

Tryoto Oniversity Nescaren inioi	alsi. repositor,
Title	Congruences for the Burnside module (Transformation groups from new points of view)
Author(s)	Fujita, Ryousuke
Citation	数理解析研究所講究録 (2002), 1290: 48-53
Issue Date	2002-10
URL	http://hdl.handle.net/2433/42518
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Congruences for the Burnside module

和歌山高専・一般科目 藤田 亮介 (Ryousuke Fujita)
General Education, Wakayama National College of Technology

Notation 1.

- G: finite group
- S(G): the set of all subgroups of G and G-set by conjugation
- $\Phi(G)$: the conjugacy class set of G
- Π : partially ordered set and G acts on it preserving the partially order
- $\rho:\Pi\to S(G)$: an order preserving G-map

Notation 2.

For any $\alpha \in \Pi$,

- $\Pi_{\alpha} := \{ \beta \in \Pi \mid \beta \geq \alpha \}$
- $G_{\alpha} := \{g \in G \mid g\alpha = \alpha\}$

Definition 3.

A pair (Π, ρ) is called a <u>G-poset</u> if it is satisfying the following condition: for any $\alpha \in \Pi$,

$$\rho(\alpha) \triangleleft G_{\alpha} \text{ and } \rho: \Pi_{\alpha} \to S(G)_{\rho(\alpha)} \text{ is injective.}$$

Note that $S(G)_{\rho(\alpha)} = S(\rho(\alpha)) \subset S(G_{\alpha})$ and $G_{\alpha} \subset G_{\rho(\alpha)} = N_G(\rho(\alpha))$, the normalizer of $\rho(\alpha)$ in G.

Definition 4.

A G-poset (Π, ρ) is called **complete** if

$$\rho:\Pi_{\alpha}\to S(G)_{\rho(\alpha)}$$
 is bijective for all $\alpha\in\Pi$.

Definition 5.

A finite G-CW-complex X with the base point q is called a Π -complex if it is equipped with a specified set $\{X_{\alpha} \mid \alpha \in \Pi\}$ of subcomplexes X_{α} of X, satisfying the following four conditions:

- (i) $X_{\alpha} \ni q$
- (ii) $gX_{\alpha} = X_{g\alpha}$ for $g \in G$, $\alpha \in \Pi$,

(iii) $X_{\alpha} \subseteq X_{\beta}$ if $\alpha \subseteq \beta$ in Π , and

(iv) for any $H \in S(G)$,

$$X^H = \bigvee_{
ho(lpha)=H} X_{lpha}$$
 (the wedge sum of X_{lpha} 's).

Example 6.

Let $\alpha \in \Pi$. The G-CW-complex $(G/\rho(\alpha))^+ (= G/\rho(\alpha) \coprod \{*\})$ is a Π -complex;

$$(G/\rho(\alpha))_{\beta}^{+} = \{g\rho(\alpha) \mid g\alpha \leq \beta\} \quad \coprod \{*\} \text{ for any } \beta \in \Pi.$$

 $\implies (G/\rho(\alpha))^+$ is a Π -complex.

Definition 7. ([7])

Let Z and W be Π -complexes.

$$Z \sim W \Longleftrightarrow \chi(Z_{\alpha}) = \chi(W_{\alpha})$$
 for all $\alpha \in \Pi$

The set

$$\varOmega(G,\Pi) = \{[Z] \,|\, Z \text{ is a Π-complex}\}$$

is called **Burnside module**.

$$[Z] + [W] := [Z \vee W]$$

Remark that

 $\Longrightarrow \Omega(G,\mathcal{F})$ is a finitely generated free abelian group (\longleftarrow Proposition 2)

Notation 8.

$${}^{\bullet}S((G),\alpha):=\{K\in S(G)\mid (K/\rho(\alpha))\in \Phi(G_{\alpha}/\rho(\alpha)) \\ \text{and} \ \ K/\rho(\alpha) \text{ is cyclic}\}$$

•
$$\bar{\chi}(X) = \chi(X) - 1$$
 for any space X

Theorem A.

Let α be an element of Π .

Then we have $\sum_{K \in S((G),\alpha)} \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|} \cdot \phi(|K/\rho(\alpha)|) \cdot \bar{\chi}(X_{\alpha}^K) \equiv 0 \mod |G_{\alpha}/\rho(\alpha)|, \text{ where } \phi(|K/\rho(\alpha)|) \text{ is the number of generators of the cyclic group } K/\rho(\alpha).$

《Proof of Theorem A》

Let (Π, ρ) be a G-poset and G_{α} the isotropy subgroup at α . Given a Π -complex X, we see

the $G_{\alpha}/\rho(\alpha)$ -CW-complex $X^{\rho(\alpha)}$ is equipped with a Π -complex structure as following: $(X^{\rho(\alpha)})_{\alpha} = X_{\alpha}^{\rho(\alpha)}$ for all $\alpha \in \Pi$. By our definition of the Π -complex, it can be shown that $X_{\alpha}^{\rho(\alpha)} = X_{\alpha}$ for all $\alpha \in \Pi$. Let $\chi(X)$ be the Euler characteristic of X, and $\bar{\chi}(X) = \chi(X)-1$ Note that a map $f: \mathcal{F}_c(G_{\alpha}/\rho(\alpha)) - \mathbb{Z}$; $K/\rho(\alpha) \mapsto \bar{\chi}(X_{\alpha}^K)$ satisfies a Burnside relation. By Burnside's lemma [6, Lemma 4.1], we have the desired result.

Lem

Suppose that a G-poset (Π, ρ) is complete. Let α be an elemnet of Π and K a subgroup with $K \supset \rho(\alpha)$. For a Π -complex X, it holds that

$$\bar{\chi}(X_{\alpha}^{K}) = \sum_{\beta \in \Pi \text{ with } \rho(\beta) = K, \beta < \alpha} \bar{\chi}(X_{\beta}).$$

Theorem B.

If a G-poset (Π, ρ) is complete, one has

 $Im(\bar{\chi}:\Omega(G,\Pi)\to\bigoplus_{\alpha\in\mathcal{A}}\mathbb{Z})$

$$=\{(x_{\alpha})\in\bigoplus_{\alpha\in\mathcal{A}}\mathbb{Z}\,|\,\sum_{K\in\mathcal{S}((G),\alpha)}\frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|}\cdot\phi(|K/\rho(\alpha)|)\cdot x_{\alpha,(K)}\equiv 0\ \mathrm{mod}\ |G_{\alpha}/\rho(\alpha)|\},$$
 where $x_{\alpha,(K)}$ is some integer such that

$$x_{lpha,(K)} = egin{cases} x_{lpha} & (K =
ho(lpha)) \ \sum_{eta} x_{eta} & (K
eq
ho(lpha), \ eta \ ext{ is some element of } \Pi \ ext{with} \ &
ho(eta) = K, eta < lpha). \end{cases}$$

《Outline of Proof》

First we use S for the right side, and Im for the left side in the equation of Theorem B. Let $A = \{\alpha_1, \dots, \alpha_m\}$. By [4, Lemma 1.80], we can arrange elements of A such that

$$\alpha_i \leq \alpha_j \Longrightarrow i \leq j$$
.

Define a map $P_{\leq k}: \bigoplus_{i=1}^m \mathbb{Z}_{\alpha_i} \to \bigoplus_{i=1}^k \mathbb{Z}_{\alpha_i}$ by k coordinate maps $p_i: \bigoplus_{i=1}^m \mathbb{Z}_{\alpha_i} \to \mathbb{Z}_{\alpha_i}$ such that

$$P_{\leq k}(x) = (p_1(x), \cdots, p_k(x)),$$

where each \mathbb{Z}_{α_i} is a copy of \mathbb{Z} . Note that $S \subset \bigoplus_{i=1}^m \mathbb{Z}_{\alpha_i}$. It will now suffice to prove that

$$P_{\leq m}(\mathbf{S}) = P_{\leq m}(\mathbf{Im}).$$

We proceed by induction on k.

• the case of k=1

By Theorem A and the previous Lemma, we have that $P_{\leq 1}(\mathbf{Im}) = P_{\leq 1}(\mathbf{S})$.

• the case of k = m

Remark that $P_{\leq m}(\mathbf{Im}) \subset P_{\leq m}(\mathbf{S})$. (\longleftarrow the previous Lemma) Suppose that $P_{\leq k-1}(\mathbf{S}) = P_{\leq k-1}(\mathbf{Im})$ We prove $P_{\leq k}(\mathbf{S}) \subset P_{\leq k}(\mathbf{Im})$

Suppose that $P_{\leq k-1}(\mathbf{S}) = P_{\leq k-1}(\mathbf{Im})$. Let $y = (y_{\alpha_1}, y_{\alpha_2}, \dots, y_{\alpha_{k-1}}, y_{\alpha_k}, y_{\alpha_{k+1}}, \dots, y_{\alpha_m})$ be an element of \mathbf{S} . By assumption, there exists an element

$$x = (x_{\alpha_1}, x_{\alpha_2}, \cdots, x_{\alpha_{k-1}}, x_{\alpha_k}, x_{\alpha_{k+1}}, \cdots, x_{\alpha_m}) \in \mathbf{Im}$$

such that $x_{\alpha_1} = y_{\alpha_1}, x_{\alpha_2} = y_{\alpha_2}, \cdots, x_{\alpha_{k-1}} = y_{\alpha_{k-1}}$. Then we have

$$z = y - x = (0, 0, \dots, 0, y_{\alpha_k} - x_{\alpha_k}, y_{\alpha_{k+1}} - x_{\alpha_{k+1}}, \dots, y_{\alpha_m} - x_{\alpha_m}) \in S.$$

Here we let $z_{\alpha_i} = y_{\alpha_i} - x_{\alpha_i}$, and $n_{\alpha,K} = \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|} \cdot \phi(|K/\rho(\alpha)|)$. Consider the case of $\alpha = \alpha_k$. Then we have

$$\sum_{K \in S((G),\alpha_k)} n_{\alpha_k,K} \cdot z_{\alpha_k,(K)} \equiv 0 \mod |G_{\alpha_k}/\rho(\alpha_k)|.$$

Observe that the coefficient $z_{\alpha_k,(K)}$ $(K \neq \rho(\alpha_k))$ is equal to $\sum_{\beta} z_{\beta}$, where β is some element of Π with $\rho(\beta) = K, \beta < \alpha_k$. Thus the above equation implies

$$n_{\alpha_k,\rho(\alpha_k)} \cdot z_{\alpha_k,(\rho(\alpha_k))} \equiv 0 \mod |G_{\alpha_k}/\rho(\alpha_k)|.$$

Note that $n_{\alpha_k,\rho(\alpha_k)} = \frac{|G_{\alpha_k}/\rho(\alpha_k)|}{|N_{G_{\alpha_k}/\rho(\alpha_k)}(\rho(\alpha_k)/\rho(\alpha_k))|} \cdot \phi(|\rho(\alpha_k)/\rho(\alpha_k)|) = 1$. That is,

$$z_{\alpha_k} \equiv 0 \mod |G_{\alpha_k}/\rho(\alpha_k)|.$$

On the other hand, we have

$$\bigoplus_{\alpha\in\mathcal{A}} \bar{\chi}([(G/\rho(\alpha_k))^+]) = (\bar{\chi}_{\alpha}([(G/\rho(\alpha_k))^+])_{\alpha\in\mathcal{A}} = (0,0,\cdots,0,|G_{\alpha_k}/\rho(\alpha_k)|,\cdots).$$

Hence there exists an integer $a \in \mathbb{Z}$ such that

$$y-x-a(\bar{\chi}_{\alpha}((G/\rho(\alpha_{k}))^{+}))=(0,0,\cdots,0,0,\cdots).$$

$$y = x + a(\bar{\chi}_{\alpha}((G/\rho(\alpha_k))^+)) + (0,0,\cdots,0,0,\cdots).$$

By induction, we see immediately that

$$P_{\leq k}(y) = P_{\leq k}(x + a(\bar{\chi}_{\alpha}((G/\rho(\alpha_k))^+)) \in P_{\leq k}(\mathbf{Im}).$$

Example 9

Let p be a prime number. We set $G = C_p$ (a cyclic group of order p). Since $S(G) = \{\{e\}, G\}$ (e is the unit element of G), and the G-action on S(G) is trivial, a Burnside module $\Omega(G, S(G))$ is a free abelian group generated by $[(G/\{e\})^+]$, $[(G/G)^+]$. Clearly $\Phi(G) = \{\{e\}, G\}$.

First, consider the case of $\alpha = \{e\}$. Since $S((G), \alpha) = \{\{e\}, G\}$, we get

$$\frac{|G|}{|G|} \cdot 1 \cdot x_{\{e\},(\{e\})} + \frac{|G|}{|G|} \cdot (p-1) \cdot x_{\{e\},(G)} \equiv 0 \mod p.$$

That is,

$$x_{\{e\},(\{e\})} \equiv x_{\{e\},(G)} \mod p.$$

By Theorem 1.7, there exists a Π -complex X such that $\bar{\chi}(X_{\{e\}}) = x_{\{e\},(\{e\})}$ and $\bar{\chi}(X_G) = x_{\{e\},(G)}$. Thus we have

$$\bar{\chi}(X_{\{e\}}) \equiv \bar{\chi}(X_G) \mod p.$$

In particular, if X has a Π -complex structure as follows:

$$X_{\alpha} = \begin{cases} X & (\alpha = \{e\}) \\ X^{G} & (\alpha = G), \end{cases}$$

the previous expression implies

$$\chi(X) \equiv \chi(X^G) \mod p.$$

Next for $\alpha = G$, since $S((G), \alpha) = \{G\}$, we obtain

$$\frac{1}{1} \cdot 1 \cdot x_{G,(G)} \equiv 0 \mod 1.$$

Immediately,

$$x_{G,(G)} \equiv 0 \mod 1.$$

This equation is true for any integer, and so there is no relation for Π -complexes.

References

- [1] Dovermann K.H and Rothenberg M, The generalized whitehead torsion of a G-fibre homotopy equivalence, Lecure Notes in Math, Transformation Groups (K.Kawakubo,ed), 1375, (1989), Springer-Verlag 60–88.
- [2] tom Dieck, T, Transformation Groups and Representation Theory, Lecture Notes in Math, 766, Springer-Verlag, 1978.
- [3] Fujita R, The resolution module of a space and its universal covering space, Journal of The Faculty of Environment Science and Technology, Okayama Univ. 5 (2000), 57-69.
- [4] Kawakubo K, The Theory of Transformation Groups, Oxford University Press, London, 1991.
- [5] Morimoto M. and Iizuka K, Extendibility of G-maps to pseudo-equivalences to finite G-CW-complexes whose fundamental groups are finite, Osaka J. Math. 21 (1984), 59-69.
- [6] Morimoto M, The Burnside Ring Revisited, Preprint.
- [7] Oliver R. and Petrie T, G-CW-surgery and $K_0(\mathbf{Z}G)$, Math. Z. 179 (1982), 11-42.
- [8] Rim D.S, Modules over finite groups, Ann. Math. 69 (1958), 700-712.
- [9] Rotman J.J, An introduction to Algebraic Topology, GTM. 119, Springer-Verlag, 1988.
- [10] Swan R.G, Induced representations and projective modules, Ann. Math. 71 (1960), 552-578.