $g$ is e-interbounded
with $C\mathrm{b}(bc/ge),$ $h$ is $e$ -interbounded with $Cb(ac/he)$ .

Fact 26 If $(f,g, h, a, b, c)$ is an algebraic quadrangle over $e$ as above, and
$(f’,g’, h’, a’, b’, c’)$ is such that each prim.ed $elem,ent$ is interbounded over $e$

with $th,e$ eomsponding $unpr\dot{8}m,ed$ element, then $(f’,g’, h’, a’, b’, c’)$ is also an
algebraic quadrangle over $e$ . In such a case we say that these quadrangles are
algebraically equivalent over $e$ .

We obtain more or less immediately:

Theorem 27 Let $(f,g, h, a, b, c)$ be an algebraic quadrangle over $e$ . Let $a’=$

$\mathrm{d}\mathrm{c}1(fabe)\cap \mathrm{b}\mathrm{d}\mathrm{d}(ae)$ and $b’=\mathrm{d}\mathrm{c}1(fabe)$ rlbdd(be). $Th,en(f,g, h,, a’, b’, c)$ is al-
gebraically equivalent over $e$ to the original quadrangle. Take $\pi=1\mathrm{s}\mathrm{t}\mathrm{p}(fa’b’/e)$ .
Then, $\pi$ is strong on both sides, and it satisfies $th,e$ assumptions of COrOllarf23,
with $\pi=\pi’$ , yielding a generic multi-chunk $\hat{\pi}=\overline{\pi^{-1}0\pi}$ (over $\mathrm{b}\mathrm{d}\mathrm{d}(e)$ ).
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