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Properties of the set of upper bounds in ordered linear spaces

/NE EA (NaoTo KOMURO)

: L EBE R FEN BB E#E (Department of Mathematics,

Asahikawa Campus, Hokkaido University of Education)

§1 Introducrion

Let E be a linear space over R, and P be a convex cone in E satisfying
(P1) E=P-P, (P2) Pn(-P)={0}.

An order relation in F can be defined by z < y <= y — z € P. We call a linear space
E equipped with such a positive cone P a (partially) ordered linear space, and denote
it by (E, P). For a subset A of E, we denote the set of upper bounds and lower bounds
by

UA)={z€E|y <z Vye A} L(A)={z € E|y>z, Yy € A}

respectively. These sets have a property of symmetry in the following sence. ([4])
1) ULUA4)=U4) (ACE)

In [4], the method of constructing a completion (E, P) of (E, P) by using the set of
upper bounds U(A) has been introduced. The relation (1) plays fundamental roles in
the construction of (E P) Also, the completion can be represented by the set of the
generalized supremum in E which has been introduced in [2]. We will state the summary
of those results in the first part of this section.

Let B and B’ be the famlly of all upper bounded subset and lower bounded subset in
E respectively, i.e. B = {A C E|A 76 0, U(A) # 0}, 8" ={B C E|B+#0, L(B) # 0}
The relations L :

A~B T? U(A)=U(B) (A,B e ),
C~'D ﬁ» L(C)=L(D) (C,De %
are clearly equivalence relations. Now we define
E=%/~ ={[A]| A€ B},
where [A] denotes the equivale_nce_class éf A. For every [A] € E, two operations
u(d) =U(4),  1((A]) = LU(4)

are well defined. We can see by (1) that I([A]) ~ A
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Lemma 1. ([4]) IfA~ A’ and B ~ B’ in B, then for A >0

[A+ B]=[A"+ B'] = [I({A]) + {([B])]
[AA] = [AA] = [A([A])]

hold where A+ B and AA denote the set {a +b|a € A, b € B} and {da | a € A}
respectively.

Definition. For [A], [B] € E and A\ € R,

2) 4] < [B] = u(B)) € u(4)
(3) 4]+ [B) = m+m
Pa(AD) (> 0)
@ NA] = { [041(4])] = [-P] (A=0)
Pa(A])] (A <0),

where 0T C denotes the resession cone of a conver set C defined by07C = {z € E|C+
Az C C, (A>0)}.

We define two subsets P and El of E as follows.

P={[Ale E|[A] 2 [-P]}
= {[A] € E | u([4]) C P}
E, = {[A] € E | u([4]) = a + P for some a € E}.

We note that the correspondence which assigns a € E to [A] € E; such that u([4]) =
a + P is one to one.

Theorem 1. ([4]) Let E be a Banach space with a closed positive cone. Then E is
an order complete vector lattice with the definition (2),(3),(4), and

(a) P is a convez cone in E and satisfies (P1), (P2), and [A] < [B] <= [B]—-[A] € P.

(b) E, is a subspace which is order isomorphic to (E, P) by the correspondence E >
a +— [A] € E; where u([A]) =a+ P.

Moreover, let {As}ses C B, and {Ba}rea C B', be arbitrary families such that
Usex Ay € B and Uxea By € B'. Then

(© Noes u([4s]) = u([Uses 4o]),  NMaea UIL(BA)]) = I([L(Urea Br)))-
(d) U(L(Noex u([4o])) = Noex u([4s]), L(U(Naea H[L(BA)))) = Nrea L(IL(BA))])-



Remark. If (E,P) is order complete, then (E, P) is isomorphic to (E, P) as an ordered
linear space.

Let (E,P) be an ordered linear space. For A € B, and A’ € B’ the generalized
supremum and the generalized infimum are defined by

SupA={acU(4) |b<a, beUA)=>a=b} (A€B),
InfA' ={ac L(A) |b>a, be L(A)=>a=0b} (4 B,

and we denote that S = {SupA | A € B}. The basic properties of generalized
supremum has been investigated in [2], [3]. In this paper we consider the condition

(5) U(A) = (SupA)+ P (VA € B),

which actually means that for every z € U(A) there exsits o € Sup A such that z¢ < z.
If the space (E, P) satisfies the condition (5), the correspondence

E>[Al+—U(A) +— SupA €S

is one to one. In the rest part of this section we will state some results which suggest
the importance of the condition (5) in dealing with the generalized supremum. In the
case when dimFE < oo, some equivalent conditions of (5) are known.([2]) In the infinite
dimensional cases, it is not easy to see when the space (E, P) satisfies the condition (5).
In this paper we will give some sufficient conditions in §2.

Proposition 1. Suppose that (E, P) satisfies the condition (5). Then Inf A and Sup A

have a symmetric property, that is,

Sup(Inf(Sup A))) =Sup A (A € B).

proof. Taking the set of minimal points of both sides of (1), we have
Sup A = Sup(L(U(A4))).

Moreover by (5),
Sup(L(U(A))) = Sup(L((Sup A) + P)) = Sup(L(Sup A)) = Sup(Inf(Sup A) — P) =
Sup(Inf(Sup A)).

Proposition 2. Suppose that (E, P) satisfies the condition (5). If Sup A = {a} for
some A € B, then a =lub A ( :the least upper bound of A).

The proof is trivial. The conclusion of Proposition 2 is not valid when the condition
(5) does not hold. The following theorem is the fundamental rules on calculation of the
generalized supremum.

14
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Theorem 2. ([4]) For A,B € B,

(@) UA+B)~UA)+U(B) in®,
Moreover, if (E, P) satisfies the condition (5), then

(b) Sup(A+ B)+ P D SupA+SupB,

(¢) Sup(L(Sup A + Sup B)) = Sup(A + B).

Under the condition (5), we define an order relation and a vector operation (the
addition @ and the scalar multiplication x) on S as follows.

Definition. For A,BC E and ) € R,

SupA < SupB << SupB C SupA+ P
Sup A @ Sup B = Sup(4 + B)
Sup(Al([A])) (A>0)
AxSup A= {0} (A=0)
Sup(Au([4])) (A <0),

for Sup A, SupB € S and )\ € R.

Let Sp be the set of all elements Sup A € S such that Sup A = {ao} for some ao € E.
Then by the following theorem, S can be regarded as an order completion of (E, P)
which is isomorphic to Sp.

Theorem 3. ([4]) If (E, P) satisfies (5), then S is isomorphic to E as a vector lattice
under the one to one correspondence '

S5 Sup A« [A] € E,

Moreover, Sy is isomorphic to (E, P) under the same correspondence.

§2  Sufficient conditions for U(A) = (Sup A) + P

An ordered linear space (F, P) is said to be monotone order complete (m.o.c. for
short) if every upper bounded totally ordered subset of E has the least upper bound in
E. In the case E = R%, (E, P) is m.o.c. if and only if P is closed. In the case when E is
a Banach space with a closed positive cone P satisfying P* — P* = E*, it is known that
(E*, P*) is m.o.c. where E™* is the topological dual of E and P* o {z* € E* | z*(z) >

0, z € P}.

Proposition 3. Suppose that an ordered linear space (E, P) is monotone order com-
plete. Then (E, P) satisfies (5). In particular, Sup{a,b} # 0, Inf{a,b} # O for every
a,b € E, and U(a,b) = (Sup{a,b}) + P.

The proof of this proposition can be seen in [2]. A convex subset C of E is said to
be algebraically closed if every straight line of F meets C by a closed interval. A point
z of a convex subset C C F is called an algebraic interior point of C if for every z € F,
there exists A > 0 such that z + Az € C. Algebraic exterior points are defined similarly,
and we denote the algebraic interior of C' by C*. Moreover, 0C = (C*U(C¢)*)¢ is called



the algebraic boundary of C. Let (E, P) be an ordered linear space and suppose that
P is algebraically closed with nonempty algebraic interior. A convex subset F' of P is
called an exposed face of P if there exists a supporting hyperplane H of P such that
F = PnH. By §(P), we denote the set of all exposed faces of P. For F' € §(P), dim F
is defined as the dimension of affF' where affF" denotes the affine hull of F. We give
another sufficient condition for (5) by using the facial structure of P.

Proposition 4. ([2]) Suppose that P is algebraically closed andint P # (. IfdimC <
oo for every C € F(P), then (5) holds.

A positive cone P in a topological vector space is said to be normal if there exists
a neighborhood base of the origin consisting of neighborhoods V satisfying

(V+P)N(V-P)=

If P is normal, every order interval [a,b] = {z € E | a < z < b} in F is bounded
with respect to the norm. We also recall Bishop-Phelps theorem which asserts that
for a bounded closed convex set C' in a Banach space E, the set of all bounded linear
functional which attains its minimum on C is norm dense in E*.([6])

Theorem 4. Let E be a Banach space with a closed positive cone P. If the dual cone
P* has nonempty interior in E*, then (E, P) has the property (5).

proof. It is known that P is normal if and only if P*—P* = E* ([1]), and in particular,
P is normal in the case that P* has nonempty interior in E*. For =z € U(A), we
denote U(A); = (z — P) N U(A). It suffices to show that there exists an minimal
point g of U(A), such that o < z. Since P is closed, so is U(A);. We also have
U(A); Cla,z]={y€ E|a <y <z} fora € A and hence the normality of P yields
that U(A); is bounded with respect to the norm in E. Therefore by Bishop-Phelps
theorem, we can choose an interior point i of P* such that z] attains its minimum
on U(A), at some point zg € U(A),. If there exsists z; € U(A), such that z; S zo it
follows that z*(z1) < z*(zo) since z* is an interior point of P*. It is a contradlctlon
and zo is a minimal point of U(A),.

Corollary 1. Let E’ be a Banach space and E = E' xR and P = {(z,t) € E | t > ||z||}.
Then (E, P) has the property (5).

Definition. Let E be a topological vector space with a closed positive cone P. A set
A C F is said to be P-complete if it has no covers of the form

{(za - P)° | e}

with {4 }aer being a decreasing net in A.
A set A is said to have the domination property if for x € A there exsists a
minimal point xo of A such that x¢ < x.

In [5], one can see some conditions under which A becomes P-complete or has the
domination property.

Proposition 6. ([5]) Let E be a topological vector space with a closed positive cone
P,andlet E D A # 0. Then A has a minimal point if and only if there ezists T € A
such that A, = AN (z — P) is P-complete. Moreover, A has the domination property if
and only if for each y € A there is some x € A, such that A, is P-complete.
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Theorem 5. Let E be a reflexive Banach space with a closed positive cone P and
suppose that P is normal. Then (E, P) has the property (5).

proof. Let x € U(A) and set U(A); = U(A) N (z — P). We will show that the section
U(A), has its minimal point. By Proposition 6, it suffices to show that U(A), is P-
complete. Suppose that there exsits a decreasing net {zq}acr in U(A); such that

U(4)s C U (@a— P)".

We observe that U(A); C [a,z] for a € A and hence the normality of P yields that
U(A); is bounded with respect to the norm in E. Hence it is weakly compact because
the space F is reflexive. Since each x, — P is weakly closed, we can choose a subcovering
U n(:c,- — P)¢ D U(A); such that £1 > x5 > -+ > z,. It is a contradiction, because

1=1.

Zn & i___g“n(a:,- — P)¢ while z,, € U(4),.

The hypothesis on the positive cone P in Theorem 5 is weaker than that in Theorem
4. However, (5) does not follow from the condition that E is a Banach space and P is

normal. The space C[0, 1] with the norm ||f|| = sup |f(z)| and the usual positive cone
z€[0,1]
P={f|f(z) >0(z €[0,1]))} is a simple example.

Let E be a topological vector space with a closed positive cone P. (E,P) is said
to be boudedly order complete (b.o.c.) if any bouded decreasing net {z,} has an
infimum, where bounded net means that for any neighborhood U of origin {z,} C tU
for some t > 0. P is said to be Daniell if any decreasing net {z,} having a lower
bound has its infimum to which it converges. If P is Daniell (E, P) is obviously m.o.c.,
and consequently the condition (5) holds. Moreover, we can easily see the following
proposition.

Proposition 7. Let E be a topological vector space with a positive cone P. If (E, P)
is b.o.c. and P is normal, then (E,P) is m.o.c., and it satisfies the condition (5) in
particular.
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