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Structure of formal solutions of nonlinear First Order
Singular Partial Differential Equations in Complex

Domain
名古屋大学多元数理科学研究科 三宅正武 (Masatake Miyake)
名古屋大学多元数理科学研究科 白井朗 (Akira Shirai)

Graduate School of Mathematics, Nagoya University

This note is based on apreprint [MS2]. The proofs of theorem, propositions and
lemmas in the below will be omitted or shortened, since we are not permitted enough
space to write down the complete proofs. The complete proofs will be found in the web
site “Preprint Series In Mathematical Sciencei’ No.2002-4, whose address is

http: //www.math.human. nagoya-u.ac.jp/preprint.html

1Introduction
Let $\mathcal{O}_{x}$ be the ring of germs of holomorphic functions in aneighborhood of origin of $\mathrm{C}_{x}^{n}$

and let $\mathcal{M}_{x}[[t]]$ be amaximal ideal of formal power series with holomorphic coefficients,
that is,
(1.2) $u(t, x) \in \mathcal{M}_{x}[[t]]\Leftrightarrow u(t, x)=\sum_{|\alpha|\geq 1}u_{\alpha}(x)t^{\alpha}$ , $u_{\alpha}(x)\in \mathcal{O}_{x}$ ,

where $(t, x)=(t_{1}, \cdots, t_{d}, x_{1}, \cdots, x_{n})\in \mathrm{C}_{t}^{d}\cross \mathrm{C}_{x}^{n}(d\geq 1, n\geq 0)$, a $\in \mathrm{N}^{d}(\mathrm{N}=\{0,1,2, \ldots\})$

and $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$ .
We shall study the formal solutions $u(t, x)\in \mathcal{M}_{x}[[t]]$ of the following nonlinear first

order partial differential equation:

(1.2) $f(t, x, u, \partial_{t}u, \partial_{x}u)=0$ with $u(0, x)\equiv 0$ ,

where $\partial_{t}u=$ $(\partial_{t_{1}}u, \cdots, \partial_{t_{d}}u)$ and $\partial_{x}u=(\partial_{x_{1}}u, \cdots, \partial_{x_{n}}u)$ .
Throughout this paper, we assume the following three assumptions:

[A1] The function $f(t, x, u, \tau, \xi)(\tau=(\mathrm{t}\mathrm{j})\in \mathrm{C}^{d}, \xi=(\xi_{k})\in \mathrm{C}\mathrm{n})$ is holomorphic in
aneighborhood of the origin. Moreover, $f(t, x, u, \tau, \xi)$ is an entire function in $\tau$

variables for any fixed $t$ , $x$ , at and 4in the definite domain.

[A2] The equation (1.2) is singular in $t$ variables in the sense that

(1.3) $f(0, x, 0, \tau, 0)\equiv 0$ and $\frac{\partial f}{\partial\xi_{k}}(0, x, 0, \tau, 0)\equiv 0$ , $(k =1,2, \ldots, n)$ .

[A3] The equation (1.2) has aformal solution $u(t, x)\in \mathcal{M}_{x}[[t]]$ .
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Our purpose in this paper is to characterize the convergence or the divergence of such
aformal solution. In order to state our results we need to prepare some notations.

Let $\varphi_{j}(x)=\partial_{t_{j}}u(0, x)\in \mathcal{O}_{x}(j=1, \cdots, d)$ and put $\varphi(x)=(\varphi_{j}(x))$ . We differentiate
the equation (1.2) by $t_{i}(i=1,2, \cdots, d)$ , then we get the following equations for $\{\varphi_{i}(x)\}$

from the second assumptions in (1.3) of [A2];

(1.4) $\frac{\partial}{\partial t_{i}}f(t, x, u(t, x), \{\partial_{t_{j}}u(t, x)\}, \{\partial_{x_{k}}u(t, x)\})|_{t=0}$

$\equiv\frac{\partial f}{\partial t_{i}}(0, x, 0, \varphi(x), 0)+\frac{\partial f}{\partial u}(0, x, 0, \varphi(x), 0)\varphi_{i}(x)=0$

for $i=1,2$ , $\ldots$ , $d$ . We take and fix such asolution $\varphi(x)$ .
We set $\mathrm{a}(x)=(0, x, 0, \varphi(x), 0)$ for the simplicity of notation. Now we define holomor-

phic functions $a_{ij}(x)(i,j=1,2, \ldots, d)$ by

(1.3) $a_{ij}(x)= \frac{\partial^{2}f}{\partial t_{i}\partial\tau_{j}}(\mathrm{a}(x))+\frac{\partial^{2}f}{\partial u\partial\tau_{j}}(\mathrm{a}(x))\varphi_{i}(x)$ ,

and put $A(x)=(a_{ij}(x))_{i,j=1}^{d}$ . Then our main result is stated as follows:

Theorem 1.1 Under the assumptions [A1], [A2] and [A3], we have:
(i) (Convergent Case) Let $\{\lambda_{j}\}_{j=1}^{d}$ be $tAe$ eigenvalues of the matrix $A(0)$ . Then if

$\{\lambda j\}_{j=1}^{d}$ satisfies the condition below which we call the Poincari condition, the formal
solution $u(t, x)\in \mathcal{M}_{x}[[t]]$ is convergent in a neighborhood of the origin:

(1.6) Ch $(\lambda_{1}, \ldots, \lambda_{d})\geq$ $0$ (Poincare’ condition),

where $\mathrm{C}\mathrm{h}(\lambda_{1}, \ldots, \lambda_{d})$ denotes the convex hull of $\{\lambda_{1}, \ldots, \lambda_{d}\}$ .
(ii) (Divergent Case) Suppose that $A(x)$ is a nilpotent matr$rix$, and take an integer

Nwith $l\leq N\leq d$ such that $A^{N}(x)\equiv \mathrm{O}$ , but $A^{j}(x)\not\equiv \mathrm{O}$ for $j=0$ , $\ldots$ , $N-1$ , where
$\mathrm{O}$ denotes the null matr$rix$. Then if $f_{u}(\mathrm{a}(0))\neq 0$ , the formal solution $u(t, x)\in \mathcal{M}_{x}[[t]]$

diverges in general, and it belongs to the Gevrey class of order at most $2N$ in $tvar\dot{\tau}ables$ ,
which means that the formal $2N$-Borel transform of $u(t, x)$ , $\sum_{|\alpha|\geq 1}u_{\alpha}(x)t^{\alpha}/|\alpha|!^{2N-1}$ is
convergent in a neighborhood of the origin.

The theorem will be proved by reducing the equation (1.2) to an equation which is
similar but more general than that studied by G\’erard and Tahara [GT] and many others
as we shall show below.

We put $v(t, x)=u(t, x)- \sum_{j=1}^{d}\varphi_{j}(x)t_{j}(=O(|t|^{2}))$ . Then by an easy calculation, we
can see that $v(t, x)$ satisfies the following nonlinear singular partial differential equation:

(1.7) $( \sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{\mathrm{j}}}+\frac{\partial f}{\partial u}(\mathrm{a}(x)))v(t, x)=\sum_{|\alpha|=2}b_{\alpha}(x)t^{\alpha}+f_{3}(t, x, v, \partial tv, \partial_{x}v)$ ,
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where $b_{\alpha}(x)\in \mathcal{O}_{x}$ and $f_{3}(t,$x, v,$\tau, \xi)$ is holomorphic in aneighborhood of the origin with
Taylor expansion

(1.8) $f_{3}(t, x, v, \tau, \xi)=\sum_{|\alpha|+2p+|q|+2|r|\geq 3}f_{\alpha pqr}(x)t^{\alpha}v^{p}\tau^{q}\xi^{r}\in \mathcal{O}_{x}\{t, v, \tau, \xi\}$
,

where $at\in \mathrm{N}^{d}$ , $p\in \mathrm{N}$ , $q\in \mathrm{N}^{d}$ , $r\in \mathrm{N}^{n}$ and $\mathcal{O}_{x}\{X\}$ denotes the set of convergent series in
all variables $x$ and $X$ .

Remark 1.2 (About the assumption [A1]) The assumption that $f(t, x, u, \tau, \xi)$ is an
entire function in $\tau$ variable is only for the convenience. Once we fix $\varphi(x)=(\varphi j(x))\in \mathcal{O}_{x}^{d}$

which satisfy the equations (1.4), it is sufficient to assume that $f$ is holomorphic in a
neighborhood of $(0, 0, 0, \varphi(0), 0)$ .

Remark 1.3 (Nonresonance condition) If $f_{u}(\mathrm{a}(0))$ satisfies the nonresonance condi-
tion, that is,
(1.9) $\lambda\cdot\alpha+f_{u}(\mathrm{a}(0))\neq 0$ , for all $|\alpha|\geq 2$ ,

$( \lambda\cdot\alpha=\sum_{j=1}^{d}\lambda_{j}\alpha_{j})$ , then the theorem does hold for the formal solution $u(t, x)\in \mathrm{C}[[t, x]]$

if we assume the existence of $\varphi(x)=(\varphi j(x))\in \mathcal{O}_{x^{d}}$ .

Remark 1.4 (Singular equation) Our definition [A2] or (1.3) on the singular equation
corresponds to the one considered by T. Oshima [O] for linear partial differential equations.
Especially, our assumption that $f_{\xi_{k}}(0, x, 0, \tau, 0)\equiv 0(k=1,2, \ldots, n)$ assures that in the
reduced equation (1.7) the vector field on the left hand side depends only on $\partial_{t_{j}}(j=$

$1,2\cdots$ , $d)$ . Instead of this assumption, if we assume $f_{\xi_{k}}(0,0,0, \tau, 0)\equiv 0(k=1,2\cdots, n.)$ ,
then we get asigluar equation of another kind that in the reduced equation the terms
$b_{k}(x)\partial_{x_{k}}$ with $b_{k}(0)=0(k=1,2, \cdots, n)$ appear in the vector field. For such equations,
similar problems have been studied in aseries of papers [CT], [CL] and [CLT] by Chen,
Luo and Tahara where the reduced tyPe equations were studied under more restricted
conditions than ours which they called the singular equations of totally characteristic
type. The generalization of their results has been studied by A. Shirai. The convergent
result has been obtained in [S2] under the generalized Poincar\’e condition, and the Maillet
type theorem has been studied in apreparing paper [S3].

2Preparations to Prove Theorem 1.1.
In this section, we shall prepare some notations, definitions and lemmas, which will be
used in the proof of Theorem 1.1.

$\bullet$ $D_{z_{0}}(R)=\{x=(x_{1}, \ldots, x_{n})\in \mathrm{C}^{n} ; |xj-z_{0}|\leq R, j=. 1,2, \ldots, d, z_{0}\in \mathrm{C}\}$ .

$\bullet$ $\mathcal{O}_{z_{0}}(R)$ : the set of holomorphic functions on $x\in D_{z_{0}}(R)$ .
$\bullet$ $\mathrm{C}[t]_{L}=\{u_{L}(t)=\sum_{|\alpha|=L}u_{\alpha}t^{\alpha} ; u_{\alpha}\in \mathrm{C}\}$ . (Homogeneous polynomials of order $L$)
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$\bullet$ $\mathcal{O}_{z_{0}}(R)[t]_{L}=\{u_{L}(t, x)=\sum_{|\alpha|=L}u_{\alpha}(x)t^{\alpha} ; u_{\alpha}(x)\in \mathcal{O}_{z0}(R)\}$ .

Definition 2.1 ($\mathrm{s}$-Borel transform and Gevrey space $\mathcal{G}^{\mathrm{s}}$ ) Let $\mathrm{R}_{\geq 1}=\{x\in \mathrm{R}$ ;
$x\geq 1\}$ . For $d$ dimensional real vector $\mathrm{s}=$ $(s_{1}, s_{2}, \ldots, s_{d})\in(\mathrm{R}_{\geq 1})^{d}$ and aformal power
series $f(t, x)= \sum_{\alpha\in \mathrm{N}^{d}}f_{\alpha}(x)t^{\alpha}\in \mathcal{O}_{x}[[t]]$, we define the $\mathrm{s}$-Borel transform $B^{\mathrm{s}}(f)(t, x)$ of
$f(t, x)$ by

(2.1) $B^{\mathrm{s}}(f)(t, x):= \sum_{\alpha\in \mathrm{N}^{d}}f_{\alpha}(x)\frac{|\alpha|!}{(\mathrm{s}\cdot\alpha)!}t^{\alpha}$,

where $\mathrm{s}\cdot$ $\alpha=\sum_{j=1}^{d}5jaj$ and $(\mathrm{s}\cdot\alpha)!=\Gamma(\mathrm{s}\cdot\alpha+1)$ by the Gamma function.
We say that $f(t, x)\in(;;’$ if $B^{8}(f)(t, x)\in \mathrm{C}\{t, x\}$ , and $\mathrm{s}$ is called the Gevrey order in $t$

variables.

We introduce the $\mathrm{s}$-norm of $u_{L}(t)= \sum_{|\alpha|=L}u_{\alpha}t^{\alpha}\in \mathrm{C}[t]_{L}$ by

(2.2) $||u_{L}||_{8}$ $:=$ $\inf\{C>0 ; B^{\mathrm{s}}(u_{L})(t)<<C(t_{1}+\cdots+\iota_{d})^{L}\}$

$=$ $\max|\alpha|=L\{|u_{\alpha}|\frac{\alpha!}{(\mathrm{s}\cdot\alpha)!}\}$ , $(\alpha!=\alpha_{1}!\cdots\alpha_{d}!)$ .

Lemma 2.2 Let $f(t, x)= \sum_{\alpha\in \mathrm{N}^{d}}f_{\alpha}(x)t^{\alpha}\in \mathcal{O}_{0}(R)[[t]]$ and assume $\mathrm{s}=(s, \cdots, s)\in$

$(\mathrm{R}_{\geq 1})^{d}$ . For a regular matrix $Q(x)=(Q_{ij}(x))\in GL(d, \mathcal{O}_{0}(R))$ , the function $g(\tau, x):=$

$f(\tau Q(x), x)$ belongs to $\mathcal{G}^{\mathrm{s}}$ in $\tau$ var iables if and only if $f(t, x)$ belongs to $\mathcal{G}^{\mathrm{s}}$ in $t$ variables.

3Proof of Theorem 1.1, (i).

We put $v(t, x)= \mathrm{v}(\mathrm{t}, x)-\sum_{j=1}^{d}\varphi_{j}(x)t_{j}\in \mathcal{M}_{x}[[t]]$ which satisfies $v(t, x)=O(|t|^{2})$ . Then,
as stated in Introduction, it is easily examined that $v(t, x)$ satisfies the following singular
equation:

(3.1) $( \sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{j}}+c(x))v(t, x)=\sum_{|\alpha|=2}b_{\alpha}(x)t^{\alpha}+f_{3}(t, x, v, \partial_{t}v, \partial_{x}v)$ ,

with $a_{ij}(x)$ , $c(x)$ , $b_{\alpha}(x)\in \mathcal{O}_{x}$ . Here we remark that $(a_{ij}(0))_{i,j=1}^{d}$ is aregular matrix
with eigenvalues $\{\lambda_{j}\}_{j=1}^{d}$ which satisfy the Poincar\’e condition (1.6), $c(x)=f_{u}(\mathrm{a}(x))$

and $f_{3}(t, x, v, \tau, \xi)$ is holomorphic in aneighborhood of the origin with the same Taylor
expansion with (1.8)

By the Poincare’ condition (1.6), there exists apositive integer $K\geq 2$ such that

(3.2) $| \sum_{j=1}^{d}\lambda_{j}\alpha_{j}+c(0)|\geq C_{0}|\alpha|$ , $|\alpha|\geq K$

holds by some positive constant $C_{0}>0$ . We take and fix such $K$ .
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Once again we set $w(t, x)=v(t, x)- \sum_{|\alpha|=2}^{K-1}u_{\alpha}(x)t^{\alpha}(=O(|t|^{K}))$ as anew unknown
function. Then $w(t,$x) satisfies asingular equation of the following form:

(3.3) $( \sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{j}}+c(x))w=\sum_{|\alpha|=K}d_{\alpha}(x)t^{\alpha}+f_{K+1}(t, x, w, \partial_{t}w, \partial_{x}w)$ ,

where $d_{\alpha}(x)\in \mathcal{O}_{x}$ and $f_{K+1}(t, x, u, \tau, \xi)$ is holomorphic in aneighborhood of the origin
with Taylor expansion

(3.4) $f_{K+1}(t, x, u, \tau, \xi)=\sum_{|\alpha|+Kp+(K-1)|q|+K|r|\geq K+1}f_{\alpha pqr}(x)t^{\alpha}u^{p}\tau^{q}\xi^{r}$
.

Therefore, the proof of Theorem 1.1, (i) is reduced to prove the following Theorem:

Theorem 3.1 Under the condition (3.2), the equation (3.3) with $w(t, x)=O(|t|^{K})$ has $a$

unique for$mal$ solution which converges in a neighborhood of the origin.

4Outline of the Proof of Theorem 3.1
By alinear change of $t$ variables which brings $(a_{ij}(0))$ to its Jordan canonical form, the
equation (3.3) is reduced to the following one:

(4.1) $(\Lambda+\Delta+A)w(t, x)$ $=$ $\sum_{|\alpha|=K}\zeta_{\alpha}(x)t^{\alpha}+g_{K+1}(t, x, w, \partial_{t}w, \partial_{x}w)$ ,

with $w(t, x)=O(|t|^{K})$ , where

(4.2) $\Lambda=\sum_{j=1}^{d}\lambda_{j}t_{j}\partial_{t_{j}}+c(0)$ , $\Delta=\sum_{j=1}^{d-1}\delta_{j}t_{j+1}\partial_{t_{j}}$ ,

$A \equiv A(x)=\sum_{i,j=1}^{d}\alpha_{ij}(x)t_{i}\partial_{t_{j}}+b(x)$ , $(\alpha_{ij}(0)=0, b(0)=0)$ ,

and $g_{K+1}$ is holomorphic in aneighborhood of the origin with the same Taylor expansion
with $f_{K+1}$ .

Remark 4.1 In the part $\Delta$ , it is normally considered that $\delta_{j}=0$ or 1. However, we can
take $\{\delta_{j}\}$ are as small as we want. Indeed, if we take achange of variables by $\hat{tj}=\epsilon^{j}tj$ ,
then $\delta_{j}$ is replaced by $\epsilon\delta_{j}$ .

For the proof our theorem, the following proposition plays an essential role to employ
the majorant method
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Proposition 4.2 Let us consider the linear operator $P=\Lambda+\triangle+A$ .
(i) For all $L\geq K$ , the mapping $P$ : $\mathcal{O}_{0}(R)[t]_{L}arrow \mathcal{O}_{0}(R)[t]_{L}$ is invertible for suffi-

ciently small $R>0$ .
(ii) For $u(t, x)\in \mathcal{O}_{0}(R)[t]_{L}$ , if a majorant relation $u(t, x)\ll W(x)(t_{1}+\cdots+t_{d})^{L}$ does

hold by a function $W(x)$ with non negative Taylor coefficients, then there eists a positive
constant $F>0$ independent of $L$ such that

(4.3) $P^{-1}u(t, x)$ $\ll$ $\frac{1}{L}\frac{F}{R-X}W(x)(t_{1}+\cdots+t_{d})^{L}$

$=$ $(T \partial_{T})^{-1}\frac{F}{R-X}W(x)(t_{1}+\cdots+t_{d})^{L}$

$<<$ $\frac{F}{R-X}W(x)(t_{1}+\cdots+t_{d})^{L}$ ,

where $T=t_{1}+\ldots+t_{d}$ and $X=x_{1}+\cdots+x_{n}$ .

We take asmall positive Constant $R>0$ such that the functions in the equation are
holomorphic on $D_{0}(R)$ and that Proposition 4.2 does hold. By this choice of $R$ we easily
see that the formal solution $w(t, x)\in \mathcal{M}_{x}[[t]]$ with $w(t, x)=O(|t|^{K})$ of the equation (4.1)
exists uniquely by the invertibility of $P$ on every $\mathcal{O}_{0}(R)[t]_{L}(L\geq K)$ . Indeed, the formal
solution $w(t, x)= \sum_{L\geq K}w_{L}(t, x)(w_{L}(t, x)\in \mathcal{O}_{0}(R)[t]_{L})$ are determined inductively on
$L$ . Therefore, we have only to prove the convergence of this formal solution $w(t, x)$ .

Let $U(t, x)=Pw(t, x)$ be anew unknown function. Then $U(t, x)$ satisfies the following
equation by (4.1):

(4.4) $U= \sum_{|\alpha|=K}\zeta_{\alpha}(x)t^{\alpha}+g_{K+1}(t, x, P^{-1}U, \partial_{t}P^{-1}U, \partial_{x}P^{-1}U)$, $U(t, x)=O(|t|^{K})$ .

In order to prove the convergence of formal solution $U(t, x)$ , we prepare majorant
functions (which are convergent) as follows.

$\sum_{|\alpha|=K}\zeta_{\alpha}(x)t^{\alpha}\ll\frac{A}{(R-X)^{K}}T^{K}$ , $(T=t_{1}+\cdots+t_{d}, X=x_{1}+\cdots+x_{n})$ ,

$g_{K+1}(t, x, u, \tau, \xi)$ $<< \sum_{|\alpha+Kp+(K-1)|q|+K|r|\geq K+1}\frac{G_{\alpha_{\mathrm{P}\Psi}}}{(R-X)^{|\alpha|+p+|q|+|r|}}T^{|\alpha|}u^{p}\tau^{q}\xi^{r}$

$=:G_{K+1}(T, X, u, \tau,\xi)$ .

We recall the majorant relations (4.3) in Proposition 4.2, and notice an elementary ma-
jorant relation of operators that $\partial_{t_{j}}(T\partial_{\Gamma})^{-1}\ll 1/T$ . We consider the following equation:

(4.5) $W(T, X)= \frac{A}{(R-X)^{K}}T^{K}$

$+G_{K+1}(T,$ $X$, $\frac{F}{R-X}W$, $\{\frac{F}{R-X}\frac{W}{T}\}_{j=1}^{d}$ , $\{\partial_{x_{k}}(T\partial_{T})^{-1}\frac{F}{R-X}W\}_{k=1}^{n})$
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with $W(T, X)=O(T^{K})$ , where $F$ is the same positive constant in (4.3).
By this construction of the equation, we easily see that the formal solution $W(T, X)\in$

$\mathcal{O}_{X}[[T]]$ (which is uniquely determined) is amajorant function of $U(t, x)$ , that is, $W(t_{1}+$

$\ldots+t_{d}$ , $x_{1}+\cdots+x_{n})\gg U(t, x)$ holds. Therefore, it is sufficient to prove the convergence
of $W(T, X)$ . We put $W(T, X)= \sum_{L\geq K}W_{L}(X)T^{L}$ and by substituting this into (4.5), we
obtain the following recursion formulas:

(4.6) $W_{K}(X)= \frac{A}{(R-X)^{K}}$ ,

and for $L\geq K+1$ ,

(4.7) $W_{L}(X)$ $=$ $\sum_{V(\alpha,p,q,r)\geq K+1}\frac{G_{\alpha pqr}}{(R-X)^{|\alpha|+p+|q|+|r|}}\sum’\prod_{l=1}^{p}\frac{F}{R-X}W_{L_{1}}(X)$

$, \prod_{j=1}^{d}\prod_{l=1}^{q_{j}}\frac{F}{R-X}W_{M_{jl}}(X)\prod_{k=1}^{n}\prod_{l=1}^{r_{k}}\frac{1}{N_{kl}}\partial_{x_{k}}\frac{F}{R- X}W_{N_{k1}}(X)$ ,

where
(4.8) $V(\alpha,p, q, r)=|\alpha|+Kp+(K-1)|q|+K|r|$ ,

and summation $\sum’$ is taken over

(4.9) $| \alpha|+\sum_{l=1}^{p}L_{l}+\sum_{j=1}^{d}\sum_{l=1}^{q_{j}}(M_{jl}-1)+\sum_{k=1}^{n}\sum_{l=1}^{r_{k}}N_{kl}=L$.

By these recursion formulas, we can prove the following lemma:

Lemma 4.3 The coefficients $\{W_{L}(X)\}_{L\geq K}$ are given by

(4.10) $W_{L}(X)= \sum_{j=K}^{10L-9K}\frac{W_{Lj}}{(R-X)^{j}}$ , by some $W_{Lj}\geq 0$ .

By the representation (4.10), we have the following majorant relation:

(4.11) $\partial_{x_{k}}(T\partial_{T})^{-1}\frac{F}{R-X}W(T, X)$ $=$ $\sum_{L\geq K}\sum_{j=K}^{10L-9K}\frac{j+1}{L}\frac{FW_{Lj}}{(R-X)^{j+2}}T^{L}$

$\ll$ $\frac{10F}{(R-X)^{2}}W(T, X)$ .

As the final step we construct the following functional equation which may be called
amajorant (functional) equation to the equation (4.5):

(4.12) $V(T, X)= \frac{A}{(R-X)^{K}}T^{K}$

$+G_{K+1}(T,$ $X$, $\frac{F}{R-X}V$, $\{\frac{F}{R-X}\frac{V}{T}\}_{j=1}^{d}$ , $\{\frac{10F}{(R-X)^{2}}V\}_{k=1}^{n})$
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with $V(T, X)=O(T^{K})$ . The existence of unique formal solution $V(T,$X) which is con-
vergent follows from the classical implicit function theorem, and the above construction
of the equation shows that $W(T, X)\ll V(T,$X) which implies the convergence of $U(t,$x).

5Proof of Theorem 1.1, (ii).

We recall the equation we consider is given by

(5.1) $( \sum_{i,j=1}^{d}a_{ij}(x)t_{\dot{l}}\partial_{t_{j}}+c(x))v(t, x)=\sum_{|\alpha|=2}b_{\alpha}(x)t^{\alpha}+f_{3}(t, x, v, \partial_{t}v, \partial_{x}v)$ ,

where $c(x)=f_{u}(\mathrm{a}(x))$ with $c(0)\neq 0$ and $A(x)=(a_{ij}(x))_{ij}^{d}$ is anilpotent matrix such that
$A(x)^{N}\equiv \mathrm{O}$ but $A(x)^{j}\not\equiv \mathrm{O}$ for $0\leq j\leq N-1(1\leq N\leq d)$ .

We remark that by the assumption that $c(0)\neq 0$ , we may assume $c(x)\equiv 1$ in the above
equation by multiplying $c(x)^{-1}$ to the equation which does not change the assumption for
$A(x)$ .

Let assume the functions in the equation are holomorphic in $x$ on $D_{0}(R)$ by an $R>$

$0$ . Then we can easily examine the unique existence of the formal solution $v(t, x)=$

$\sum_{|\alpha|\geq 2}v_{\alpha}(x)t^{\alpha}(v_{\alpha}(x)\in \mathcal{O}(R))$ . Indeed, under our assumptions the mapping

$\sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{j}}+1$ : $\mathcal{O}(R)[t]_{L}arrow \mathcal{O}(R)[t]_{L}$

is invertible by the fact that the matrix representation of the part of vector field which
we set by $A(x)$ is nilpotent again. Therefore the formal solution is uniquely determined
inductively on $L\geq 2$ for $v_{L}(t, x)= \sum|\alpha|=Lv_{\alpha}(x)t^{\alpha}\in \mathcal{O}(R)[t]_{L}$ .

Our proof is thus reduced only to estimate the Gevrey order in $t$ variables of the formal
solution. Here we recall Lemma 2.2 which guarantees to make achange of variables $t$ by
$(\tau_{1}, \cdots, \tau_{d})=(t_{1}, \cdots, t_{d})Q(x)$ by $Q(x)\in GL(d, \mathcal{O}(R))$ .

By the assumption of nilpotency for $A(x)$ , there exists an invertible matrix $Q(x)=$

$(Q_{ij}(x))$ over the field of meromorphic functions in aneighborhood of the origin such that

(5.2) $Q(x)^{-1}(a_{ij}(x))Q(x)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(B_{1}, \cdots, B_{I}, O_{J})$ : Jordan canonical form,

where $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\cdots)$ denotes the diagonal matrix with the diagonal blocks $(\cdots)$ . Here, $B_{i}^{n}\dot{.}=$

$\mathrm{O}(n\dot{.}\geq 1)$ and $O_{J}$ is the zero matrix block of size $J$ with $n_{1}+\cdots+n_{I}+J=d$ , and by

the assumption we have $\max\{n_{1}, \ldots, n_{I}\}=N$ .
Now we make a“formal” change of variables by

$(\tau_{1}, \ldots, \tau_{d})=(t_{1}, \ldots, t_{d})Q(x)$ , $y_{k}=x_{k}(k=1, \cdots, n)$ .

Here the “formal” means that $Q(x)$ may admit meromorphic singular point at the origin,

and it is an actual holomorphic change at the points if $Q(x)$ is holomorphicffiy invertible
at the origin
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Since $\partial_{t_{i}}=\sum_{j=1}^{d}Q_{ij}(x)\partial_{\tau_{J}}$ and $\partial_{x_{k}}=\sum_{j=1}^{d}t_{i}\{\partial_{x_{k}}Q_{ij}(x)\}\partial_{r_{J}}+\partial_{yk}$ , in the reduced
equation by this change of variables the vector field is changed by the Jordan canonical
form (5.2), and the nonlinear term $f_{3}$ is changed to $g_{3}$ which satisfies the same condition.

According to the form of (5.2), we make afurther change of variables, $y\mapsto x\in \mathrm{C}^{n}$

(as before), and make adecomposition $\tau=(y, z)\in \mathrm{C}^{d}$ by

$(y, z)=(\mathrm{y}^{1}, \ldots,\mathrm{y}^{I}, z)$ , $\mathrm{y}^{i}=(y_{i,1}, \ldots,y_{i,n}:)\in \mathrm{C}^{n:}$ , $z=(z_{1}, \ldots, z_{J})\in \mathrm{C}^{J}$

Now the equation (5.1) is reduced to the following equation:

(5.3) $Pv(y, z, x)= \sum_{|\alpha|+|\beta|=2}\zeta_{\alpha\beta}(x)y^{\alpha}z^{\beta}+g_{3}(y, z, x,v, \partial_{y}v, \partial_{z}v, \partial_{x}v)$,

with $v(y, z, x)=O((|y|+|z|)^{2})$ , where

(5.4) $P= \sum_{i=1}^{In}.\sum_{j=1}^{-1}\delta y_{i,j+1}\partial_{y.,j}+1$, $\delta\in \mathrm{C}$ ,

(5.5)
$g_{3}(y, z, x,v, \zeta, \eta, \xi)=\sum_{|\alpha|+|\beta|+2p+|q^{1}|+|q^{2}|+2|r|\geq 3}g_{\alpha\beta pq^{1}q^{2}r}(x)y^{\alpha}z^{\beta}v^{p}\zeta^{q^{1}}\eta^{q^{2}}\xi^{r}$

,

where $q^{1}\in \mathrm{N}^{n_{1}+\cdots+n_{I}}$ , $q^{2}\in \mathrm{N}^{J}$ .
We remark that the constant $\delta$ is assumed as small as we want by Remark 4.1.

Here we have to notice that in the reduced equation (5.3) the origin $x=0$ may be a
singular point. Therefore, the proof of the theorem is divided into two steps. In the first
step, we prove the theorem under the assumption of holomorphy at $x=0$ . In the second
step, we remove such restriction by using the maximum principle for the holomorphic
functions from the fact that the equation has aunique formal solution $v(t,x)\in \mathcal{O}(R)[[t]]$

which was mentioned above.

5.1 Holomorphic case.
We assume the equation (5.3) is holomprhic in aneighborhood of the origin and we shall
prove that the formal solution $v(y, z, x)$ of (5.3) belongs to $\mathcal{G}^{2N}$ in $(y, z)$ variables with
$N= \max\{n_{i} ; i=1,2, \cdots, I\}$ . In order to do that it is sufficient to prove $v(y, z, x)$

belongs to some Gevrey space $\mathcal{G}^{\mathrm{s}}$ in $(y, z)$ variables with $\mathrm{s}=(s_{1}, s_{2}, \cdots, s_{d})$ such that
$|| \mathrm{s}||=\max\{s_{j}\}\leq 2N$ .

Let us prepare the following lemma:

Proposition 5.1 (i) For all $L\geq 2$ , there eists a radius $R>0$ independent of $L$ such
that the mapping $P:\mathcal{O}_{0}(R)[y, z]_{L}arrow \mathcal{O}_{0}(R)[y, z]_{L}$ is invertible.

(ii) Let $\overline{\mathrm{s}}=(\mathrm{s}_{1}, \cdots, \mathrm{s}_{I}, 1_{J})\in \mathrm{N}^{d},$ $u$ here

$\mathrm{s}_{i}=$ (1, 2, \cdots , $n_{i})\in \mathrm{N}^{n}.\cdot$ , $1_{J}=(1,$\cdots ,
$1)\in \mathrm{N}^{J}$ ,

94



as a manner corresponding to the decomposition $\tau=(y,$z). For $\mathrm{k}_{d}=(k,$\cdots ,
$k)\in \mathrm{N}^{d}$ we

define $\tilde{\mathrm{s}}+\mathrm{k}_{d}$ (or $\tilde{\mathrm{s}}+k$ , for short) by the summation componentwisely.
For $f(y,$z,$x)\in \mathcal{O}_{0}(R)[y, z]_{L}$ , if $B^{\overline{\mathrm{s}}+k}(f)(y,$z,$x)<<W_{L}(X)T^{L}(T=|y|+|z|,$X $=|x|)$ ,

then there exists a positive constant C $>0$ independent of L such that

(5.6) $B^{\tilde{\mathrm{s}}+k}(P^{-1}f)(y, z, x)<<CW_{L}(X)T^{L}$ .

Remark 5.2 This lemma shows the bijectivity of the mapping $P=\mathcal{G}^{\tilde{\mathrm{s}}+k}arrow \mathcal{G}^{\tilde{\mathrm{s}}+k}$ for all
$k\geq 0$ . Indeed, let $f(y, z, x)= \sum_{L>1}f_{L}(y, z, x)\in \mathcal{G}^{\tilde{\mathrm{s}}+k}$ with $f_{L}(y, z,x)\in \mathcal{O}_{0}(R)[y, z]_{L}$.
Since $B^{\tilde{8}+k}f(y, z, x)= \sum_{L\geq 1}B^{\tilde{\epsilon}+k}f_{L}\overline{(}y$, $z$ , $x)\in \mathcal{O}_{y,z,x}$ , there exist positive constants $M$ and
$R’$ such that

$B^{\tilde{\mathrm{s}}+k}f(y, z, x) \ll\frac{M}{(1-X/R’)(1-T/R’)}=\frac{M}{1-X/R’}\sum_{L\geq 1}\frac{T^{L}}{R^{L}},$,

where $T$ and $X$ are given as above. This means that

$B^{\tilde{\mathrm{s}}+k}f_{L}(y, z, x)<< \frac{MT^{L}}{R^{\prime L}(1-X/R’)}$ ,

and for the formal inverse $P^{-1}f$ we have

$B^{\tilde{\mathrm{s}}+k}(P^{-1}f)(tt, z, x) \ll\frac{CM}{(1-X/R’)(1-T/R’)}\in \mathcal{O}_{y,z,x}$ .

We put $U(y, z, x)=Pv(y, z, x)$ as anew unknown function. Then, $U(y, z, x)$ satisfies
the following equation:

(5.7) $U(y, z,x)= \sum_{|\alpha|+|\beta|=2}\zeta_{\alpha\beta}(x)y^{\alpha}z^{\beta}+g_{3}(y, z, x, P^{-1}U, \partial_{y}P^{-1}U, \partial_{z}P^{-1}U, \partial_{x}P^{-1}U)$

with $U(y, z, x)=O((|y|+|z|)^{2})$ .
Now we apply the $\tilde{\mathrm{s}}$-Borel transform to the equation (5.7), we obtain

(5.8) $B^{\tilde{8}}(U)(y, z, x)$ $=$ $\sum_{|\alpha|+|\beta|=2}\zeta_{\alpha\beta}(x)\frac{(|\alpha|+|\beta|)!}{(\tilde{\mathrm{s}}\cdot(\alpha,\beta))!}y^{\alpha}z^{\beta}$

$+B^{\tilde{8}}\{g_{3}(y, z, x, P^{-1}U, \partial_{y}P^{-1}U, \partial_{z}P^{-1}U, \partial_{x}P^{-1}U)\}$ .

In order to construct a majorant equation for (5.8), we prepare the following lemma:

Lemma 5.3 (i) The Borel transform of a product (uv)(y, $z$ , $x$) is majorized by

(5.9) $B^{\tilde{8}}(uv)(y, z,x)\ll NB^{\tilde{\mathrm{s}}}(|u|)(y, z,x)\mathrm{x}B^{\tilde{\mathrm{s}}}(|v|)(y, z,x)$ ,

where $N= \max\{n_{1}, \ldots,n_{I}\}$ .
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(ii) If $B^{\overline{\mathrm{s}}}(u)(y, z, x)<<\mathrm{V}(\mathrm{T}, X)(T=|y|+|z|, X=|x|)$, then there exists a positive
constant $C_{1}>0$ independent of $y$ , $z$ and $x$ such that the Borel transforms of $\partial_{y_{t,j}}u$ , $\partial_{z_{k}}u$

and $\partial_{x_{k}}u$ are majorized by

(5.10) $B^{\tilde{\mathrm{s}}}(\partial_{y.,j}.u)(y, z, x)\ll C_{1}\partial_{T}(T\partial_{T})^{j-1}W(T, X)$ ,

(5.11) $B^{\tilde{8}}(\partial_{z_{k}}u)(y, z, x)<<C_{1}\partial_{T}W(T, X)$ ,

(5.12) $B^{\tilde{\mathrm{s}}}(\partial_{x_{k}}u)(y, z, x)<<C_{1}\partial_{X}W(T, X)$ .

Now we consider the following equation which is amajorant equation of (5.8):

(5.13) $W(T, X)=( \sum_{|\alpha|+|\beta|=2}|\zeta_{\alpha\beta}|(\mathrm{X})\frac{(|\alpha|+|\beta|)!}{(\tilde{\mathrm{s}}\cdot(\alpha,\beta))!})T^{2}$

$+|g_{3}|\{$ $\mathrm{T}$ , $\mathrm{X}$ , $C’W$, $\{\{C’\partial_{T}(T\partial_{\Gamma})^{j-1}W\}_{j=1}^{n}\dot{.}\}_{i=1}^{I}$ , $\{C’\partial_{T}W\}_{k=1}^{J}$ , $\{C’\partial_{X}W\}_{k=1}^{n})$ ,

with $W(T, X)=O(T^{2})$ where $\mathrm{T}=(T, \ldots, T)\in \mathrm{C}^{d}$ , $\mathrm{X}=(X, \ldots, X)\in \mathrm{C}^{n}$ and $C’=$

$C_{1}CN$ .
Now by the construction of the equation (5.13), we easily see that the formal solution

$W(T, X)\in \mathcal{O}_{X}[[T]]$ is amajorant function of $B^{\overline{\mathrm{s}}}(U)(y, z,x)$ of (5.8) by replacing $T=$

$y_{1,1}+\cdots+y_{I,n_{t}}+z_{1}+\cdots+z_{J}$ and $X=x_{1}+\cdots+x_{n}$ .

Here we recall the result in [S1] by Shirai in aspecial form attached to our case. Let
us consider the following equation.

$V(T, X)=g(X)T^{K}+h_{K+1}(T, X, V, \{D_{T}^{j}V\}_{j=1}^{\mathrm{p}}, D_{X}V)$

with $V=O(T^{K})$ , where $g(X)$ and $h_{K+1}(T,$ $X$ , $V$, $\tau$ , $()$ $(\tau\in \mathrm{C}^{p}, \xi\in \mathrm{C})$ are holomorphic in
aneighborhood of the origin and

$h_{K+1}(T, X, V, \tau, \xi)=\sum’h_{ab\{c(j)\}d}(X)T^{a}V^{b}\prod_{j=1}^{p}’\tau_{j}^{c(j)}\xi^{d}$,

and the summation $\sum’$ is taken over

$V(a, b, \{c(j)\}, d):=a+Kb+\sum_{j}(K-j)c(j)+Kd\geq K+1$
,

the left hand side means the order of zeros in $T$ of each monomial by substituting $V(t, x)=$

$O(T^{K})$ .
Then the formal solution $V(T, X)\in \mathcal{O}_{X}[[t]]$ which exists uniquely belongs to $\mathcal{G}^{\sigma+1}$ in

$T$ variable with

$\sigma=\max\{\frac{A(a,b,\{c(j)\},d)}{V(a,b,\{c(j)\},d)-K}$ ; $h_{ab\{c(j)\}d}(x)\not\equiv 0\}$ ,

96



by $A(a, b, \{c(j)\}, d)(\in\{0,1, 2, \cdots,p\})$ which denotes the maximal order of differentiations
which appears in the monomial. (This is aspecial case of Theorem 1 in [SI].)

We return to the equation (5.13). In this case, $K=2$ , $V(a, b, \{c(j)\}, d)-K\geq 1$

and $A(a, b, \{c(j)\}, d)\leq\max\{n_{i} ; i=1,2, \cdots, I\}=N$ which shows that $W(T, X)\in$

$\mathcal{G}^{N+1}$ in $T$ variable. Therefore $B^{\overline{\mathrm{s}}}(U)(U=Pv)$ belongs to the Gevrey space $\mathcal{G}^{N+1}$ in $\tau$

variables $\tau(=(y, z))$ variables, which implies $U=Pv\in \mathcal{G}^{\tilde{\mathrm{s}}+N}$ in $\tau$ variables, and hence
$v(\tau, x)=P^{-1}U\in \mathcal{G}^{\tilde{\mathrm{s}}+N}$ in $\tau$ variables by Proposition 5.1 and Remark 5.2. Then by
Lemma 2.2, we have $v(t, x)\in \mathcal{G}^{2N}$ in $t$ variables, since each component of $\overline{\mathrm{s}}$ is estimated
by $N= \max\{n_{i} ; i=1,2, \cdots, I\}$ . $\blacksquare$

5.2 Meromorphic case.
In this subsection, we shall prove the theorem in the case where $Q(x)$ or $Q(x)^{-1}$ is singular
at the origin by the idea used in [M] by Miyake where the inverse theorem of Cauchy-
Kowalevski’s theorem for general systems was studied. The theorem is an immediate
result from the following lemma:

Lemma 5.4 Assume that $Q(x)$ or $Q(x)^{-1}$ is singular at the origin. We may assume that
$Q(x)$ and $Q(x)^{-1}$ are holomorphic on $\prod_{j=1}^{n}\{R_{j}-\epsilon \leq|x_{j}|\leq R_{j}+\epsilon\}\subset D_{0}(R)$ by suitable
taking positive constants $R_{j}>0$ and $\epsilon$ $>0(j=1,2, \cdots, n)$ such that $0<R_{j}-\epsilon$ $<$

$R_{j}+\epsilon$ $<R$ . Then the forrmal solution $v(\tau, x)(\tau=(y, z))$ of (5.3) belongs to $\mathcal{G}^{2N}$ in $\tau$

variables on $\prod_{j=1}^{n}\{|xj|\leq R_{j}\}$ .

Proof. We, first, notice that we already know there exists aunique formal solution
$v( \tau, x)=\sum_{|\alpha|\geq 2}v_{\alpha}(x)\tau^{\alpha}\in \mathcal{O}_{x}[[\tau]]$ , where we may assume that $v_{\alpha}(x)\in \mathcal{O}_{0}(R)$ by a small
$R>0$ for all $\alpha$ . We may consider that this $R$ is the one in the statement of the lemma.

Let $\hat{x}=(\hat{x}_{1}, \cdots,\hat{x}_{n})\in\prod_{j=1}^{n}\{|x_{j}|=R_{j}\}$ be arbitrary fixed. Then by the assumption,
$Q(x)$ is holomorphically invertible on $\epsilon$ neighborhood of $\hat{x}$ . By the result in the previous
subsection, we know that the formal solution $v(\tau, x)$ belongs to $\mathcal{G}^{2N}$ in $\tau$ variables in $\mathrm{a}$

neighborhood of $\hat{x}$ . Therefore there exists apositive constant $r(\hat{x})$ (which may depend on
$\hat{x})$ such that the following Gevrey estimates hold by positive constants $A_{\hat{x}}$ and $B_{\hat{x}}$ which
may depend on $\hat{x}$ :

(5.14) $|| \leq r(\hat{x})\max_{x_{j}-\hat{x}_{j}}|v_{\alpha}(x)|\leq A_{\hat{x}}B_{\hat{x}}^{|\alpha|}\{(2N-1)|\alpha|\}!$
,

for all a $\in \mathrm{N}^{d}$ with $|\alpha|\geq 2$ .
Since the polycircle $C(R)= \prod\{|x_{j}|=R_{j}\}(R= (R_{1}, \cdots, R_{d}))$ is compact, we can

take finite number of $\{\hat{x}^{(k)}\}_{k}$ on the polycircle so that the union of $r(\hat{x}^{(k)})$ neighborhood
of $\hat{x}^{(k)}$ ’s covers the polycircle $C(R)$ . Now by taking $A$ the maximum of $A_{\hat{x}}(k)’ \mathrm{s}$ and $B$ the
maximum of $B_{\hat{x}}(k)’ \mathrm{s}$ , we get the following Gevrey estimates on the polycircle $C(R)$ ,

(5.15) $\max_{x\in C(R)}|v_{\alpha}(x)|\leq AB^{|\alpha|}\{(2N-1)|\alpha|\}!$ ,

for all $\alpha\in \mathrm{N}^{d}$ with $|\alpha|\geq 2$ . Since $v_{\alpha}(x)$ are all holomorphic on $D_{0}(R)$ , by the maximum
principle we get the same Gevrey estimation on the polydisc $\prod_{j}\{|x_{j}|\leq R_{j}\}$ , which proves
the lemma. $\blacksquare$
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