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ABSTRACT
In this report the authors show that the Aluthge transformation 7' of a matrix
T and a polynomial f satisfy the inclusion relation Weo(f(T)) ¢ We(f(T)) for
the generalized numerical range if C is a Hermitian matrix or a rank-one matrix.

1. THE ALUTHGE TRANSFORMATION

In the development of operator theory, Aluthge [1] introduced a transformation T
for a bounded linear operator T on a complex Hilbert space H with the help of the polar
decomposition T = V|T'| as follows:

Definition 1 (Aluthge transformation [1]). Let T = V|T| be the polar decomposition of
a bounded linear operator T. Then the Aluthge transformation T of T is defined by

T = |T|3V|T|3.

We remark that T is defined by using a partial isometry V' and |T| with T = VT
and N(V) = N(|T|). But in fact, T does not depend on the choice of V' (see [19]), for
example, if T = U|T| is a matrix with unitary U, then T = |T|3U|T|3.

As properties of T, the following assertions are well known:
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(i) o(T) = o(T'), where o(T) means the spectrum of an operator T
(i) (|7 = [17].
(i) has been shown in [9], and we can obtain (ii) easily as follows:

TN < 1Tz ]| - (VI - 1702 < (T

Recently, many authors discuss the nth iterated Aluthge transformation which is de-
noted by T, i.e.,
| T.=Tn,) and To=T,
and the following interesting property is shown in [20].
lim [T = (D),

where r(T') is the spectral radius of T.

2. NUMERICAL RANGE

In this section, we shall introduce the numerical range and a result on that of the
Aluthge transformation.

Definition 2 (Numerical range). For an operator T, the numercal range W(T) of T is
the subset of the complex numbers C, given by,

W(T) = {(Tz,z) : z € H,|z| =1}.

The following properties of the numerical range are well known.

(i) W(T) is a convex set (Hausdorff-Toeplitz).
(i) o(T) Cc W(T).

As a result on the numerical range of T, the following result has been shown.

Theorem 2.A ([18]). Let T be a bounded linear operator, then the following inclusion
relation holds.

(2.1) wW(T) c W(T).

Theorem 2.A was firstly shown in [10] in case T is a 2 x 2 matrix (in this case, W(T)
and W(T') are closed subsets of the complex number C). Then one of the authors [19]
proved that (2.1) holds if T admits a decomposition T' = U |T'| for an isometry operator
U. This condition is always satisfied if T is an n X n matrix, or H is finite dimensional.
In [19], the relation (2.1) is shown by using the property of the numerical range

(2.2) W(T) = ({2 €C:|z— A <w(T - AD},
AeC



where w(T) is the numerical radius of T, that is,

| w(T) = sup{|z| : z € W(T)}
and the following characterization of w(T") < 1 by Berger and Stampfli [3]:
(2.3) w(T) < 1if and only if |7 — 2I|| < 1+ /1 + |2[2 for all z € C.

In a recent paper [18], Wu showed that the inclusion (2.1) holds for every bounded linear
operator T on a Hilbert space H. He showed this result by using the previous result
shown in [19] and some properties of numerical range and Aluthge transformation, so
this proof is not easy. In this report, we shall obtain a simplified proof of Theorem 2.A
in Section 4.

3. C-NUMERICAL RANGE

As a generalization of the numerical range, for nxn matrices C and T', the C-numerical
range of T is defined in [7] as follows:

Definition 3 (C-numerical range [7]). For n x n matrices C and T, the C-numerical
range Wo(T') of T is the compact subset of complex number C, given by,

We(T) = {tr(CU*TU) : U is a unitary matriz}.

10 --- 0
00

PutC =1|. . . .|, then W(T) = W(T), so we can regard W¢(T) as a
00 --- 0

generalization of W(T'). But W¢(T') is not always convex as follows:

Example ([17]). Let
000
T=C=1{010].
0 0 ¢

Put unitary matrices U; and U, as follows:

0 01
U=1010 and U; =
100

OO -
[l =X~
O = O

) |

Then we have

000 0 00
CuiTU; ={0 1 0 and CU,TU,= |0 i 0],
000 00 ¢

that is, 1,2i € W(T'). But put a unitary matrix Us as follows:

U1 U2 Uis
Us = | ug1 u2e ugs | .
U31 U32 U3
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tr(CUTUs) = |uzs|” — fuas|® + i(|ugs|” + |uzs|*).
Assume that 122 € W(T). Then the following relations hold:

1
{ ugg[* — [ugsf* = 3

luga|® + Juz|* =1.

So Us can not be unitary, and it is a contradiction. Hence 3% ¢ W¢(T).

In fact, it is known that W (T') is star-shaped as follows:

Theorem 3.A ([4]). For anyn x n matrices C and T, the range Wo(T) is star-shaped
with star center at y = 2tr(C)tr(T), i.e., if £ € W(T), then

A+ (1-NyeWe(T) forallxe]0,1].

Especially, when C' is a Hermitian matrix or a rank-one matrix, the range Wo(T) is
a convex set (cf. [17] and [16]). In these cases, we can rephrase them in the following
ways:

The case that C is a Hermitian matrix. We assume that the spectrum of the Hermitian
matrix C is the set
c=(C1,C2y--. ,Cn).

Since C' is a Hermitian matrix, there is a unitary matrix U such that

(3 0 --- 0
0 Cy - 0
U*CU= . . . .

Hence the set W¢(T') can be rewritten as follows:

We(T) = {Z ¢j(Tzj,z;) : {Z1,Za,... ,Zn}is an orthonormal basis of C"} ,
Jj=1

which is denoted by W,(T') and we call W,(T') the c-numerical range of T. Poon [14] gave

an alternative proof of the convexity of W,(T") using some type of majorization property

(cf. [8, page 87-88]).

The case that C' is a nonzero n X n matrix of rank one. We assume that the operator
norm of C is 1. Then there exsits a unitary matrix U such that
g 1-lg* 0 --- 0
0 0

0 e 0
U‘CU-_— . . . .. . )



where ¢ is an eigenvalue of C' with |g| < 1. Hence the set W(T') can be rewritten as
follows:

We(T) = {{Tz,9) : 2,y € C*, 2]l = Iyl = 1, (z,5) = a},
which is denoted by W,(T") and we call W,(T') the g-numerical range of 7.

In this report, firstly, we shall obtain the direct proof of Theorem 2.A without using
(2.2) and (2.3). Secondly, we shall generalize this result to c-numerical range in Section
5 as follows:

(3.1) We(f(T)) € We(£(T))

holds for all polynomial f. Lastly, we shall show the same relation (3.1) holds for ¢-
numerical range.

4. SIMPLIFIED PROOF OF THEOREM 2.A

In this section, we shall obtain a direct proof of Theorem 2.A without using (2.2) and
(2.3). To prove the this result, we prepare an obvious lemma.

Lemma 4.A ([9]). Let A be a self-adjoint operator and B be an operator. Then AB is
invertible if and only if BA is invertible. Hence c(AB) = o(BA).

We denote the real part of an operator A by R(A) = -‘ii:ji'-.

Simplified proof of Theorem 2.A. Let T = V|T| be a polar decomposition of 7. Since

T\VV+V*T
w(riv) = TV AV

_VVITIV 4+ VETIVY
B 2

_y VLTV

= V*R(T)V,

V .

we have
<§R(|T|V)m,:c> - <V*§R(T)V:c,x>

= <§R(T)Vm, V:z:>

Ve Vz
= <§R(T)W, W> (Vz,Vrz).

Hence

(4.1) W(?R(ITIV)) - W(%(T))W(V*V).
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If 0 € W(V*V), then 0 € W(éR(T)). By W(V*V) = [0,1] and Hausdorff-Toeplitz
Theorem, we obtain

W(éR(IT]V)) c W(éR(T))W(V*V) by (4.1)
(4.2) - {a<§R(T)z,z> lzl =1,a €0, 1]}
- W(éR(T)).

If 0 ¢ W(V*V), then V is an isometry, so W(?R(IT{V)) C W(%%(T)) holds by (4.1).
On the other hand, for any two operators H and K, the following relation is easily
obtained:

(4.3) R{R(H)K} = %{%(HK) +RK*H)}.
Therefore we have
W (R(T)) = w(ITERV)ITI)
- conva(|T|%s<e(V)|T|%)

= Rconva(lT}%%(V)[TI%)
= Rconvo (éR(V)lTI) by Lemma 4.A
CRW (?R(V)[Tl)

= W (R{R(V)ITI})

= s W (RVIT)) + R(TIV)) by (43)

c 3 {w(Erm) +w(riTv)|

1
cs {W(éR(T)) + W(?R(T))} by (4.2)
=w(R(D)),
where convo (T") means the convex hull of o(T).
Since (e#T) = ¢*T holds for each 6 € [0,27), we have

W(ﬁ%{e“’f}) C W(%{ewT}) for all 6 € [0, 27),
so that we obtain (2.1). O

Remark. In our proof of Theorem 2.A, the equation (4.3) plays an important role. (4.3)
is also useful to extend the relation (2.1) to c-numerical range or g-numerical range.
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5. ¢-NUMERICAL RANGE OF THE ALUTHGE TRANSFORMATION OF A MATRIX

In this section, we shall generalize Theorem 2.A to c-numerical range and T to f(T)
where f is a polynomial.

Theorem 5.1. Let T be an n X n matriz, f be a polynomial and ¢ = (c1,€2,... ,cpn) be
a finite real sequence. Then the following inclusion holds:

W.(f(T)) C W.(f(T)).

In this result, we may assume that ¢ = (¢, ¢, . . . , ¢,) is a finite real sequence arranged
in the decreasing order ¢; > ¢; > ... > ¢, by the definition of W,(T).

To prove Theorem 5.1, we shall prepare the following results:

Theorem 5.A ([12]). Let T be an n x n matriz and ¢ = (c1,¢y, ... ,c,) 05 a finite real
sequence arranged in the decreasing order ¢y > cy > ... > ¢,. Then

(5.1) max {R(z€%) : z € We(T)} =) ¢; A; (R(e° T)),
i=1
holds for every 0 < 6 < 27, where A;(S) means the jth eigenvalue of an n x n Hermitian
matriz S:
A(S) = A (S) > ... = Aa(9).

Lemma 5.B ([6], [13, page 237])). Suppose that T is an n x n complez matriz and
{RM(T), RN(T), ... ,RA(T)} denotes the set of real parts of eigenvalues of T arranged
in the decreasing order. Then the inequality

ZéRA(T)<E ( )

Jj=1
holds for every1 <k <n-— 1.

Lemma 5.C ([5), [13, page 241))). Suppose that G and H are nxn Hermitian matrices.
Then the inequality

Z,\ (G+H)<Z{A (@) + N (H)}

i=1 j=1

holds for every 1 < k<n -—1.
Lemma 5.2. Let A be a positive invertible matriz and X be an arbitrary matriz. Then
for each polynomial f and real 8, there ezists a matriz S such that
e®f(AEXA3) = AISAT,
e?f(XA) =
e? f(AX) = AS.




b7

Proof. Let f(z) = f(0) + g(2)z, where g(z) is also a polynomial. By using the equation
(A2 X A3)" = A% (XA X A3,
we obtain the following equation:
F(ATX A%) = F(0)] + g(A3 X A7) A3 X Al
(5.2) = f(0)] + ATg(XA)X Al
= AT{f(0)A™! + g(X A) X} A3.

By setting

S =e?{f(0)A™ + g(XA)X},
we have

e f(AZXAT) = Y AT {f(0) A" + g(X A)X}A? by (5.2)
= A1SA3,
SA=e?{f(0)A™! + g(XA)X}A

= e*{f(0)] + g(XA)X A}
= e“f(XA)

and

AS = €e?A{f(0)A™ + g(XA) X}
= e?{f(0)I + Ag(XA)X}
=e’f(AX) by AXA)"X = (AX)™*1,

Hence the proof is complete. O

Proof of Theorem 5.1. We use a polar decomposition T = U|T| where U is a unitary
matrix. Put A =|T| > 0 and X = U. By perturbing A to A + €I for small € > 0, we
need only to prove Theorem 5.1 for a positive invertible A. By Theorem 5.A, we shall
show the following inequality

53) e (RIS <3065 (RA FDY)
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for every 0 < 8 < 27. Moreover by the following equations

n

e X (R{eF(T}) = Z( ~cn1) Z M (R (D)} + cn}i: X (R (DY),

1

2

i e 3 (RA2F(T)}) = E(cj —¢ja1) i: M (RL#F(DI}) + o 2,.: M (RE2 ST},
j=1 j=1 k=1 k=1
e (RIEADY) = 30 MR abxah)
k=1 k=1
- zn: M (éR(A%SA%—)) by Lemma 5.2
k=1 i

- tr(an(A%SA%)) = se{tr(A%SA%)} - §R(tr(SA))

- tr(?R(SA)) = zn: M (.SR{ew f(XA)}) by Lemma 5.2

= M (REEF@)),

k=1
it is sufficient to prove the inequality

k k

PPN CICH IS DPNCIC)Y

=1 =1

holds for 0 < ¢ < 27w and every k=1,2,... ,n — 1.




By using Lemma 5.2 and Fan’s two inequalities, we have

i 5 (R F(D)})

S (R{e“f(atxab)})

1

I

.
1l

I
-
<>

(R( AiS A%)) by Lemma 5.2

<
Il
-

I
Ma—

(AzéR(S A%)

w,
|l
RS

I
M=

RA; (A%ére(S)A%)

1

o,
Il

It
.Ma_

[N
il
-

RA; (%(S)A) by Lemma 4.A

Ma—

(§R{§R(S)A}) by Lemma 5.B

<.
1]

Z (ER(SA)+§B(AS)) by (4.3)

J=

o} =

IA
DN =

I
P

¢
2
}

J

M»

li
N =
I
-

il

Ma—

1
2 1

= 30 (i ).

=1

Hence the proof of Theorem 5.1 is complete.

The case f(z) = 2z, we obtain the following corollary.

Corollary 5.3. Let T be an nxn matriz and ¢ = (¢, cg, - . .

Then the following inclusion holds:

W.(T) C W.(T).

59

zk: A %(SA) + Z by (m(AS))} by Lemma 5.C
Aj R{e‘of(XA)}) + Z Aj (éR{e“’f(AX)})} by Lemma 5.2

X (R{e“F(T)} )} + Z X (UrR{e? f(T)}U)}

¢n) be a finite real sequence.
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6. ¢-NUMERICAL RANGE OF THE ALUTHGE TRANSFORMATION OF A MATRIX

It is known that there is a close relationship between the family of g-numerical ranges
Wo(T) (0 < ¢ £ 1) of a matrix T and the Davis-Wielandt shell W(T,T*T) of T. The
latter is defined by

W(T,T*T) = {((Tz,z), (T"Tz,z)) e CxR:z € C", |jz| = 1}.

It is shown that the range W(T,T*T) is convex if T is an n X n matrix for n > 3 in
[2]. In the case T is a 2 x 2 matrix, the range W(T,T*T) is convex if its affine hull
is 2-dimensional, and the range W (T, T* T is the boundary of a convex set if its affine
hull is 3-dimensional. The following lemma provides a tool to compare the g-numerical
ranges of two matrices.

Lemma 6.A ([11, page 389, Theorem 2.1]). Suppose that A is an n X n matriz and B
is an m X m matriz. Then the following two conditions are mutually equivalent:

(i) The inclusion Wy(B) C W,(A) holds for every 0 < ¢ < 1.
(ii) The inclusion W(B) C W(A) and the inequality

max{h : (z,h) € W(B, B* B)} < max{h: (z,h) € W(A, A* A)}
hold for every z € W(B).

In this section, we shall prove the following theorem.

Theorem 6.1. Suppose that T is an n x n matriz and f(2) is a polynomial in z. Then
the inclusion

(6.1) . Wy(£(T)) C Wo(£(T))

holds for every complex number q with |q| < 1.

To prove Theorem 6.1, we have an alternative condition of (ii) in the above Lemma
6.A.

Lemma 6.2. Suppose that A is an n X n matriz and B is an m x m matriz. Then the
following two conditions are mutually equivalent:

(i): The inclusion W,y(B) C Wy(A) holds for every 0 < ¢ < 1.
(iii): The inequality

M(B*B +kR(e'’ B)) < AM(A* A+ ER(e? A))
holds for every 0 < 8 < 2w and k > 0.
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Proof. We prove the equivalence of condition (ii) of Lemma 6.A and condition (iii) of
Lemma 6.2. We compare the following two compact convex sets:

Ay={(2,t) eCxR:2€ W(A),0<t < max{h : (z,h) € W(A4, A*A)}}
and

By={(2,t)eCxR:z€ W(B),0 <t <max{h: (z,h) € W(B, B*B)}}.
For every 0 < 6 < 2m, we consider the projection IT = Il given by
(2,8) = (R(2), 3(2),t) = R(e¥2) + it = (cos R(z) — sin 8F(2)) + i t.
Then (ii) of Lemma 6.A holds if and only if the condition By C Ap holds, and also this
condition is equivalent to
(6.2) Is(Bo) C Ils(Ao)
for every 0 < 6 < 27, where the compact convex sets I, (Ao) and IIy(B,) are character-
ized by , .
IIg(Ag) = conv(W (R(e'° A)), W (R(e'° A) + i A*A))

and

IIp(Bo) = conv(W (R(e'’ B)), W(R(e*’ B) + i B*B)).
Each of these sets contains its projection onto the real line. These sets are contained in
the closed upper half plane I(z) > 0. Thus, for each 0 < 8 < 2r, the inclusion relation
(6.2) is equivalent to the inequality
max{X(2) + kR(2) : 2 € W(R(¢*’ B) + i B*B)}
< max{Q(z) + kR(2) : z € W(R(e*?A) + i A*A)}
for every k € R (cf. [15, page 81, Theorem A]). By basic properties of the numerical
range, we have :

(6.3)

max{X(z) + kR(2) : 2 € W(R(e*?A) + i A*A)}
= max W(A*A + kR(e!?A))
= M (A" A+ kR(e0 4))

and
max{S(z) + kR(2) : = € W(R(e*’ B) + i B*B)}
= M (B*B + kR(e*’B))

(cf. [8, page 9-11]), so that (6.3) is equivalent to
M(B*B+kR(e'°B)) < M(A*A + kR(e%4))
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for every 0 < 0 < 27 and k € R. By replacing 6 by 6 4+ 7, we may restrict the range of
k as k > 0. Thus the condition (ii) of Lemma 6.A and the condition (iii) of Lemma 6.2
are equivalent. O

Proof of Theorem 6.1. Since the equation
Weo(S) = c Wy(S)

holds for any complex numbers c, ¢ with |c| = 1 and |g| < 1, it is sufficient to prove (6.1)
for 0 < ¢ < 1. Therefore we have only to prove the inequality

64) W@V HE) +RREHDY) <0 (ST FT) + kREPHT)
for every 0 < 6 < 27 and k > 0 by Lemma 6.2.

To prove the inequality (6.4), we shall prove that the following inequality holds for a
positive matrix A and an arbitrary X:

AL ( FIATXAB) f(AR X A%) + kR{e? f(AS X A%)})
(65) < 3 M (FXAPF(XA4) + KR{F(X 2)))

+ % M (f (AX)" f(AX) + kR{e” f(AX )})'

By perturbing A to A + eI for small € > 0, it suffices to prove (6.5) for a positive
invertible matrix A.



using Lemma 5.2, the Cauchy-Schwarz inequality and the Arithmetic-Geo
inequality, we have

M (f(ATX ARy F(AT X AR) + KR{e” f(A%XA%)})
=N (A%S*ASA% + kén{A%SA%}) by Lemma 5.2
= (4157454} + K{AFR(S) A} }
=R\, (S*ASA + k?R(S)A) by Lemma 4.A
<M (?R{S*ASA + kéR(S)A}) by Lemma 5.B

=  max -§R<S*A5Am,x> + g <{?R(SA) + ?R(AS)}:I:,:::>] by (4.3)

zeCh lell=1 |

= max -3%<SA1:, ASm> + -’23<{§R(SA) + R(AS)}z, m>}

zeCnlall=1 |

< —<AS"SAa: m>%<S“A2Sz,x>% + §<{§R(SA) +§R(AS).}3:,:1:>]
<.max [ < XA)* f(X A)z, a:> 2( FIAX)* f(AX)z, a:>
<§R{e“’ f(XA)}s,z) + g<§2{ew F(AX)}z, :1:>]
% aax_ [(FXAYF(XA)z,2) + K(R{F (X Y}, 2)]
3 EE [< FAX) f(AX)z, z> +b(R{e* 1 (4X)}z, x>] |
X (F(XA)F(XA) + kR{e“F(XA)})
+ 501 (F(AX) F(AX) + KR{£(AX)}).

DO =

shall use a polar decomposition T' = U|T| where U is a unitary matrix
ute A= |T'|, X = U in (6.5). Since (|T|U)™ = U*T"U for every integer n >

63



64

have the equation f(|T|U) = U*f(T)U for any polynomial f, so that
X (FE@) )+ kR{FT)Y)
< sh(F@r 1) + k(5T

+ 20 (FITIVY F(TI0) + k(e £(1T10)})

5h () 5(T) + KRE25(T)))

n % AL (U* F(T) F(T)U + kU*R{e® f(T)}U )

= X (F@) (T) + KR{?F(T)}).
Hence the proof of Theorem 6.1 is complete. ]

In particular, by putting ¢ = 1 in Theorem 6.1, we have the following relation.

Corollary 6.3. If T is an n x n matriz. Then
W(F(T)) c W(f(T)) holds for all polynomial f.

Moreover, we obtain the inequalities on the numerical radius and the spectral norm.

Corollary 6.4. Let T be an n X n matrices. Then the following assertions hold:
() w(F(T)) < w(f(T)) for all polynomials f.
(i) [IF(D)I < IF(T)| for all polynomials £,

where || - || means the spectral norm.

Corollary 6.4 is easily obtained by the following Proposition 6.5.

Proposition 6.5. Let A and B be n x n matrices. Then the following assertions are
mutually equivalent:

(i) W(f(A)) c W(f(B)) for all polynomials f.

(ii) w(f(A)) < w(f(B)) for all polynomials f.

(iid) [|f (AN < ||F(B)I| for all polynomials f,
where || - || means the spectral norm.

Proof. Proofs of (ii) = (i) and (iii) =>(i) are obvious by
W) = iz ¢ |2~ 4l < w(d-w)
peC
and

W(A) = Nz : |z~ pul < [A-ul}.

peC
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Proof of (i) = (ii) is also obvious. Hence we shall show (i) == (iii). In fact, we have
only to show that

W(f(4)) ¢ W(f(B)) for all polynomials f = ||A] < ||B]|.
So we shall show
IBll <1 = JJAl<1.
Let r(A) be the spectral radius of A. Since
r(4) < w(4) < w(B) < |B|| <1

hold, the inverses (1+A4)~* and (1+B)~! exist, and we can consider the Cayley transform
of A and B as follows:

d(4) = 1-A4)(1+4)7", @®B) = (1-B)(1+B)™.

On the other hand, setting

gn(2) = 1+2Zn:(—1)’°z’“,

we have
®(4) = lim gu(4), ®(B)= lim ga(B)
since
1-2 _ 1+2i(_1)kzk
1+2 P

holds. By the assumption, we have
W(gn(A4)) € W(ga(B)) (n=1,2,...),
then we obtain

w(e(4)) c W(2(B))

On the other hand, since B is a contraction, we have (®(B)) > 0, that is, W(®(B))
is included in the right-half plane. Then W (®(A)) is also included in the right-half plane,
that is, ®(®(A)) > 0 holds. Therefore, 1+ ®(A) is invertible, and A = (P(A)) is a
contraction, so that the proof is complete. O

Proof of Corollary 6.4. Put A =T and B = T in Proposition 6.5, and we have Corollary
6.4 by Corollary 6.3. O

Lastly, we sumnmarize Theorems 5.1 and 6.1 as follows:
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Theorem 6.6. Suppose that T and C are n x n complez matrices and f is a complez
polynomial. If C is a Hermitian matriz or a rank-one matriz, then the following inclusion

relation holds:

We(f(T)) € Wo(f(T)).
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