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Abstract

In this paper, we analyze temporal learning effects of the asset allocation decision of an investor, who
has along investment horizon. The investor has an uncertainty about the mean return of the risky stock
(the state variable). Based on the work of Brennan (1998), it is shown theoreticaly that in the case with
only the uncertainty of the mean return of the stock, the investor tends to increase an investment ratio on
the risky stock by learning about the real state variable as time passes. The learning effect works in two
ways, the reduction of the state variable uncertainty and the improvement of the state variable assessment.
That is, the investor tends to decrease the hedge demand from the uncertainty of the state variable. The
investor also improves the assessment of the state variable using the observed stock price at the same time.

1Introduction
In this paper, we consider an asset allocation problem with an uncertainty of astate variable. Especially,
we analyze the simple case when the investment opportunity set is constant in time, and the variance of the
stock return is known in advance but the expected stock return (the state variable) is uncertain. Brennan
(1998) uses the same setting and shows the relationship between the investment ffaction of the stock and the
remaining period by using numerical examples based on the Ibbotson and Sinquefield (1995) data. But we
will analytically examine the temporal change of the fraction solving the stochastic differential equation of the
(estimated) expected state variables. In this way, we can see the forward looking change of the investment
fraction on the stock.

Asset allocation theory started with the setting that an investor maximizes his utility in asingle period
horizon, and an investment opportunity set is known. Merton (1971) extended the setting to the multi-
period horizon with aknown investment opportunity set. With this setting the investor knows an expected
stock return, i.e., the investment opportunity set. Under the assumption of an $\mathrm{i}\mathrm{s}\mathrm{o}$-elastic utility function, the
investor’s investment ffaction of the stock is constant with this setting.

Detemple (1986), Dothan and Feldman (1986) and Gennotte (1986) extended the study further with an
uncertainty of an expected stock return in acontinuous-time setting. The investor cannot observe the state
variables but knows the stochastic law of the state variable’s process. In this setting, the investor can learn
about the unobservable state variables observing the stock returns, and the real values of the state variables are
gradually getting to be revealed to the investor. These authors show that the investor with non-logarithmic
utility hedges against the uncertainty of the state variables. But the clearer the state variables are as time
pases, the closer the investor’s investment fraction of the stock is to the case without the uncertainty.

Brennan, Schwartz and Lagnado (1997) apply the Merton’s continuous-time model to the data analysis

of the dynamic asset allocation in the case without the uncertainty of the state variables. They analyze the
dynamic asset allocation using the data of afew state variables, but they ignore the fact that the stochastic
processes of the state variables are estimated. So the results include the problem of the estimation risk. To

find out the effect of the estimation risk on the investment fraction, Kandel and Stambaugh (1996) consider the

estimation risk in adiscrete-time model. They examine stock return predictability and the effect of estimation
risk when asset returns are partially predictable and the coefficients of the predictive relation are estimated
rather than known. With this setting, they show that uncertainty about the parameters of the conditiona
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return distribution (estimation risk) affects the investor’s optimal portfolio decision. Xia (2001) treats the
estimation risk with the uncertainty of the state variables in acontinuous model. She examines the effects
of the uncertainty about stock return predictability on optimal dynamic portfolio choice. She shows that the
investor hedges not only against the uncertainty of the state variables but also against the uncertainty of the
estimated parameter. In this PaPer, we consider the simple model that the investment opportunity set is
constant, and the expected return of the stock is unknown in the absence of the estimated risk. By considering
the simple case, the temporal change of the investment fraction can be obtained theoretically.

The paper is organized as follows. In Section 2, the continuous model of the asset process is defined. In
Section 3, we solve the investor’s optimization problem. In Section 4, we consider the complete information
case that there is no uncertainty about the state variable. In Section 5, we discuss the temporal change of
the investment fraction on the stock. Section 6is devoted to adiscrete-time approximate model. Section 7
concludes the paper.

2Continuous-Time Model
Let us consider an investor with along horizon who maximizes the expected bequest at the end of the horizon,
$T(>0)$ . The investor can trade continuously in ariskless asset or asingle risky stock. The real return on
the riskffee asset is assumed to be constant, $r$ . The stock price process $(S(t);t\in[0,T])$ is assumed to follow a
stochastic differential equation with adrift affected by an unobservable state variable process $(\mu(t);t\in[0, T])$ :

$\frac{\mathrm{d}S(t)}{S(t)}=\mu(t)\mathrm{d}t+\sigma \mathrm{d}B_{1}(t)$, $t\in[0,T]$ , (1)

where $S(0)$ is aconstant and $\sigma(>0)\mathrm{i}\mathrm{s}$ aconstant diffusion parameter, and $(\mu(t))$ follows astochastic differential
equation:

$\mathrm{d}\mu(t)=a\mu(t)\mathrm{d}t+b\mathrm{d}B_{2}(t)$ , $t\in[0,T]$ , (2)

where $\mu(0)$ is arandom variable, $a$ and $b$ are constant parameters, and $((B_{1}(t), B_{2}(t));t\in[0, T])$ is atwo
dimensional standard Brownian motion. All of uncertainties in the economy are assumed to be generated by
$\mu(0)$ and $((B_{1}(t), B_{2}(t))$ defined on acomplete probability space $(\Omega,\mathcal{F}, \mathrm{P})$ .

Let $W(t)$ denote the investor’s wealth at time $t\in[0,T]$ . The stochastic process $(W(t);t\in[0,T])$ is given
by:

$\mathrm{d}W(t)=\alpha(t)W(t)\frac{\mathrm{d}S(t)}{S(t)}+r(1-\alpha(t))W(t)\mathrm{d}t$, $t\in[0, T]$ ,

or equivalently,

$\frac{\mathrm{d}W(t)}{W(t)}$ $=$ $\alpha(t)\{\mu(t)\mathrm{d}t+\sigma \mathrm{d}B_{1}(t)\}+r(1-\alpha(t))\mathrm{d}t$

$=$ $\{r+\alpha(t)(\mu(t)-r)\}\mathrm{d}t+\alpha(t)\sigma \mathrm{d}B_{1}(t)$ , $t\in[0,T]$ , (3)

where $\alpha(t)$ is the fraction of the wealth that is invested in the risky stock at time $t$ .
Following Merton (1971), we consider that the investor maximizes the expected utihty ffom his bequest at

the end of the time horizon, $T$ :

$( \alpha(u)_{j}t\leq u\leq T)\max \mathrm{E}[U(W(T),T)|\mathcal{F}^{S}(t)]$ , $t\in[0,T]$ , (4)

where $U(W(T), T)$ is the bequest function, which is assumed to be aconcave and twice–differentiable function
of the bequest (final wealth) $W(T)$ , and $\mathcal{F}^{S}(t)$ is the $\sigma$-algebra generated by $(S(u);0\leq u \leq t)$ .

First, we will consider the case treated by Brennan (1998): the investor knows that the investment oppor-
tunity set is constant but the mean return of the risky stock is uncertain. In this case, $a=b=0$ and $\mathrm{d}\mu(t)=0$,
$t\in[0,T]$ . Further, the investor is assumed to know the diffusion parameter $\sigma$ of the stock return. We assume
that the investor’s initial prior information of $\mu:=\mu(0)$ is represented by the normal distribution with mean
$m(0)$ and variance $\gamma(0)(>0)$ .
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Theorem 1. Let $m(t):=\mathrm{E}$ $[\mu|\mathcal{F}^{S}(t)]$ and $7(\mathrm{t}):=\mathrm{E}[(\mu-m(t))^{2}|\mathcal{F}^{S}(t)]$ denote the mean and variance

conditional on the $\sigma$ -algebra $\mathcal{F}^{S}(t)$ at time t $\in[0,$T]. The stochastic differential equation of $(m(t);$ t $\in[0, T])$

and the ordinary differential equation of $(\gamma(t);$ t $\in[0, T])$ are given below, respectively:

$m(t)$ $=$ $\frac{\gamma(t)}{\sigma^{2}}(\frac{\mathrm{d}S(t)}{S(t)}-m(t)\mathrm{d}t)$

$=$ $\frac{\gamma(t)}{\sigma^{2}}(\mu-m(t))2+\frac{\gamma(t)}{\sigma}\mathrm{d}B_{1}(t)$ , $t\in[0, T]$ ; (5)

$7(\mathrm{t})$ $=$ $-( \frac{\gamma(t)}{\sigma})^{2}\mathrm{d}t$, $t\in[0,T]$ . (6)

Proof. See Liptser and Shiryayev (2000). $\square$

Theorem 2. We can solve the above stochastic differential equations as follows:

$m(t)$ $=$

$m(0)+ \gamma(0)\int_{0}^{t}\frac{1}{\sigma^{2}}(\frac{\mathrm{d}S(u)}{\underline S(u)})$

, $t\in[0,T]$ ; (7)
$1+ \gamma(0)\int_{0}^{t}(\frac{1}{\sigma})^{2}$ du

$\gamma(0)$

$\gamma(t)$ $=$ $t\in[0,T]$ . (8)

1 $\mathrm{f}\gamma(0)$
$\int_{0}^{t}(\frac{1}{\sigma})^{2}$ du

Proof. See Liptser and Shiryayev (2000). $\square$

Prom Theorem 2, $m(t)$ and $\gamma(t)$ can be calculated as follows:

$m(t)$ $=$ $\frac{m(0)+\gamma(0)\int_{0}^{t}\frac{1}{\sigma^{2}}(\frac{\mathrm{d}S(u)}{S(u)})}{1+\gamma(0)\int_{0}^{t}(\frac{1}{\sigma})^{2}\mathrm{d}u}$

$=$
$\frac{1}{1+\frac{\gamma(0)}{\sigma^{2}}t}\{m(0)+\frac{\gamma(0)}{\sigma^{2}}\int_{0}^{t}(\mu \mathrm{d}t+\sigma \mathrm{d}B_{1}(t))\}$

$=$
$\frac{1}{1+\frac{\gamma(0)}{\sigma^{2}}t}\{m(0)+\frac{\gamma(0)}{\sigma^{2}}(\mu t+\sigma B_{1}(t))\}$

, $t\in[0, T]$ ; (9)

$\gamma(0)$

$\gamma(t)$ $=$

$1+ \gamma(0)\int_{0}^{t}(\frac{1}{\sigma})^{2}$ du

$=$
$\frac{\gamma(0)}{1+\frac{\gamma(0)}{\sigma^{2}}t}$

, $t\in[0, T]$ . (10)

In order to examine the temporal behavior of $(m(t))$ , we consider its expectation:

$\mathrm{E}[m(t)]=\frac{m(0)+\frac{\gamma(0)}{\sigma^{2}}\mu t}{1+\frac{\gamma(0)}{\sigma^{2}}t}$ , $t\in[0,T]$ . (11)

By differentiating the above formula with respect to $\sigma$ , we have

$\frac{\mathrm{d}}{\mathrm{d}\sigma}(\frac{m(0)+\frac{\gamma(0)}{\sigma^{2}}\mu t}{1+\frac{\gamma(0)}{\sigma^{2}}t})=\frac{2\gamma(0)\sigma t}{(\sigma^{2}+\gamma(0)t)^{2}}(m(0)-\mu)$ , $t\in[0,T]$ . (12)

193



So if $m(0)<\mu$ , then $\mathrm{E}[m(t)]$ decreases as $\sigma$ increases.
If we differentiate it with respect to $t$ , we have

$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{E}[m(t)]$ $=$ $\frac{\frac{\gamma(0)}{\sigma^{2}}\mu(1+\frac{\gamma(0)}{\sigma^{2}}t)-(m(0)+\frac{\gamma(0)}{\sigma^{2}}\mu t)\frac{\gamma(0)}{\sigma^{2}}}{(1+\frac{\gamma(0)}{\sigma^{2}}t)^{2}}$

$=$
$\frac{\frac{\gamma(0)}{\sigma^{2}}(\mu-m(0))}{(1+\frac{\gamma(0)}{\sigma^{2}}t)^{2}}$ , $t\in[0,T]$ . (13)

As aresult, $\mathrm{E}[m(t)]$ increases as $t$ increases if $\mu>m(0)$ , while it decreases as $t$ passes if $\mu<m(0)$ . Accordingly,
the investor tends to improves monotonically his assessment of $\mu$ even if his initial assessment is different from
the real value of $\mu$ . Furthermore, since

$\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)=\frac{-\frac{\gamma(0)}{\sigma^{2}}}{(1+\frac{\gamma(0)}{\sigma^{2}}t)^{2}}<0$ , $t\in[0,T]$ , (14)

the mean square error of investor’s estimator of $\mu$ is decreasing as time passes. Observing the stock price, $S(t)$ ,
the investor learns what real value $\mu$ is, and his expectation is gradually getting close to $\mu$ .

3The Investor’s Optimization Problem
The investor’s indirect utilty function is characterized on his wealth level $W(t)$ , his current assessment of the
coefficient $m(t)$ , and time $t$ . Therefore, the investor’s expected utility of the bequest under an optimal policy
is:

$J(W(t),m(t),t)= \max \mathrm{E}(\alpha(s)_{j}t\leq s\leq T)[U(W(T),T)|\mathcal{F}^{S}(t)]$ , $t\in[0, T]$ (13)

with aterminal condition $J(W(T),m(T),T)=U(W(T), T)$ . Hence, using Ito’s Lemma:

$\mathrm{d}J=JwdW+J_{m}\mathrm{d}m$ $+J_{t} \mathrm{d}t+\frac{1}{2}Jww(\mathrm{d}W)^{2}+\frac{1}{2}J_{mm}(\mathrm{d}m)^{2}+JwdW\cdot$ $\mathrm{d}m$ ,

we have

$\mathrm{E}[\mathrm{d}J]$ $=$ $[J_{W} \{r+\alpha(\mathrm{E}[\mu]-r)\}]W+J_{m}\frac{\gamma}{\sigma^{2}}(\mathrm{E}[\mu]-m)+J_{t}+\frac{1}{2}J_{WW}\alpha^{2}\sigma^{2}W^{2}+\frac{1}{2}J_{mm^{\frac{\gamma^{2}}{\sigma^{2}}}}+J_{Wm}W\alpha\gamma]\mathrm{d}t$

$=$ $[J_{W} \{r+\alpha(m-r)\}W+J_{m}\frac{\gamma}{\sigma^{2}}(m-m)+J_{t}+\frac{1}{2}Jww\alpha^{2}\sigma^{2}W^{2}+\frac{1}{2}J_{mm^{\frac{\gamma^{2}}{\sigma^{2}}}}+J_{Wm}W\alpha\gamma]\mathrm{d}t$ . (16)

Hereafter, we assume that the bequest function $U(W(T), T)$ displays Constant Relative Risk Aversion
(CRRA):

$U(W(T),T)= \frac{W(T)^{1-\delta}}{1-\delta}$ , (17)

where $\delta>0$ is the degree of relative risk aversion. Under this assumption on the bequest function, $J(W(t), m(t),$ $t)$

may be separable in wealth $W(t)$ , and be written as

$J(W(t),m(t),t)= \frac{W(t)^{1-\delta}}{1-\delta}\Phi(m(t),t)$ , $t\in[0,T]$ (18)

for some function $\Phi(m(t), t)$ . Substituting (18) to (16), we have

$\mathrm{E}[\mathrm{d}J]=\frac{W^{1-\delta}}{1-\delta}[(1-\delta)\{r+\alpha(m-r)\}\Phi+\Phi_{t}-\frac{1}{2}(1-\delta)\delta\alpha^{2}\sigma^{2}\Phi+\frac{1}{2}\Phi_{mm}\frac{\gamma^{2}}{\sigma^{2}}+(1-\delta)\alpha\gamma\Phi_{m}]\mathrm{d}t$ . (19)
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The Bellman principle implies that under an optimal policy $(\alpha(t);0\leq t\leq T)$ ,

$\max_{\alpha}\psi(W(t), m(t)$ , $t$ , $\alpha)=\psi(W(t), m(t),$ $t$ , $\alpha(t))=0$ , $t\in[0, T]$ , (20)

where $\psi$ is the function defined by the RHS of (19). The HJB equation for $\Phi(m(t), t)$ becomes:

$\max_{\alpha}\{\frac{W^{1-\delta}}{1-\delta}[$
$(1- \delta)\{r+\alpha(m-r)\}\Phi+\Phi_{t}-\frac{1}{2}(1-\delta)\delta\alpha^{2}\sigma^{2}\Phi+\frac{1}{2}\Phi_{mm}\frac{\gamma^{2}}{\sigma^{2}}+(1-\delta)\alpha\gamma\Phi_{m}]\}=0$ (21)

with aboundary condition $\Phi(m(T), T)=1$ .
Dependent on $\delta$ , $\Phi(m(t), t)$ , $t\in[0,T]$ is the solution the following control problem. When $0<\delta<1$ ,

$\max_{\alpha}[(1-\delta)\{r+\alpha(m-r)\}\Phi+\Phi_{t}-\frac{1}{2}(1-\delta)\delta\alpha^{2}\sigma^{2}\Phi+\frac{1}{2}\Phi_{mm}\frac{\gamma^{2}}{\sigma^{2}}+(1-\delta)\alpha\gamma\Phi_{m}]=0$. (22)

When $1<\delta$ ,

$\alpha \mathrm{n}\mathrm{i}\mathrm{n}$

$[(1- \delta)\{r+\mathrm{c}\mathrm{e}(m -r)\}\Phi+\Phi_{t}-\frac{1}{2}(1-\delta)\delta\alpha^{2}\sigma^{2}\Phi+\frac{1}{2}\Phi_{mm}\frac{\gamma^{2}}{\sigma^{2}}+(1-\delta)\alpha\gamma\Phi_{m}]=0$ . (23)

The optimal portfolio policy $(\alpha(t);0\leq t\leq T)$ is given by the FOC of the above HJB equation:

$(1-\delta)(m-r)\Phi-(1-\delta)\delta\alpha\sigma^{2}\Phi+(1-\delta)\gamma\Phi_{m}=0$ .

Proposition 1. The optimal investment fraction on the stock, $\alpha(t)$ at time $t\in[0, T]$ , can be represented as:

$\alpha(t)=\frac{m(t)-r+\gamma(t)\frac{\Phi_{m}(m(t),t)}{\Phi(m(t),t)}}{\delta\sigma^{2}}$

, $t\in[0,T]$ , (24)

where $m(t)$ and $\gamma(t)$ are defined by (9) and (10), respectively, and $\Phi(m(t), t)$ is the solution to the control
problem (22) and (23).

$\square$

Under the conjecture that

$J_{m}(W(t), \mathrm{m}(\mathrm{t})$ $t)>0$ , $t\in[0, T]$ (20)

and the case of $\delta>1$ , we have

$\Phi_{m}(m(t), t)<0$ , $t\in[0,T]$ ,

because

$J_{m}(W(t),m(t),t)= \frac{W(t)^{1-\delta}}{1-\delta}\Phi_{m}(m(t),t)>0$ , $t\in[0,T]$ .

Further, we have

$\Phi(m(t), t)>0$ , $t\in[0, T]$

because

$J(W(t), m(t),t)= \frac{W(t)^{1-\delta}}{1-\delta}\Phi(m(t),t)<0$ , $t\in[0,T]$ . (26)

Although the fact that $J_{m}(W(t),m(t)$ , $t)>0$ , $t\in[0,T]$ is aplausible conjecture, we can theoretically prove

this partially for adiscrete-time model in Section 6. Hence, under this conjecture, we have

$\frac{\Phi_{m}(m(t),t)}{\Phi(m(t),t)}<0$ , $t\in[0,T]$ .

We can consider that $\gamma(t)\Phi_{m}(m(t),t)/\Phi(m(t),t)$ is the hedge for the uncertainty of $\mu$ .
Next, we consider an asymptotic case when the terminal point of time horizon, $T$ becomes sufficiently large
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Proposition 2. If the terminal point of time horizon, T tends to infinity, then $\mathrm{E}[m(t)]$ , $\gamma(t)$ , and $\mathrm{E}[\mathrm{a}(\mathrm{t})]$

converge to the following values, respectively:

$\mathrm{E}[m(t)]=\frac{\frac{m(0)}{t}+\frac{\gamma(0)}{\sigma^{2}}\mu}{\frac{1}{t}+\frac{\gamma(0)}{\sigma^{2}}}arrow\mu$ as $tarrow\infty$ ; (27)

$\gamma(t)arrow 0$ as $tarrow\infty$ ; (28)

$\mathrm{E}[\alpha(t)]=\frac{\mathrm{E}[m(t)]-r+\gamma(t)\mathrm{E}[\frac{\Phi_{m}(m(t),t)}{\Phi(m(t),t)}]}{\delta\sigma^{2}}arrow\frac{\mu-r}{\delta\sigma^{2}}=:\alpha^{+}$

as $tarrow\infty$ . (29)

$\square$

As we have investigated the temporal variation of $m(t)$ and $\gamma(t)$ , $\mathrm{E}[m(t)]$ increases and $\gamma(t)$ decreases as
time $t$ passes. But we do not know the temporal movement of $\mathrm{E}[\Phi_{m}(m(t),t)/\Phi(m(t),t)]$ . Although we need to
know the trend of $\Phi_{m}(m(t), t)/\Phi(m(t), t)$ in order to clarify that of the optimal investment portion $\alpha(t)$ . We
assume that $\mathrm{E}[\Phi_{m}(m(t),t)/\Phi(m(t), t)](<0)$ does not decrease so dramaticaly that the speed of decrease of
$\mathrm{E}[\Phi_{m}(m(t),t)/\Phi(m(t),t)]$ does not overcome the speed of convergence of $\gamma(t)$ to zero. Under this assumption,
$\gamma(t)\mathrm{E}[\Phi_{m}(m(t),t)/\Phi(m(t), t)]$ converges to zero as $tarrow\infty$ .

4Complete Information Case: No Uncertainty and No Learning
Let us consider the complete information case that there is no learning effect. In general, the investor does not
know the process $(\mu(t))$ . However, we analyze the special case when the process $(\mu(t))$ is observable. Since the
investor observes arealization of the process $(\mu(t))$ , this is aspecial case without the learning effect.

The stochastic differential equations are assumed to be:

$\frac{\mathrm{d}S(t)}{S(t)}=\mu(t)\mathrm{d}t+\sigma \mathrm{d}B_{1}(t)$, $t\in[0,T]$ , (30)

where $\mu(t)$ follows astochastic differential equation:

$\mathrm{d}\mu(t)=a\mu(t)\mathrm{d}t+b\mathrm{d}B_{2}(t)$ , $t\in[0, T]$ (observable). (31)

The followings are obvious:

$m(t)$ $=$ $\mathrm{E}[\mu(t)|\mathcal{F}^{S,\mu}(t)]$

$=$ $\mu(t)$ ; (32)
$\gamma(t)$ $=$ $\mathrm{E}[(\mu(t)-m(t))^{2}|\mathcal{F}^{S,\mu}(t)]$

$=$ 0. (33)

Hence, in this case, we can get an optimal policy $(\alpha^{*}(t);0\leq t\leq T)$ as follows:

$\alpha^{*}(t)=\frac{\mu(t)-r}{\delta\sigma^{2}}$ , $t\in[0,T]$ . (34)

When $a>0$ , the investor increases the expected fraction $\mathrm{E}[\alpha(t)]$ of his investment on stock as time $t$ increases.
This is because he knows that $\mu(t)$ tends to increase, and the increase of $\mu(t)$ causes the high stock return.
Especially, in the case of $a=b=0$, we can get:

$\alpha^{*}(t)=\frac{\mu(0)-r}{\delta\sigma^{2}}=\frac{\mu-r}{\delta\sigma^{2}}=\alpha^{+}$ , $t\in[0,T]$ .

Even when $a=b=0$, $\mu$ is the random variable. However, once $\mu$ is realized to be aconstant value, the drift of
the stock return is fixed as the constant value. In other words, the investment opportunity set, $\mu$ , becomes to
be constant in time. Accordingly, the investor’s investment ffaction of stock becomes aconstant
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5The Learning Effect

We find that $\alpha^{*}=\alpha^{+}$ from the result of Sections 3and 4. Observing the stock price, the investor learns about
the real value of the state variable $\mu$ as time passes. The investor will finally get to know the real value of $\mu$ as
$tarrow\infty$ . If the investor has afinite terminal horizon $T$ , his assessment $m(T)$ of $\mu(T)$ is not correctly the same
as the real value of $\mu$ .

If $\mu>m(0)$ the investor tends to increase the fraction of investment on stock as he improves the assessment
of $\mu$ . Let $\tau$ be the remaining time to the terminal horizon $T$ . The longer $\tau$ is, the larger the difference of
investment ffaction, $\alpha^{*}-\alpha(t)$ . At time $t$ , since the investor has much uncertainty about $\mu$ , he hesitates to
invest alarge fraction of his money on the stock. As he gradually knows about the real value of $\mu$ , he tends to
increase the ffaction.

6ADiscrete-Time Approximate Model

We verify whether the conjecture,

$J_{m}(W(t),m(t),t)>0$ , $t\in[0, T]$

is appropriate. In order to do this, we consider an approximate model in adiscrete-time setting. When we can
observe the stock price process, $(S(t);0\leq t\leq T)$ with atime interval $\Delta>0$ . Since $(S(t);0\leq t\leq T)$ follows
the geometric Brownian motion,

$X_{n}^{\Delta}:=\mathrm{I}\mathrm{I}\mathrm{I}$ $\frac{S(n\Delta)}{S((n-1)\Delta)}=(\mu-\frac{1}{2}\sigma^{2})\Delta+\sigma\{B_{1}(n\Delta)-B_{1}((n-1)\Delta)\}$ , $n=1$ , 2, $\cdots$ , $\frac{T}{\Delta}$ , (35)

where $T/\Delta$ is assumed to be an integer, for convenience. Hence,

$X_{n}^{\Delta}\sim N$ ( $( \mu-\frac{1}{2}\sigma^{2})\Delta$ , $\sigma^{2}\Delta$), $n=1,2$ , $\cdots$ , $\frac{T}{\Delta}$ . (36)

Let’s consider asimple case first. Assume that arandom variable $X$ has anormal distribution $N(C,v)$ and
that the mean $C$ is ako arandom variable which has anormal prior distribution $N(M_{n},\Gamma_{n})$ .

Hence, the probability density functions of $X$ and $C$ are given by

$\mathrm{P}(X\in \mathrm{d}x|C=c)$ $=$ $\frac{1}{\sqrt{2\pi v}}\exp(-\frac{(x-c)^{2}}{2v})\mathrm{d}x$, $x\in \mathbb{R}$. (37)

$\mathrm{P}(C\in \mathrm{d}c)$ $=$ $\frac{1}{\sqrt{2\pi\Gamma_{n}}}\exp(-\frac{(c-M_{n})^{2}}{2\Gamma_{n}})\mathrm{d}c$ , $c\in \mathrm{R}$, (38)

respectively. So, by the Bayes formula, the posterior probability density function of $C$ given an observation
$\{X=x\}(x\in \mathbb{R})$ becomes:

$\mathrm{P}(C\in \mathrm{d}c|X=x)dx$ $\propto$ $\mathrm{P}(C\in \mathrm{d}c)\mathrm{P}(X \in \mathrm{d}x|C=c)$

$\propto$ $\exp(-\frac{1}{2}\{\frac{(\mathrm{c}-M_{n})^{2}}{\Gamma_{n}}+\frac{(x-c\rangle^{2}}{v}\})\mathrm{d}c\cdot \mathrm{d}x$, $c\in \mathbb{R}$ (39)

Since

$\frac{(c-M_{n})^{2}}{\Gamma_{n}}+\frac{(x-c)^{2}}{v}$ $=$ $\frac{1}{\Gamma_{n}v}\{v(c-M_{n})^{2}+\Gamma_{n}(c-x)^{2}\}$

$=$ $\frac{1}{\Gamma_{n}v}\{(v+\Gamma_{n})c^{2}-2(vM_{n}+\Gamma_{n}x)c+vM_{n}^{2}+\Gamma_{n}x^{2}\}$

$=$ $\frac{1}{\Gamma_{n}v}\{(v+\Gamma_{n})(c-\frac{vM_{n}+\Gamma_{n}x}{v+\Gamma_{n}})^{2}-\frac{(vM_{n}+\Gamma_{n}x)^{2}}{v+\Gamma_{n}}+vM_{n}^{2}+\Gamma_{n}x^{2}\}$ , (40)

we have

$\mathrm{P}(C\in \mathrm{d}c|X=x)\propto\exp(-\frac{1}{2\frac{\Gamma_{n}v}{v+\Gamma_{n}}}(c-\frac{vM_{n}+\Gamma_{n}x}{v+\Gamma_{n}})^{2})\mathrm{d}c$, $c\in \mathbb{R}$ (41)
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In order to apply the above result to our model in which the stock price follows a(discrete-time) geometric
Brownian motion, we set

$C$ $=$ $( \mu-\frac{1}{2}\sigma^{2})\Delta$ ; (42)

$v$ $=$
$\sigma^{2}\Delta$ . (43)

Let us define the conditional expectation and variance by

$M_{n}$ $:=$ $\mathrm{E}[c |\mathcal{F}_{n}^{S}]$

$=$ $\mathrm{E}[(\mu-\frac{1}{2}\sigma^{2})\Delta|\mathcal{F}_{n}^{S}]$

$=$ $(m_{n}- \frac{1}{2}\sigma^{2})\Delta$, $n=0,1$ , $\cdots$ , $\frac{T}{\Delta}$ ; (44)

$\Gamma_{n}$ $:=$ $\mathrm{E}[(C-M_{n})^{2}|\mathcal{F}_{n}^{S}]$

$=$ $\mathrm{E}[\{(\mu-\frac{1}{2}\sigma^{2})\Delta-(m_{n}-\frac{1}{2}\sigma^{2})\Delta\}^{2}|\mathcal{F}_{n}^{S}]$

$=$ $\mathrm{E}[(\mu-m_{n})^{2}|\mathcal{F}_{n}^{S}]\Delta^{2}$

$=$ $\gamma_{n}\Delta^{2}$ , $n=0,1$ , $\cdots$ , $\frac{T}{\Delta}$ (45)

where, for $n=0,1$ , $\cdots$ , $T/\Delta$ ,

$\mathcal{F}_{n}^{S}$ $:=$ a $(S(0), S(\Delta)$ , $\cdots$ , $S(n\Delta))$ ;
$m_{n}$ $:=$ $\mathrm{E}[\mu|\mathcal{F}_{n}^{S}]$ ;

$\gamma_{n}$ $:=$ $\mathrm{E}[(\mu-m_{n})^{2}|\mathcal{F}_{n}^{S}]$ .

Then, according to the previous results, they can be updated by the following formulas:

$M_{n+1}$ $=$ $\frac{vM_{n}+\Gamma_{n}x}{v+\Gamma_{n}}$ , $n=0,1$ , $\cdots$ , $\frac{T}{\Delta}-1$ (46)

$\Gamma_{n+1}$ $=$ $\frac{\Gamma_{n}v}{v+\Gamma_{n}}$ , $n=0,1$ , $\cdots$ , $\frac{T}{\Delta}-1$ . (47)

Prom Eqs. (44) and (45), Eq. (46) becomes

$(m_{n+1}- \frac{1}{2}\sigma^{2})\Delta=\frac{\sigma^{2}\Delta(m_{n}-\frac{1}{2}\sigma^{2})\Delta+\gamma_{n}\Delta^{2}X_{n+1}^{\Delta}}{\sigma^{2}\Delta+\gamma_{n}\Delta^{2}}$

. (48)

Substituting (35) to (48), we have

$(m_{n+1}- \frac{1}{2}\sigma^{2})\Delta=\underline{\sigma^{2}\Delta(m_{n}-\frac{1}{2}\sigma^{2})\Delta+\gamma_{n}\Delta^{2}\{}$
$( \mu-\frac{1}{2}\sigma^{2})\Delta+\sigma(B_{1}((n+1)\Delta)-B_{1}(n\Delta))\}$

. (49)
$\sigma^{2}\Delta+\gamma_{n}\Delta^{2}$

As aresult, we can get the following stochastic difference equation:

$m_{n+1}-m_{n}= \frac{\gamma_{n}}{\sigma^{2}+\gamma_{n}\Delta}\{(\mu-m_{n})\Delta+\sigma\{B_{1}((n+1)\Delta)-B_{1}(n\Delta)\}\}$ . (50)

Substituting Eqs. (43) and (45) to Eq. (47), we have

$\gamma_{n+1}=\frac{\gamma_{n}\sigma^{2}}{\sigma^{2}+\gamma_{n}\Delta}$ . (51)
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Hence we get the following (deterministic) difference:

$\gamma_{n+1}-\gamma_{n}=-\frac{\gamma_{n}^{2}\Delta}{\sigma^{2}+\gamma_{n}\Delta}$ . (52)

Comparing the equations (5), (6) with (51), (52), we can conclude that this discrete-time model closely approx-
imates the continuous-time model when $\Delta$ is sufficiently small.

The investor optimizes his expected bequest at the end of the time horizon, $T$ . Let $V(W_{n}, m_{n}, n)$ be the
optimal value function for this discrete-time model when the process starts from the state $(W_{n}, m_{n},n)$ . Then,
the optimalty equation is:

$V(W_{n}, m_{n},n)= \max_{\alpha}\mathrm{E}[V(W_{n+1},m_{n+1},n+1)|\mathcal{F}_{n}^{S}]$ , $n=0,1$ , $\cdots$ , $\frac{T}{\Delta}-1$ , (53)

with aterminal condition $V(W_{N}, m_{N}, N)=U(W_{N},T)$ for $N:=T/\Delta$ .
Proposition 3. $m_{n+1}$ increases in $m_{n}$ and $X_{n}^{\Delta}$ .

Proof. From(52), this is clearly true. 口

Proposition 4. If $\alpha_{n}>0$ , $W_{n+1}$ increases in $X_{n}^{\Delta}$ .
Proof. Note that

$W_{n+1}$ $=$ $f(W_{n}, \alpha_{n}, X_{n}^{\Delta})$

$:=$ $\alpha_{n}W_{n}\exp(X_{n}^{\Delta})+(1-\alpha_{n})W_{n}(1+r)$

$=$ $\alpha_{n}W_{n}\frac{S((n+1)\Delta)}{S(n\Delta)}+(1-\alpha_{n})W_{n}(1+r)$ (54)

From the assumption, $\alpha_{n}>0$ , we can conclude that $W_{n+1}$ increases in $X_{n}^{\Delta}$ . $\square$

Proposition 5. $V(W_{n},m_{n},n)$ increases in $W_{n}$ .
Proof. Suppose that $W_{n}<\overline{W}_{n}$ . The investor who has $\overline{W}_{n}$ can spend $W_{n}$ to attain $V(W_{n}, m_{n}, n)$ and invest
the remaining $\overline{W}_{n}-W_{n}$ for the riskless bond by which the investor can obtain the additional utility for sure.
Hence $V(W_{n}, m_{n}, n)<V(\overline{W}_{n}, m_{n}, n)$ . $\square$

Proposition 6. If $\alpha_{n}>0\mathrm{P}-a.s.$ , then $V(WN,m_{n},n)$ increases in $m_{n}$ .

Proof. The optimality equation can be rewritten as

$V(WN, m_{n},n)$ $=$ $\max_{\alpha}\mathrm{E}[V(W_{n+1},m_{n+1}, n+1)|\mathcal{F}_{n}^{S}]$

$=$ $\max_{\alpha}\int V(f(W_{n}, \alpha, x), h(m_{n}, \gamma_{n}, x, n+1), n+1)p(x|m_{n},\gamma_{n}, n)\mathrm{d}x$, (55)

where

$f$ ( $W_{n}$ , ce, $x$) $:=$ $\alpha W_{n}\mathrm{e}^{x}+(1-\alpha)W_{n}(1+r)$ ;

$h$ ($m_{n},\gamma_{n},x$ , n-l 1) $:=$ $\frac{1}{\sigma^{2}+\gamma_{n}\Delta}[\sigma^{2}m_{n}+\gamma_{n}\mathrm{e}^{x}+\frac{1}{2}\gamma_{n}\sigma^{2}\Delta]$ ;

$p(x|m_{n},\gamma_{n},n)$ $:=$ $\frac{1}{\sqrt{2\pi\gamma_{n}}}\exp(-\frac{(x-m_{n})^{2}}{2\gamma_{n}})$ . (56)

It is noted that, when $\gamma_{n}$ is fixed and $m_{n}<\hat{m}_{n}$ , p.d.f. $p(\cdot|\hat{m}_{n},\gamma_{n}, n)$ is greater than p.d.f. $p(\cdot|m_{n},\gamma_{n},n)$ in the
sense of the first order stochastic dominance (usual stochastic order). From Proposition 4, $W_{n+1}=f(W_{n}, \alpha,x)$

increases in $x$ . From the Propositions 3, 4, and 5, it suffices to show that $V(W_{n+1}, m_{n+1}, n+1)$ increases in
$m_{n+1}$ by induction in $n$ .

In the case of $n’=N:=T/\Delta$ ,

$V(W_{N}, m_{N}, N)=U(W_{N}, T)$ (6)
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is increasing in $W_{N}$ .
When $n’=n+1$ , suppose that $V(W_{n+1}, m_{n+1}, n+1)$ increases in $m_{n+1}$ .
Then, when $n’=n$,

$V(W_{n}, m_{n}, n)= \max_{\alpha}\int V(f(W_{n}, \alpha, x), h(m_{n}, \gamma_{n}, x, n+1), n+1)p(x|m_{n},$ $\gamma_{n},$ $max$ (58)

Because $m_{n+1}=h(m_{n},\gamma_{n}, x, n+1)$ increases in $m_{n}$ , $V(W_{n}, m_{n}, n)$ increases in $m_{n}$ . $\square$

7Conclusion
In the dynamic asset allocation problem, we usually treat the case that an investment opportunity set is known.
We analyze the case that the investment opportunity set is unknown but constant. Especially, we consider the
case that the volatility of the stock return is known, but the expected return of the stock is unknown. We
theoretically analyze the temporal change of the ffaction of investment on the risky asset. It is shown that the
fraction converges to the one of the no uncertainty case as the investor learns about the real state variable and
the terminal point of the time horizon goes infinity. The learning process gives two effects on the investment
fraction. One is improving the assessment of the state variable. The other is the reduction of the hedge demand
against the uncertainty of the state variable learning about the state variable.

An extension of the paper would be to analyze theoretically the learning effects when the investment oppor-
tunity set follows the stochastic process and unobservable.
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