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BY WHICH KIND OF SOUND,
CAN ONE HEAR THE SHAPE OF A DRUM?

HARFETHR NREM—, HHE OVRK=
W. MATSUMOTO, M. MURAI AND S. YOTSUTANI
RYUKOKU UNIV. FACULTY OF SCI. AND TECH.

Dedicated to
Professors M. IKAWA and S MIYATAKE

1. INTRODUCTION

In the paper titled “Can one hear the shape of a dram?” {2}, M. Kac proposed a
problem: Can one know the shape of a domain from the eigenvalues of the Laplacian with
the Dirichlet boundary condition? He pointed out that if the eigenvalues of a domain is
coincide with those of a disc, it must be the same disc. On the other hand, C. Gordon,
D. Webb and S. Wolpert[1] presented a counter-example: there exist two incongruous
rectangles with same eigenvalues. However, when a domain has a smooth boundary,
we have no counter-example. In order to obtain the final answer to Kac’s problem in
the case of domains with smooth boundaries, we need find many domains which are
determined by the eigenvalues. Recently, K. Watanabe proposed the domains enclosed
by “the minimal curvature energy curves”, which are determined by the eigenvalues. K.
Watanabe analyzed these curves when they are sufficiently close to a disc. We consider
a full account of these curves in this paper.

Let © be a domain in R? and 99 be its boundary. 5 is given by p(s) (0 < s <
L), where s is the arc length parameter and L is the full arc length. Let x(s) be the
curvature of 9. We take s = 0 at the maximum of the curvature, p(0) = the origin
and e;(0) = dp/ds(0) = (1, 0). We denote the angle from the positive z axis to e;(s)
by 6(s). d8/ds(s) = k(s). Let us denote the primitive period of k(s) by L/n, where n is
a natural number.

We consider the eigenvalue problem of the Dirichlet problem on the Laplacian:

—A¢(x) =A¢(z) inQ,

(1.1)
d(z) =0 on 0N2.

We denote the eigenvalues and the eigenfunctions of the above problem by {);} and
{¢i(z)}. We can take {¢;(z)} a complete orthonormal system. Using these, we obtain
the heat kernel:

Bltmy) = 3, e 91(2) 95(0)

Key words and phrases. Kac’ problem, minimal curvature energy curve.
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Its trace has an asymptotic expansion near ¢ = 0:

_ © At _1_ o0 k/2
(12) JRCEED SR S

where

Dy =M = area of Q,

D1=—‘—/2——7?L, L = length of 59,
1

D2=——/ k(s)ds,
3 Jan

(1.3) D3 = g ./an Kk(s)%ds,

4
Dy=— 3
4 315L0n(s) ds,

_3VT [ e ﬁ/ n2
D5 = 8195 aﬂfs(:s) ds 1054 an(n(s))ds,

e.t.c.

Under the condition 72Dy = D,? (i.e. 4rM = L? ), the domain is a disc with radius
—+/7Dy/D; . Then, if we find the relation 72Dy = D2 from the asymptotic expansion
of the trace of the heat kernel, which is obtained from the eigenvalues, we can say that
the domain is a disc.

We pose the following:

Assumption 1.

7T2D0 < D12 R
(1.4)
D2 = 271’/3 .

The former means that the domain is not a disc and the latter means that the winding
number is one.
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Our question is

Under Assumption 1, if D3 takes the minimal value, can one determine the domain
from the eigenvalues?.

The answer by K. Watanabe is “Yes”.

Theorem 1. [K. Watanabe[8]]
We pose Assumption 1. We set

F = {6 € H'(0,L); (a) z(0) = =(L) =0, (b) 9(0) = y(L) = 0, (c) 6(0) =0, 6(L) = 2r,

' L 8 :
@3 [ [ i) ~0(edsas = pr .

Ey(8) = 1 [¥(8/(s))ds possesses a minimizer in F .

Using Lagrange’s multiplier,

E(9) =i2°- /OL ' (s)%ds + A\, /OL cos 8(s)ds + Az /OL sin §(s)ds
AS L s )
+3 /0 /0 sin(8(s) — 6(€))deds

takes a minimizer without restriction condition. This leads us to the Euler equation:

(1.5) 6"(s) = p1sinb(s) + pacosO(s) + 3 /: cos(8(s) — 6(€))d¢€ .

This implies

(1.6) K"(s) + %m(s)3 + par(8) —p3 = 0.

" Integrating this, we obtain

(1.7) K(s)+U(k) = ps,

K(s) = 5RO, U(K) = 55(6)* + EEn(o)? = ar(s),



(1.8)
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7 =——1——(E/Ln(s):’ds-—w/Ln(s)zds)
3 L2—47TM 2 0 0 '

——1—(M/L (s)°d —£/Ln(s)2ds)
M= e\ J, T3, :

3072
/T

L
ps = —105mus + 36 (/ K(s)2ds) g + Ds.
0

Theorem 2. [K. Watanabe(8]]

For every n > 2, the equation (1.7) has a unique C*™ periodic solution with the prime
period L/n ( the solution of mode n ), which is symmetric in [O, L/n] at L/2n, decreasing
in [0, L/2n] and increasing in [L/2n, L/n]). Then, it hold that k(0) = maxo<,<s K(8),
k(L/2n) = ming<,<1, £(s) and £'(0) = &'(L/2n) = 0.

Remark 1.1. In order to be a closed curve, n cannot be 1.

Theorem 3. [K. Watanabe[8], [9]]

If M < L?/47 < (49/40)M , minimizers are simple curves' and domains are deter-
mined by those spectrum.

Further, if L?/4w is sufficiently close to M, the minimizer is unique, of mode 2 and
the domain enclosed by this curve is oval.

2. REPRESENTATION OF k(8)

By the equation (1.7), in the case of mode n (n > 2), we have

(2.1)

,a@=—%viq@L~mM@V+8Mq@+em (0 <s<L/m),
k(0) = max k(s) = p, k(L/2n) = mink(s) =gq,

k(s) = k(L/n —s), (L/2n < s < L/n).

As we orient the curve anti-clockwise, p is positive. We introduce new parameters p, g

1K. Watanabe announced M < L?/4m < (25/16) M, but it seems that his proof holes good under this
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and 6, where p and q are those in (1.7):

(22)  —k(s)* — duar(s)? + 8uak(s) + 8us = (0 — &)(k — g){(x + p’zL PHay2 45

(¢<k<p, p>0),

[ pa = —(1/16)(3p% + 2pq + 3¢* — 164) ,

(2.3) ¢ ma=(1/32)(p+){(p — 9)* +168)},

L w5 = —(1/32)pg{(p + 9)* + 160)}

and
(2.4) a(“‘h U3, #5) _( _ ){(3p+Q)2+6}{(p+3q

d(p, g, 6) ) +6}.

We replace p and g by P and @, and set £ = k + &4: we have
=@p+9)/4, p=(BP-Q)/2, p+q=P+Q,

(2.5)
Q=@+39)/4, a=(-P+3Q)/2,p—q¢=2(P-Q)

and

(26) — =—/(P-€)(E-Q)E+9).

Thus we arrive at

x(8) ds P d§
2.7 = 23 Ak = .
(1) ’ /ncm dx ™" /(1/2){~(a)+(P+Q)/2} V(P —-€)(E- Q)& +9)

Changing the the variable of integral:
{ £=Q+(1/n),

n={1/(P - QH1+ V(P2 +6)/(Q*+ 6) tan’(¢/2)},
(2.7) becomes

. o) gy
B V(P2 +8)(Q2+6) Jo 1— k2sin’p

(2.8)
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20(K(s)) _ [Q*+8 p—k(s)
(29) e =N P16 ke —q

(PQ +9)

2_Lq_
(2.10) K =30 N DI 5)) :
This means
TEmas L k)i (0< s < Ljan),
(211) s= _

WW{ZK (k) = F(m ~ o(s(s)); k)}  (L/4n < s < L/2n),
where

©
F(p; k) = / d9 (the elliptic integral of the first kind),
0 1— k2sin?6 :

K(k) = F(r/2;k) (the complete elliptic integral of the first kind).

Finally, using the elliptic function, we arrive at

(212)  k(s) = pV/Q +3+q/Q+ 3 + (p/Q2+ 5 — g/Q% + 8) en(K(k)s; k)
| \/Fz"*’_5+\/Q2+5‘(\/P2+5—-\/Q2+6)cn(f((k)s;k)

where sn(z; k) is Jacobi’s elliptic function i.e. the inverse function of

)

and cn(z;k) =v1-sn?z.

z_/z du
T Jo VO =—w)(1 - Fu?)

3. RESTRICTION CONDITION AND NEW PARAMETERS

3.1. The First Restriction Condition.
Taking s = L/4n in (2.7), we obtain the relation:

(3.1) yErn@s = 2B - g,

which corresponds to the restriction that the length of the curve is L, that is,

(3.2) 5= 5{~(P*+ Q%) £ /(P2 — @2 + 4R (k)* }.



By this restriction, ¢ is implicitly obtained by P and Q and there rest two free parameters.
To see this clearly, let us introduce new parameters k and h:

k= (1/2){1 - (PQ+9)/\/(P+58)(Q*+9) },
(3.3)
P-Q=hP, (Q=(1-h)P).

For the simplicity, we restrict ourselves:

Assumption 2.
(3.4) . P=@Bp+q)/4>0.
Under this assumption, h is positive.

By the relations (3.2) and (3.3), P? satisfies

(3.5) h2(1 — h)(P?)? — h3(1 — 2k%) K (k)2 (P?) + 4k*(1 — K*)K (k)* = 0.

[The case 0 < h < 1]

In order that (3.5) has a positive root, as the product of two roots on P? is positive,
the discriminant and the sum of both roots must be positive:

— — k2 — k2
po AR -F)+VIZF} e L

(3.6) (1 — 2k2)? ’ 2

Under the conditions (3.6),

_ R(1—2k}) £+J

(3.7) pP?= R ) K(k)?
_ 8k%(1 — k?) o .
= T2 7 7] K(k)* (the smaller case),
J = h2(1 — 2k2)% — 16(1 — h)k*(1 — k?).
[The case h =1]

As the equation (3.5) becomes of degree 1, under the condition 0 < k% < 1/2, it has
the positive root:

162
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_4K*(1-K?)

. 2 2 2
(3.8) PP = =t K(R)?

[The case h > 1]

In order that (3.5) has a positive root, as the product of two roots on P? is negative,
the discriminant must be positive:

_ 4h{—2k(1 - ¥) + VI - F%}
(1 —2k2)2 ’
Under the conditions (3.9), (3.5) has a unique positive root:

(3.9) A

_ —h(1-2k%)+VJ
(3.10) P? = A

K(k)?,

J = h?(1 - 2k?)? + 16(h — 1)k*(1 — k?).

Remark 3.1. The smaller root in (3.7) is continued to (3.8) and (3.10) as h becomes 1
and greater than 1. The greater root in (3.7) tends to infinity as h tends to 1. The curve
bifurcated from a circle is given by the former continued root .

Assumption 3. When 0 < h < 1, we adopt the smaller root in (3.7).

For positive h, the Jacobian and § are positive:

(P Q) 1, _  4k{(1—2k*)+4h?K*(1 -k} .
(311) Bk k) 2" kT h\/j{(Z—h)z(l—2k2)+h\/j}K(k) >0
(3.12) 6= %(1 — 2% K (k) + 2£Z > 0.

3.2. The Second and Third Restriction Conditions.

As the winding number is one, we obtain the second restriction:

b)

. L/2n
(3.13) fo K(s)ds =

SRR
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(3.14)  LK(K){h?P? + 4k*K(k)>}{h*P* + 4(1 — k) K (k)?}

h%p?

. — K3 k) + 4nK(k)R*(2 - B)P? = 0
R ) (k)R*( )

—8Th? P2 {h?P? + 4(1 — k) K (k) } TI(

II(c; k) = / the elliptic integral of the third kind).
(cik) o (14 csin?p)y/1—kZsin’gp ( P & )

We replace h by

(3.15) t=VJ/k=+h2—4k2(1 — 2k2)(2 - h)?/k ,

where J is that in (3.7) and (3.10). The relation (3.14) is equivalent to

(3.16)
z(k,t) = —[(3 — 4k%){t2 + 16(1 — k*)} + {8k(1 — k) + /(1 — 2k2)2t2 + 16(1 — k?) }¢] x
[£2 + {8Kk(1 — %) + /(1 — 2K2)22 + 16(1 — k2) }t + 16(1 — k)| K (k)
—4(1 - ) {2 + 16(1 — k)} x
[t% + {8Kk(1 — k) + /(1 — 2K2)22 + 16(1 — k2) }t + 16(1 — k?)] x
I( K2{t* — 8k(1 — k)t + 16(1 — k) — t1/(1 — 2k?)%2 + 16(1 — k?) }
(1 — 2k2)#2 + {8k(1 —k2) + /(1 — 2k2)22 + 16(1 — &2) }t + 16(1 — k2)(1 — 2k?)

- [31\/(1 — k2){t2 + 16(1 — k2)}{—kt® + 2+/(1 — 2k?)2t2 + 16(1 — k2) } x

, k)

V(1= 262) {22 + 16(1 — k2)} + {8k(1 — k2) + /(1 — ZK2)?2 + 16( — K2) }t = 0.

On the other hand, as the area of the domain enclosed by this curve is M, we obtain
the third restriction:

L pa+nfy™ K(kyds _
2 24 +n [ R (k)*ds

(3.17)

By the relation (1.8) and
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(3.18) i K(k)%ds = 8%{(2 — h)2P? —16(1 — KK (k)*} + 8K (k)E(k),

/2
E(k) = / \/1—k2sin’ pdp (the complete elliptic integral of the second kind),
0

(3.19) o K(k)3ds = %{3(2 — h)?P? - 8(1 — 2k?) K (k)*}

+ @~ WP{(R + 4h - )P + 4(1 — )R (K},

(3.17) is equivalent to

(3.20)
M, (k,t) = —/2{t2 + 16(1 — k2)} x
V(1 = 2K2)82 + {8k(1 — 2) + /(T — 2F222 ¥ 16(1 — k) }t + 16(1 — k2)(1 — 2K?) x
(@ = 26%)t* + 8k(1 — k)t — 8(1 — k2)(1 — 2k2)(2k? — 5)t% + 128Kk(1 — k%)%t
—128(1 — k?)?(4k? — 3)
+ t(t% ~ 8k(1 — k)t + 16(1 — k2))+/(1 — 2k2)22 + 16(1 — k2) } K (k)
—2{t? +16(1 — K*)}{(1 — 2k*)® + (8k(1 — k?) + /(1 — 2k2)22 + 16(1 — k2) )t
+16(1 — k?)(1 — 2k%)} E (k)| L?
/1161 — K2(kt? — 24/(1 — 2k%)212 + 16(1 — k?) x
{(—2k* + 2% — 1)t* — 8k(1 — K*)(1 — 2k2)t3 + 8(1 — k?)(1 — 2k?)(2k* — 3)¢?
— 128(1 — k2)%(1 — 2k%)¢ — 128k(1 — k2)? |
—t((1 — 4k*)t — 8k(1 — k)t +16(1 — k2)(1 — 2k%)) /(1 — 2k?)2t2 + 16(1 — k2) } x
nK(k)’]

=M.

Computer-aided, we obtain the graphs of the curves defined by (3.16) and (3.20) :
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(Za(k,t) =0 and My =3] (L =2m)

.
] \\
] \\ - —
ZT \\\ M/..f--"""ﬂ# Mz.(l!;t)=3
4 \\\ J_’_‘__ﬂ,_..-——'-"“"/
e~
\\\
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] \\
1 \\\
] \\
4 \
0.5 \

o1 o0z 0.3 0.4 0.5



0.87

0.6

[k =kr(s) ] (My;=3,L=2randn=2)

167

<
o
p—t |



[Zy(k,t) =0and My =7/2] (L=2m)
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)] (My=m/2,L=2m and n=2)
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4. MINIMIZERS AND THOSE SHAPES

Computer-aided, we can also obtain the graphs of the curvature energy fOL k(s; M,n)%ds
with L=2r (n>2).

For every n > 2, as M tends to m, the curvature energy tends to m, which corresponds
to the cicle with the radius 1.

Energy of kappa

ENG |
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As a computer-aided theorem, we obtain the following

Theorem 4.
The minimizer is of mode 2 and unique.

[k= 0.05]

Shape of Omega

7

1.51

1_

LANLANL R B S S e a2 &

0.2 04 0.6 08

T

08 0.6 -0.4 —02 0
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k= 0.2]

Shape of Omega

Y

1.57

~0.6-04-029" 02 04 06
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[k= 0.445] ( No longer, not simply connected domain )

Shape of Omega
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(k= 0.4776] ( No longer, not simply connected domain )

Shape of Omega

0.2
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