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Congruences for the Burnside module

FMRLEE - —iRlEH BEHE 72T (Ryousuke Fujita)
General Education, Wakayama National College of Technology

Notation 1.
* G : finite group
* S(G) : the set of all subgroups of G and G-set by conjugation
* &(G) : the conjugacy class set of G
* I1 : partially ordered set and G acts on it preserving the partially order
cp: - S(G): an order preserving G-map

Notation 2.
For any a € I,

I, := {8 €Il|f > a}
*Gyi={g9€CG|ga=aqa}

Defnition 3.
A pair (II, p) is called a G-poset if_it is satisfying the following condition: for any o €11,

7p(a) A G, and p: I, — S(G)pa) is injective.

Note that S(G) @) = S(p(@)) C S(Ga) and G, C Gya) = Ne(p(a)), the normalizer of p(a) in G.
Defnition 4.
A G-poset (I1, p) is called complete if

)) : TIq — S(G)p(a) is bijective for all o € II.

Definition 5.
A finite G-CW-complex X with the base point q is called a I'I-cdmplex if it is equipped with a
specified set {X, | o € IT} of subcomplexes X, of X, satisfying the following four conditions:
(i) XaDgq
(i) 9Xo = Xya for ge G, a €ll,
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(i) Xo & Xp ifa S Binll, and
(iv) for any H € S(G),

XH = v Xao (the wedge sum of X, ’s).
pla)=H

Example 6.
Let a € II. The G-CW-complex (G/p(a))* (= G/p(a) [1{*}) is a [I-complex ;

(G/p(a))fa“ = {gp(a) | ga < B} H{*} for any (€Il
= (G/p(a))* is a Il-complex.

Definition 7. ([7])
Let Z and W be II-complexes.

Z~W > x(Z,) =x(W,) forallaell

The set
2(G, 1) = {[Z]| Z is a TI-complex}

is called Burnside module .

2]+ [W]:=[Z2Vv W]
Remark that »
= 2(G, F) is a finitely genei'ated free abelian group («— Proposition 2)
Notation 8. .
£ 5((G), @) = {K € S(G) | (K/p(a)) € ®(Ca/p(a))
and K/p(a) is cyclic}
* X(X) = x(X) —1 for any space X

Theorem A.

Let o be an element of I1.
|Ga/p()]

KeS(6)a) [ NGa/o(a) (K /p(a))]
&(|K/p(a)|) is the number of generators of the cyclic group K/p(c).

- ¢(|K/p(a)]) - x(XX) = 0 mod |Ga/p(a)|, where

Then we have

{Proof of Theorem A)
Let (IT, p) be a G-poset and G, the isotropy subgroup at a. Given a Il-complex X, we see
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the Go/p(a)-CW-complex X?() is equipped with a IT-complex structure as following: (X7(®), =

2 for all @ € II. By our definition of the II-complex, it can be shown that X2 = X, for all « ¢
Let x(X) be the Euler characteristic of X, and ¥(X) = x(X)—1 Note that amap f : F.(Go/p(a)) -
Z; K/p(a) — x(XX) satisfies a Burnside relation. By Burnside’s lemma [6, Lemma 4.1], we have

the desired result.

Lem ,
Suppose that a G-poset (II, p) is complete. Let a be an elemnet of Il and K a subgroup with
K D p(a). For a II-complex X, it holds that

X(X3) = > X(Xp)-
Pell with p(B)=K ,f<a

Theorem B.
If a G-poset (11, p) is complete, one has

Im(% : UG, TI) = Dpca Z)
|Ga/p()|

={(%a) € DoeaZ] :
{ eA KeS((G),a) |V Ga/p(a) (K/p(a))|
where z4 (k) is some integer such that

HK/p(@)]) - a0 =0 mod [Ga/p(@)l},

o (K =p(a))
To () = %:a:p (K # p(e), B is some element of I1 with

p(B) = K, < a).

{Outline of Proof) -
First we use S for the right side, and Im for the left side in the equation of Theorem B. Let

A={a, - ,am} By [4, Lemma 1.80], we can arrange elements of A such that

a,-Sa_,-:#»iSj.

. m k m :
Define a map P<k : @ Zo, — P Zq, by k coordinate maps p; : @ Z,, — Z,, such that
i=1 i=1 i=1 _
Psk(m) = (pl("z)r e 7pk(m))1
. : m
where each Z,, is a copy of Z. Note that S C P Z,,. It will now suffice to prove that

i=]

PSm(S) = P_<_m(Im)
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We proceed by induction on k.

*thecase of k =1
By Theorem A and the previous Lemma, we have that P<;(Im) = P<(S).

* the case of k =m
Remark that Pc,,(Im) C P<n(S). («—— the previous Lemma) Suppose that P<x_1(S) = P<x—1(Im)
We prove P<i(S) C P<x(Im)

Suppose that PSk-—l(S) = PSk—l(Im)' Let y= (yanyaza e 7yak-uyak7yak+17 et ,yd,..) be an
element of S. By assumption, there exists an element

= (mauzaw"' ’xak—l’mak’m‘?k+1’“ * ;-Tam) € Im
such that To, = Ya,, Ta; = Yag,*** »Tay_, = Ya,_,- Lhen we have
z =y_$ = (0)07”' )Oyyak _-’L'a,,,'!/ak“ _-'L'ak.;.p"' yYam _mam) € S

|Ga/p(a)|

|NG.. /o) (K /p(a))] - #(|K/p(a)|). Consider the case of

Here we let z,, = yo, — 24, and MoK =

a = a,. Then we have

Z Nay K * Zaky_(K) =0 mod |Gak/p(ak)|'
KeS((G),ax)

Observe that the coefficient z,,,(x) (K # p(ax)) is equal to ) zg, where 3 is some element of I
B

with p(8) = K, B < ax. Thus the above equation implies
Ty plo) * Zan(plen)) =0 m0d |Gay/pate)]-

|Gak/p(ak)|
|NG¢‘,e /e o) (p(ax)/p(ak))

Note that ng, p(ay) = | ¢(|lp(ax)/p(ax)|) = 1. That is,

Zo, =0 mod |G, /p(ak)l-

On the other hand, we have

k-1 : )
P xU(G/p(ex)*]) = (Ra((G/p(k)) )aea = (0,0, ,0,|Ga,/p(ar)], ).

acA

Hence there exists an integer a € Z such that

k

y—r-— a'(Xa((G/p(ak))-l-)) = (07 07 e ’07 07 e )
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y=z+ a()_(a((G/p(ak))+)) + (0’0) 0,0, )

By induction, we see immediately that

P<i(y) = P<i(z + a(Xa((G/p(0x)) ")) € Pek(Im).

Example 9
Let p be a prime number. We set G = C, (a cyclic group of order p). Since S(G) = {{e},G} (e
is the unit element of G), and the G-action on S(G) is trivial, a Burnside module Q(G, S(G)) is
a free abelian group generated by [(G/{e})*], [(G/G)*]. Clearly ®(G) = {{e}, G}.
First, consider the case of @ = {e}. Since S((G), a) = {{e}, G}, we get
B'1°9f{e}({e})+‘§—l- (p—1) 20 =0 mod p.
|G| ' |G| ’
That is,
T{e}({eh) = T{e} () mod p.
By Theorem 1.7, there exists a II-complex X such that 3(X(e}) = T(e},(e}) 80d X(X@) = T(e},(0)-
Thus we have ,
X(X(e)) = X(Xg) mod p.

In particular, if X has a II-complex structure as follows:

o {x (a = {e})
XG. (a=G):

the previous expression implies ,
x(X) = x(X®) mod p.
Next for a = G, since S((G), &) = {G}, we obtain

1

T- 1 Ie(G) = 0 mod 1.

Immediately, |
leX (e)) =0 mod 1.

This equation is true for any integer, and so there is no relation for Il-complexes.
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