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Kobe University '
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Abstract

We showed special types of comprehensive Grébner bases can be defined and calculated as the appli-
cations of Grobner bases in polynomial rings over commutative Von Neumann regular rings in [5] and [6].
We called them discrete comprehensive Grébner bases, since there is a strict restriction on specialization
of parameters, that is parameters can take values only 0 and 1. In this paper, we show that our method
can be naturally generalized to the cases where parameters can take any value from a given finite set.

1 Introduction

In [5] and (6], we proposed special types of comprehensive Grébner bases called discrete comprehensive
Grébner bases using Weispfenning’s theory of Grébner bases in polynomial rings over commutative Von
Neumann regular rings [9]. Roughly speaking, discrete comprehensive Grobner bases are comprehensive
Grobner bases with parameters the specializations of which are restricted to only 0 and 1. One of the key
facts for constructing discrete comprehensive Grébner bases is that the quotient ring R[X]/(X?% — X) for
a given Von Neumann regular ring R also becomes a Von Neumann regular ring. We gave an elementary
direct proof of this fact in [6]. However, this fact essentially follows from the Chinese remainder theorem.
That is R[X]/(X?— X) is isomorphic to the direct product R[X]/(X) x R[X]/(X —1). This observation
leads us to generalize discrete comprehensive Grébner bases as follows.

Let K be a field and Si,...,S, be non-empty finite subsets of K. Let A,,..., A, be indeterminates
and for each i = 1,...,n, let p;(A;) be the polynomial ersi (A, — k) . Then the quotient ring
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K[A1,...,An])/(p1(A1),...,pn(Ar)) becomes a commutative Von Neumann regular ring. Let F be a
finite set of polynomials in K[Ai,...,A,,X]|, where X are indeterminates distinct from Ay, ..., An.
Considering F to be a finite set of polynomials in (K[A1,...,As]/(P1(A1),-..,Pn(An)))[X], construct a
stratified Grobner basis G of the ideal (#'). Then G becomes a discrete comprehensive Grobner basis of
(F) in the following sense. For each i = 1,...,n, let a; be an element of S;. Then the set of polynomials
G(ay, - .- an) = {g(a1,...,an, X)|g € G} is the reduced Grébner basis of the ideal generated by the set
of polynomials F(ay,...,as) = {f(a1,...,an, X)|f € F} in K[X].

We made an implementation to compute the above revised version of discrete comprehensive Grobner
bases for the case that K is the field of rational numbers. Through our computation experiments, we
found that they are sufficiently practical.

The rest of the paper is organized as follows. In Section 2, we describe some mathematical facts which
play important roles for the construction of our revised discrete comprehensive Grobner bases. Our main
results are shown in Section 3. In Section 4, we give some computation examples of our implementa-
tion. The reader is assumed to be familiar with the theory of Grébmner bases in polynomial rings over
commutative Von Neumann regular rings. We refer the reader to [9],(4] or [6].

2 Some basic facts

In this section, we show some mathematical facts which are easy consequences of the Chinese remain-
der theorem.

Lemma 1

Let K be a field and ay,as,...,a; be distinct elements of K. Let p(X) be a polynomial defined
by p(X) = (X — a1)(X — a2):--(X — a¢). Let R be a commutative ring which extends K. Then
R[X]/(p(X)) is isomorphic to R:. Actually the mapping ® from R[X]/(p(X)) to R* defined by ®(h(X)) =
(h(a@1), h(az), ..., h(as)) is an isomorphism.

Proof The ideals (X — a1), (X — a2),...,(X — ag) are clearly co-maximal in K[X]. Hence, they
are also co-maximal in R[X]. By the Chinese remainder theorem, we have an isomorphism & from
RIX)/(0(X)) to [T,_y..¢ RIX]/(X - a:) defined by ®(h(X)) = (h(ar), h(a2), - .., h(as)). RX]/(X — a:)
is clearly isomorphic to R for each ¢. 1

Using the above lemma we have the following.

Lemma 2

Let K be a field and Sy, Sa,...,Sn be non-empty finite subsets of K. Let A,,..., A, be indeterminates
and p;(A;) be a polynomial [ [ 5. (Ai—k) foreachi =1,...,n. Then K[A;,...,An]/(P1(A1),-..,Pn(4An))
is isomorphic to K™, where M = |51||Ss|...|S»| and |S;| denotes the cardinality of S;.

Proof We prove by induction on n. When n is 1, it follows directly from Lemma 2.1. Note that
K[A1,...,As)/(p1(A1), ... ,Pn(Ar)) is isomorphic to R[An]/(pn(An)) with
R=KlA;,...,An1]/(P1(A1),...,Pn=1(An-1)). By the induction hypothesis, R is isomorphic to KM,
where M’ = |51]|S2|...|Sn-1]. Since R clearly includes K, we can apply Lemma 2.1 to have an isomor-
phism between R[A,]/(pn(As)) and R!S=! which is isomorphic to KM, I
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By this lemma, we can see K[A1,...,An]/(p1(41),-..,pn(An)) is a commutative Von Neumann reg-
ular ring. This is the key fact in this paper. In order to have our discrete comprehensive Grébner bases,

we need to describe the isomorphism explicitly.

Lemma 3

With the same notations in Lemma 2.2, let @1, @s,...,0) be an enumeration of the set
{(a1,a2,...,an)|a; € S; for each i}. Let @; = (2,03, ...,al) for each j = 1,2,...,M. The mapping ®
from K[A1, ..., An]/(P1(A1), - .., Pn(An)) to [[;oy 4 KA1, ..., An]/(A1 — o, ..., An — of,) defined by
®(h(Ay, Az, ..., An)) = (W(@), h(@2),...,h(@m)) is an isomorphism.

Proof We actually showed this fact in the proof of Lemma 2.2 by applying Lemma 2.1 iteratively. g

3 Discrete comprehensive Grobner bases

For any polynomial h of R[X], let h* denotes the polynomial in K{X] obtained from h by replacing
each coefficient ¢ in h by the ith coordinate of ¢, which belongs to K™ after identifying R with K. The
following lemma is a directly consequence of Theorem 2.3 of [9].

Lemma 4

Let K be a field and R be a commutative Von Neumann regular ring defined as a finite direct product
KM of K for some natural number M. Fix a term order for the terms in the indeterminates X and
let G = {g1,...,9%} be the stratified reduced Grébner basis of an ideal (f,..., fi) in a polynomial ring
R[X]. Then, {gt,...,gi} becomes the reduced Grébner basis of the ideal (f,..., f;) in the polynomial
ring K[X| for eachi=1,2,..., M. '

‘We also have the following lemma.

Lemma 5

With the same notations and conditions in Lemma 3.1, let G; = {gi,...,gi} for each i. Then for any
polynomial h in R[X], we have (hlg)* = h*|g, for each i. Here, h|g denotes the normal form of h with
respect to the Grébner basis G.

Proof The proof is essentially same as the proof for Property (2) of Theorem 3.3 [6] or the proof for
Property (2) of Theorem 3.2 [7]. 1
Now we are ready to state our revised discrete comprehensive Grobner bases.

Theorem 6

Let K be a field and S1,...,S, be non-empty finite subsets of K. Let A,...,A, be indetermi-
nates and p;(A;) be a polynomial [[, g (A:i — k) for each i = 1,...,n. Then, the quotient ring
K[Ay,...,A)/(p1(A1),...,pn(An)) becomes a commutative Von Neumann regular ring as is shown in
Lemma 2.2. Let F be a finite set of polynomials in K[As,...,An, X, where X are indeterminates distinct
from Ay,..., A,.

Fix a term order of terms of indeterminates X. Considering F to be a finite set of polynomials in
(K[Ay1,...,An)/(01(A1), ..., Pn(An)))[X), construct the stratified Grobner basis G of the ideal (F) in
this polynomial ring. Then we have the following properties.
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(1) For any n-tuple (a1, a2, . ..,an) of elements of K such that a; € 9; for each 4, the set of polynomials
G(ay,...,an) = {g(as,...,an,X)|g € G} is the reduced Grébner basis of the ideal generated by the
set of polynomials F(ay,...,am) = {f(a1,-..,an, X)|f € F} in K[X].

(2) For any h(A,...,An, X) in (K[A1,...,An)/®01(A1), - .., 0a(4n)))X],
(h(A4,.. A X) le)a, ... ,8n, X) = h{ag,... ,an,—X—) lG(ay,,an)"

Here, 7(ai,...,0n, X) denotes the polynomial in K[X| given from a polynomial 7(A;,...,An,X) in
(K[A1, .., An)/(01(A1), .. .,Pn(An)))[X] by substituting each A; with a;.

Proof The first property follows from Lemma 2.3 and Lemma 3.1, the second property follows from
Lemma 2.3 and Lemma 3.2. 1

Let G be as in Theorem 3.3. Then we call G a discrete comprehensive Grobner basis. Remember that
G is nothing but our original discrete comprehensive Grobner basis, when each set S; is {0, 1}.

4 Computation Examples

We made an implementation to compute the revised version of discrete comprehensive Grébner bases
for the case that the coefficient field is the field of rational numbers. Though our program is very naive and
written in prolog, it is sufficiently practical. The following are examples of our computation experiments.

Example 1

Let F be a set of polynomials {A%AzX%Xz + A3 X+ As, A1A3X1X22 + A2X1X2X§ +Xi1+ A4, A%X1X3 +
A1 X, + A3 X3} with parameters A, A, A3. Let S8 = {-1,0,2},8; = {-1,0,1},83 = {~1,1,3}. Our
program calculated the following discrete comprehensive Grébner basis with the graded reverse lex order
> such that X1 > X2 > X3.

—A12 % A22 £ 1/2% A12 + Al % A2% —1/2x Al + A2?,

(1/2% A1% x A22 — 1/2 % A1%2 —1/2% Al x A22 +1/2% A1 — A22 + 1) * X3,

(1/2% A12x A22 —1/2% A1%2 — 1/2x A1 x A22 + 1/2x Al — A2? + 1) % X1,

(1/2% A12 % A22 —1/2 % AL % A22) x X3 % X1+ (—1/4x A1 x A2% + 3/4 % Al x A2%) x X2 + (3/8 % A1? *
A2% % A3 —5/8 % Al x A22 x A3) x X3,

(1/24%x A12x A22% A32 —1/12+ A12% A22x A3+3/8x A1%x A22 +1/24% A1%x A2x A3% —1/124 A1? % A2
A3—1/8xA12xA2—1/12% A1x A22x A32+1/6x A1x A2?x A3—1/4x A1xA2> —1/12x A1x A2x A3 +1 /6% AL *
A2xA3+1/4% Alx A2)* X 22+ X 1+(—1/24x A12x A22 % A32 —T7/24x A1?x A22 x A3+1/8% A12x A2% —1/24x
A12x A2 A32+1/12% A12x A2+ A3+1/8% A12x A2+ 1/12%x A1x A22x A3% +11/24x A1x A2? « A3 — 1 /4% Al
A22+1/12x A1% A2% A32 —1/6% Alx A2x A3—1/4x A1x A2)x X224 (17/48% A12x A22% A3% —1/12% A1%+
A22xA3—1/8xA12xA2241/24x A12x A2 A32—1/12x A12x A2x A3 —1 /8% A12x A2—37/48x A1+ A22x A3% +
1/6% AlxA22x A3+ 1/4x A1x A22 —1/12% Al* A2%x A3%+1/6%x A1 x A2x A3+1/4% A1x A2)x X 3% X 2+ (1/24%
A12xA22x A32—1/12% A12%x A22 % A3—~1/8+ A12x A22 +1/24% A12x A2x A32 +7/24% A12« A2+ A3—1/8%
Al2xA2—1/12xA1%x A22 5 A3% +1/6%x A1x A22x A3+ 1/4x A1x A22 —1/12% A1x A2+ A3? —11/24x A1 % A2
A3+1/4x A1% A2)* X2+ (1/4% A12x A2% —5/16x A12x A2 A3% —3 /4% A1x A22 +11/16% A1 x A2% A3%) x X 3
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The computation time was a few seconds by a personal computer with a CPU of Pentium IIT 1200 MHZ.
We can of course get a similar result by calculating a full comprehensive Grébner basis of F'U {(A4; +
1)A; (A1 — 2), (A2 + 1)A2(A2 — 1), (As + 1)(A3 — 1)(A3 — 3)}. However, cgb of CGB [1] and dispgb of
DisPGB [3] that are the only available existing comprehensive Grébner bases computation packages did

not terminate within one hour.

Example 2

Let F' be the same set of polynomials as the above example. Let Sy = {-3,-1,0,2,5},5; = {-3,-1,0,1,5}, S5
{-7,-1,1,3,6}. Our program calculated the discrete comprehensive Grobner basis within 10 seconds
and produced the following polynomial that consists of only parameters.

—1/225% A1% % A2* +2/225% A1% x A23 +16/225% A1*x A22 —2/225% A1* % A2—1/30% A1*+1/75% A13 %
A24 — 2/75 % A1% x A23 — 16/75+ A1% + A22 + 2/75 % A13 % A2 +1/10% A13 +1/15 % A1% x A2* — 2/15 %
A1 % A2% —16/15 % A12 % A22 +2/15 % A12 x A2 +1/2 % A1%2 —19/225 % Al » A2* 4 38/225 x A1 x A23 +
304/225 + A1 * A2% —38/225 x A1 x A2 —19/30 % A1 — 1/15 % A2* + 2/15 x A2% + 16/15 x A2% — 2/15 % A2

We can also get an information of parameters by calculating a Grébner basis of F U {(A4; + 3)(4; +
1)A1 (A1 —2)(A1 —5), (A2+3)(A2+1)As(A2—1)(A2~5), (43+7)(A3+1) (A3 —1)(A3~3)(A3—6)} in the
polynomial ring Q[ X1, X5, X3, A1, A2, A3] with the block term order such that [X;, X2, X3] > [A1, A2, A3).
We, again, were not able to compute the Grébner basis even by using RISA/ASIR [2] that has a very
fast and sophisticated Grdébner bases computation package.

5 Conclusion and Remarks

Though we do not give a description in this paper, we can generalize Theorem 3.3 for an arbitrary
polynomial p;(A;). In order to construct discrete comprehensive Grébner bases for such cases, we further
need factorizations in polynomial rings over algebraically extended fields and have to handle fields which
are represented as quotient rings of some polynomial rings. Since we have not made an implementation
for such cases at this point we do not know if they are feasible.
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