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COMPLEXITY OF THE WORD PROBLEM FOR SOME
3-MANIFOLD GROUPS

東京工業大学情報理工学研究科 大山 洋史 (HIROSHI OOYAMA)
DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES,

TOKYO INSTITUTE OF TECHNOLOGY

ABSTRACT. In this Paper, we show that the word problem for fundamental
groups of torus bundles over the circle is solvable in quadratic time by finding
explicit embeddings of them in $\mathrm{G}\mathrm{L}(n, \mathbb{Q})$ .

1. INTRODUCTION

Let $G$ be agroup with afinite presentation $\langle A|\mathcal{R}\rangle$ . We assume that the set of
relators 72 is closed under inversion and cyclic shifts. Aword $w\in(A \cup A^{-1})^{*}$

represents the identity element of $G$ if and only if $w$ can be rewritten to null word
$\epsilon$ with following rules:

(1) Reduce if $a\in A$ and $a^{-1}$ are adjacent.
$\alpha aa^{-1}\betaarrow\alpha\beta$ , $\alpha a^{-1}a\betaarrow\alpha\beta$ .

(2) Insert arelator $r\in \mathcal{R}$ .
$ctf\mathit{3}arrow\alpha r\beta$ .

The minimum number of inserted relators to rewrite $w$ to $\epsilon$ is called the area of $w$ .
The Dehn function $f(n)$ is defined as the maximum area of words whose length are
at most $n$ . The number of reduction is bounded by aconstant multiple of the area
of $w$ plus the length of the word. The constant is determined by the maximum
length of all relators in 72. Hence, the length of the optimal rewriting process is
$O(f(n)+n)$ .

If aDehn function of agroup is computable, the word problem of the group is
solvable.

Agroup which has alinear Dehn function is called aword-hyperbolic group. It is
well known that word problem of aword-hyperbolic group is solvable in linear time
with string rewriting on $(A\cup A^{-1})^{*}$ style algorithm. There is the class of automatic
groups, which is larger than the class of word-hyperbolic groups. Automatic groups
have quadratic Dehn functions, and their word problems are solvable in quadratic
time with string rewriting on $(A\cup A^{-1})$ ’manner [4].

The classes of nilpotent and solvable groups are not contained in the class of
automatic groups. In these classes, fundamental groups of torus bundles over the
circle are of interest for 3-dimensional geometry. These groups do not have qua,
dratic isoperimetric inequalities except virtually abelian ones $[3, 4]$ . So their word
problems may not be solved in quadratic time with string rewriting on $(A\cup A^{-1})^{*}$ .

On the other hand, the word problem of afinitely generated subgroup of $\mathrm{G}\mathrm{L}(n, \mathbb{Q})$

is solvable in quadratic time.
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In this paper, we prove that the word problem for some nilpotent and solvable
groups arising as fundamental groups of torus bundles over the circle is solvable in
quadratic time by finding explicit embeddings of them in $\mathrm{G}\mathrm{L}(n, \mathbb{Q})$ .
Theorem 1.1. The word problem for the fundamental group of $a$ to us bundle over
the circle is solvable in quadratic time.

2. DEHN FUNCTIONS AND AREAS OF RELATORS

Let $G$ be agroup with afinite presentation $\langle A|\mathcal{R}\rangle$ . Then there is an exact
sequence

$1arrow Narrow F(A)arrow Gparrow 1$

where $F(A)$ is the free group generated by $A$ and $N$ is the normal closure of
$\mathcal{R}=\{1, \ldots, r_{n}\}$ in $F(A)$ . For each $w\in F(A)$ there is aunique way of writing $w$

as areduced word $w=a_{1}\cdots a_{k}\in(A\cup A^{-1})$ ’. We denote the length of $w$ by $|w|=k$ .
The element $w$ is called arelator for the presentation $\langle A|\mathcal{R}\rangle$ if $p(w)=1\in G$ . In
this case, $w$ can be written in the form

$w= \prod_{i=1}^{m}u:r_{k}^{e}\dot{.}\dot{.}u_{i}^{-1}$

where $u_{\dot{l}}\in F(A)$ , $r_{k_{:}}\in \mathcal{R}$ , and $e:\in\{1, -1\}$ . We define Area(w) to be the smallest
value of $m$ among all expressions of the form.

Area(w) $= \min\{m|w=\prod_{\dot{|}=1}^{m}u_{i}r_{k}^{e}\dot{.}\dot{.}u_{\dot{l}}^{-1}\}$ .

Afunction $f$ : $\mathrm{N}arrow \mathrm{N}$ is an isoperimetric function if

$\max\{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(w)|w\in F(A), |w|\leq n\}\leq f(n)$

for all $n\in \mathrm{N}$ . The smallest isoperimetric function is called the Dehn function.
Definition 2.1. We consider apreorder $\preceq \mathrm{o}\mathrm{n}$ the set of functions $\mathrm{N}arrow \mathrm{N}$ . $f\preceq g$

if there exist positive constants $\alpha$ , $\beta$ , $\gamma$ such that $f(n)\leq\alpha g(\beta n)+\gamma n$ for all $n\in \mathrm{N}$ .
We say that $f$ and $g$ are equivalent if $f\preceq g$ and $g\preceq f$ . We denote $\mathrm{b}\mathrm{y}\simeq \mathrm{t}\mathrm{h}\mathrm{e}$

equivalence relation.
Dehn functions corresponding to different finite presentations of the same group

are equivalent. The Dehn function of afinitely presented group is well defined up
to equivalence.

Let $\mathcal{R}’$ be the closure of 72 under inversion and cyclic shifts. Then the presen-
tation $\langle A|\mathcal{R}’\rangle$ is another presentation of the group with apresentation $\langle$ $A|\mathcal{R})$ , and
the area Area’(w) of $w$ which associates to $\mathcal{R}’$ is equal to Area(rp) which associates
to 72. We assume that 72 is closed under inversion and cyclic shifts.

Dehn function measures the complexity of word problem for $G$ . We consider a
string rewriting system whose set of rewriting rules is

$\{aa^{-1}arrow\epsilon,a^{-1}aarrow\epsilon|a\in A\}\cup\{\epsilonarrow r|r\in \mathcal{R}\}$

where $\epsilon$ is the null string in $(A\cup A^{-1})^{*}$ . For each word $w$ , if $w$ is trivial in $G$,
then there is aderivation $warrow w_{1}arrow\cdotsarrow\epsilon$ and its length is at most constant
multiple of Area(w)+lwl. There is anondeterministic Turing machine simulates
this derivation
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For every finitely presented group G with the Dehn function $f(n)$ , there exists a
nondeterministic Turing machine which solves the word problem in time $O(f(n)+$
n).

3. LINEAR GROUPS HAVE QUADRATIC WORD PROBLEMS

In this section we prove the following theorem.
Theorem 3.1. Let $F$ be a finite extension of Q. Then the word problem of every
finitely generated subgroup of $\mathrm{G}\mathrm{L}(n, F)$ can be solved in quadratic time.

For matrices $A=(a_{ij})\in M(n, \mathbb{C})$ , we denote $\max_{i,j}|a_{ij}|$ by $||A||$ .
Since the product and sum of two integers $a$ and $b$ , written in binary, can be

computed in time $O(\log|a|\log|b|)$ , the product AB of integer matrices $A$ , $B$ can be
computed in time $O(\log||A||\log||B||)$ and $||AB||\leq n||A||||B||$ . $\mathrm{p}$

Proof of Theorem 3.1. Let $G$ be afinitely generated subgroup of $\mathrm{G}\mathrm{L}(n, F)$ and
$X=\{x_{1}, \ldots, x_{m}\}$ be aset of semigroup generators. Let $A_{\dot{1}}(i=1, \ldots, m)$ be
a $n\mathrm{x}n$ matrix over $F$ which corresponds to $x_{i}$ . Then we can reduce the word
problem to the following.

Problem. For each word w $=x_{i_{1}}\cdots x_{i_{1}}$ , decide whether the product $A_{:_{1}}$ \cdots A: is
equal to the identity matrix I.

We first solve the problem in the case $F=\mathbb{Q}$ .
Let Abe the least common multiple of the denominators of all the entries in all

the generating matrices. Multiplying the generating matrices by $\lambda$ , we have integer
matrices $\lambda A_{1}$ , $\ldots$ , $\lambda A_{m}$ . We can compute the product $(\lambda A_{i_{1}})\cdots$ $(\lambda A_{i_{l}})$ of integer
matrices in time $O(l^{2})$ , and compare it with $(\lambda^{l})I$ in time $O(l)$ .

When $F$ is afinite extension of $\mathbb{Q}$ , we can reduce the problem to the case $F=\mathbb{Q}$ .
$F$ is asimple algebraic extension $\mathbb{Q}(\theta)$ of Q. Let $f(x)=x^{m}-c_{m-1}x^{m-1}-\cdots-$

$c_{1}x-\infty$ $\in \mathbb{Q}[x]$ be the minimum polynomial of 0.
There exist a(associative $\mathbb{Q}$-algebra)monomorphism $\rho$ : $\mathbb{Q}(\theta)arrow M_{m}(\mathbb{Q})=$

End$(\mathbb{Q}^{m})$ ( [5], chapter 7)

$\theta\mapsto(\begin{array}{lllll}0 0 0 c_{0}1 0 0 c_{1}0 \mathrm{l} 0 c_{2}\vdots \vdots \vdots 0 .0 1 c_{n-1}\end{array})$ .

Let $\overline{\rho}=\mathrm{i}\mathrm{d}\mathrm{M}(\mathrm{n},\mathrm{Q})$ (&p :Af$(n,\mathbb{Q}(\theta))arrow M(n, \mathbb{Q})$ Oq $M(m, \mathbb{Q})$ . Then $\overline{\rho}$ embeds
$\mathrm{G}\mathrm{L}(n, \mathbb{Q}(\theta))$ into $\mathrm{G}\mathrm{L}(nm, \mathbb{Q})$ . Applying $\overline{\rho}$ to generating matrices, we obtain aset
$\{\overline{\rho}(A_{1}), \ldots,\overline{\rho}(A_{k})\}$ of $mn\mathrm{x}mn$ matrices over $\mathbb{Q}$ as anew set of generating matrices.
Thus the problem can be solved in quadratic time. $\square$

4. FUNDAMENTAL GROUPS OF TORUS BUNDLES OVER THE CIRCLE

Consider the split extension $1arrow \mathbb{Z}^{n}arrow Garrow \mathbb{Z}arrow 1$ . Let $e_{1}$ , $e_{2}$ , $\ldots$ , $e_{n}$ be abasis
for $\mathbb{Z}^{n}$ and let $t$ be agenerator for Z. There exists $A\in \mathrm{G}\mathrm{L}(n, \mathbb{Z})$ which admits a
presentation $G=\mathbb{Z}^{n}\aleph A$ $\mathbb{Z}$

$\langle e_{1}, \ldots e_{n}, t|[e:, e_{j}], te:t^{-1}A(e_{i})^{-1}(i,j=1, \ldots n)\rangle$ .
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The fundamental group $G$ of a $T^{n}$ bundle over $S^{1}$ with gluing automorphism $A$ :
$T^{n}arrow T^{n}$ is asemidirect product $G=\mathbb{Z}^{n}\mathrm{x}_{A}$ Z.

It is well known that fundamental groups of closed 3-manifolds modelled on Sol
or Nil geometry are not automatic [4]. A3-manifold $M$ which is expressed as a
torus bundle over $S^{1}$ with reducible or Anosov gluing map $g:T^{2}arrow T^{2}$ is modelled
on Nil or Sol, respectively. The fundamental group $G$ of $M$ is isomorphic to a
semidirect product of $\mathbb{Z}=\pi_{1}(S^{1})$ by $\mathbb{Z}^{2}=\pi_{1}(T^{2})$ .

$\pi_{1}(M)=G=\mathbb{Z}^{2}\mathrm{r}_{A}$ Z.
The fundamental groups of torus bundles over the circle with Anosov gluing

maps have Dehn functions which are equivalent to exponential functions. Hence,
the lengths of rewriting processes of their words to the null word grow exponentially.
However, we can embed these groups in $\mathrm{G}\mathrm{L}(n, \mathbb{Q})$ , and the word problems of linear
groups over the rational numbers are solvable in (deterministic) quadratic time.

4.1. Dehn functions. Dehn function of $\mathbb{Z}^{n}n_{A}\mathbb{Z}$ is studied in [1, 2, 3].
The Dehn function $f(k)$ of $\mathbb{Z}^{n}\aleph A\mathbb{Z}$ is characterized by growth of the matrix $A^{k}$ .

Theorem 4,1 ([3], Theorem 3.1). Let $G=\mathbb{Z}^{n}\aleph A\mathbb{Z}$ where $A\in \mathrm{G}\mathrm{L}(\mathrm{n}, \mathbb{Z})$ . If
$f$ : $\mathrm{N}arrow \mathrm{N}$ is the Dehn function of any finite presentation of $G$ then

$f(k)$ $\simeq k^{2}||A^{k}||$ .
Sketch of proof. The upper bound of $f(k)$ is obtained by combing argument [1].

To obtain the lower bound for $f$ , we consider relators
$w_{k}=t^{k}e_{j}^{k}t^{-k}e_{i+n}^{k}t^{k}e_{j}^{-k}t^{-k}e_{i+n}^{-k}$.

Analyzing the geometry of van Kampen diagrams of $w_{k}$ , we have
$\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(w_{k})\geq k^{2}||A^{k}||$ .

Hence $k^{2}||A^{k}||\preceq f(k)$ [2,3]. $\square$

For $A\in \mathrm{S}\mathrm{L}(2, \mathbb{Z})$ , the growth of $||A^{k}||$ is as following:

$\bullet$ $\mathrm{I}\mathrm{f}|\mathrm{t}\mathrm{r}A|<2$ or $A=\pm$ $(\begin{array}{ll}\mathrm{l} 00 1\end{array})$ then there is $m\in \mathbb{Z}$ such that $A^{m}=(\begin{array}{ll}1 00 1\end{array})$ .
Hence, $||A^{k}||\simeq 1$ . And $\mathbb{Z}^{2}\aleph A$ $\mathbb{Z}$ is virtually abelian.

$\bullet$ $\mathrm{I}\mathrm{f}|\mathrm{t}\mathrm{r}A|=2$ and $A\neq\pm$ $(\begin{array}{ll}1 00 1\end{array})$ then $||A^{k}||\simeq k$ . And $\mathbb{Z}^{2}\mathrm{r}_{A}\mathbb{Z}$ is anilpotent
group.

$\bullet$ If $|\mathrm{t}\mathrm{r}A|>2$ then $A$ has an eigenvalue Awhose absolute value is greater
than 1. $||A^{k}||\simeq|\lambda|^{k}$ . A $\mathrm{d}$ $\mathbb{Z}^{2}\aleph A\mathbb{Z}$ is asolvable group.

Corollary 4.2 ([2]). The Dehn functions of cocompact lattices in Nil are equivalent
to cubic polynomials. The Dehn functions of cocompact lattices in $Sol$ are equivalent
to exponential functions.
4.2. Linear representations. We shall give an embedding of $G=\mathbb{Z}^{2}\mathrm{r}_{A}\mathbb{Z}$ in
$\mathrm{G}\mathrm{L}(n, F)$ where $F$ is afinite extension of Q. Applying Theorem 3.1, we can solve
the word problem of $G$ in quadratic time.

We consider the presentation of $G$

$\langle x, y, t|xyx^{-1}y^{-1}, txt^{-1}A(x)^{-1}, tyt^{-1}A(y)^{-1}\rangle$

where $x$ , $y$ are generators for $\mathbb{Z}^{2}$ . Remark that all element in $G$ has arepresentation
in the normal form $x^{a}y^{b}t^{c}(a, b, c\in \mathbb{Z})$ .
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When $\mathrm{t}\mathrm{r}A=2$ , there is an integer $K$ and $P\in \mathrm{S}\mathrm{L}(2, \mathbb{Z})$ such that

$A=P^{-1}$ $(\begin{array}{ll}\mathrm{l} 0K \mathrm{l}\end{array})$ $P$.

Changing generators, $G$ is finitely presented by
$\langle x, y, t|xyx^{-1}y^{-1}, txt^{-1}x^{-1}y^{-K}, tyt^{-1}y^{-1}\rangle$

and it is linearly represented by the assignment,

$x^{a}y^{b}t^{\mathrm{c}}\mapsto(\begin{array}{lll}1 0 0a \mathrm{l} 0b cK \mathrm{l}\end{array})$ $\in \mathrm{G}\mathrm{L}(3, \mathbb{Z})$ .

Notice that the map defined as above is actually ahomomorphism, because it maps
all relators in the presentation to the identity matrix. And the map is obviously
injective.

When $|\mathrm{t}\mathrm{r}A|\neq 2,{}^{t}A$ has an eigenvector $(\begin{array}{l}\alpha 1\end{array})$ and an eigenvalue A.

$\lambda$
$(\begin{array}{l}\alpha 1\end{array})={}^{t}A$ $(\begin{array}{l}\alpha 1\end{array})$ .

Ais algebraic over $\mathbb{Q}$ , and at is in $\mathbb{Q}(\lambda)$ . The abelian group $\mathbb{Z}^{2}$ is embedded into
$\mathbb{Q}(\lambda)$ by amap $\varphi$ : $(\begin{array}{l}ab\end{array})\mapsto a\alpha+b$ if we denote an element $x^{a}y^{b}\in \mathbb{Z}^{2}$ by $(\begin{array}{l}ab\end{array})$ .
Notice that

$\varphi(A (\begin{array}{l}ab\end{array}) )=\lambda(a\alpha+b)$ .

Let $\mu$ be asquare root of A. We define alinear representation $\rho$ : $Garrow$

$\mathrm{S}\mathrm{L}(2, \mathbb{Q}(\mu))$ by

$x\mapsto(\begin{array}{ll}1 \alpha 0 1\end{array})$ , $y\mapsto(\begin{array}{ll}1 10 1\end{array})$ , $t\mapsto(\begin{array}{ll}\mu 00 \mu^{-1}\end{array})$ .

$\rho$ is well defined, because
$\bullet$ $\rho(x)\rho(y)=\rho(y)\rho(x)$ and

$\rho(x^{a}y^{b})=(_{0}^{1}$ $\varphi((\begin{array}{l}ab\end{array})1 ))$ ,

$\bullet$ $\rho(t)\rho(x)\rho(t)^{-1}=\rho(A(x))$ , $\rho(t)\rho(y)\rho(t)^{-1}=\rho(A(y))$ :

$(\begin{array}{ll}\mu 00 \mu^{-1}\end{array})(\begin{array}{ll}1 \alpha 0 1\end{array})(\begin{array}{ll}\mu 00 \mu^{-1}\end{array})=(\begin{array}{ll}\mathrm{l} \lambda\alpha 0 1\end{array})$ $=(_{0}^{1}$ $\varphi(A(x))1$),
$(\begin{array}{ll}\mu 00 \mu^{-1}\end{array})(\begin{array}{ll}1 10 1\end{array})(\begin{array}{ll}\mu 00 \mu^{-1}\end{array})=(\begin{array}{ll}1 \lambda 0 1\end{array})$ $=(_{0}^{1}$ $\varphi(A(y))1$).

Proposition 4.3. $If|\mathrm{t}\mathrm{r}A|>2_{f}\rho$ is injective.

Proof. We show that the kernel of $\rho$ is trivial.
Notice that

$\rho(x^{a}y^{b}t^{\mathrm{c}})=(\begin{array}{ll}\mu^{c} \mu^{-c}(a\alpha+b)0 \mu^{-c}\end{array})$ .
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If $x^{a}y^{b}t^{\mathrm{c}}$ is mapped to the identity matrix, $\mu^{c}=1$ and $a\alpha+b=0$ . Since
$|\mu|\neq 1\square$

and $\alpha\not\in \mathbb{Q}$ , $a=b=c=0$.

If $|\mathrm{t}\mathrm{r}A|<2$ , then $\mu^{c}=1$ for some integer $c\neq 0$ . Since $t^{c}\in G$ is not the identity
if $c\neq 0$ , the representation $\rho$ is not injective in this case. But we can define an
injection $\rho’$ : $Garrow 3(3)\mathbb{Q}(\mu))$ by

$x^{a}y^{b}t^{c}\mapsto(\rho(x^{a}y^{b}t^{\mathrm{c}}) 2^{\mathrm{c}})$ .

Thus we have proved Theorem 1.1.
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