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Abstract
In this paper the use of compactly-supported radial basis $\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\alpha \mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ for surface reconstruction is described. To

solve the problem of reconstruction or volume data generation specially designed software is employed. Time
performance of the algorithm and numerical error estimation of the reconstruction are also investigated. Thanks
to the efficient octree algorithm used in this study, the resulting matrix is aband diagonal matrix that reduces
computational cost and permits handling large data sets.

Keywords: $su\phi ace$ reconstrmction, interpolation, scattered data, volume modeling computer graphics.

1. Introduction
Traditionally, constructive solid geometry (CSG) modeling uses simple geometric objects for abase model,

which can be further manipulated by implementing acertain collection of operations such as set-theoretic
operations, blending, or offietting. The operations mentioned above and many others have found quite general
descriptions or solutions for geometric solids represented as points $(\mathrm{x},\mathrm{y},\mathrm{z})$ in space satisfying $J(x,y,z)$ $\geq \mathit{0}$ for a
continuous ffinction$f$. Such arepresentation is usually called an implicit model or afunction representation. Set-
theoretic solids have been successfully included in this tyPe of representation with the application ofR-ffinctions
and their modifications (see [1], and [2]). In [3], an approach to volume modeling is proposed. It combines the
voxel representation and function representation. It supposes that the two main representations $(\mathrm{v}\mathrm{o}\mathrm{x}\mathrm{e}\mathrm{l}/\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n})$

are given rather autonomously and rich set of operations can be used for modeling volumes. Whatever complex
operations have been applied to ageometric object which can be given by avoxel raster, by elevation data, or by
afunction representation, equivalent volume data, can be generated. Many practical suffice reconstruction
techniques such as restoration design or reverse engineering tasks based on measured data points require the
solution optimization problems in fitting suffice data. We use the term volume model to refer to the wide class
of surfaces which like other implicit surfaces descriptions can be used for CSG.

Avast volume of literature is devoted to the subject of scattered data reconstruction and interpolation. In
most applications, aDelaunay triangulation is used for $3\mathrm{D}$ reconstruction. Unfortunately, this method has some
serious drawbacks, even with the elimination of large triangles; the reconsbucted shape remains convex-looking,
as noted in [4].

Another approach to surface reconstruction is skeletal. An implicit surface generated by point skeletons may
be fit to aset of surface points [5], but this method is rather time consuming.

One other approach is to use methods of scattered data interpolation, based on the minimum-energy
properties [6], [7], [8]. These methods are widely discussed in mathematical literature (see [9], [10]). The
benefits ofmodeling $3\mathrm{D}$ surfaces with the help radial basis ffinctions (RBF) have been recognized in [11] for
Phobos reconstruction. They were adapted for computer animation [12], [13] and medical applications [14], [15]
and were first applied to implicit surfaces by Savchenko et al. [16]. However, the required computational work is
proportional to the number of grid nodes and the number of scattered data points. Special methods to reduce the
processing time were developed for thin plate splines and discussed in [17], [18].

Actually, the methods exploiting the RBFs can be divided into three groups. First group is “naive” methods,
which are restricted to small problems, but they work quite well in applications, dealing with shape
transformation (see, for example [19]). Second group is fast methods for fitting and evaluating RBFs, which
allow large data sets to be modeled $[20,17]$ . The third and last group is compactly supported radial based
ffinctions (CSRBFs) introduced by Wendland in [21]
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In practice, the problem of reconstruction consists of the following steps: sorting the data, constructing the
system of linear algebraic equations (SLAE), solving the SLAE, and evaluating the ffinctions. The numerical
solution of SLAEs is commonly encountered in various applications. Unfortunately, $\mathrm{a}" \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ ”collection of
routines for sparse matrix calculation in [22] could not be found that has forced us to develop our own tool for
SLAE solution. In fact, while the solution of the system is the limiting step, constructing the matrix and
evaluating the ffinctions to extract the isosurface may also be computationally expensive. In this contribution, we
made an attempt to solve the problem according to the above-mentioned steps. Thus, the main goal of the
ongoing project was to develop an effective library of $\mathrm{C}+\vdash \mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{s}$ that can be successfully applied to
computationally intensive problems of surface reconstruction using RBFs splines.

2. Method of shape reconstruction with RBF splines
The problem of constructing asmooth reconstructed surface that satisfies certain constraints can be

considered as follows. Let Obe an $\mathrm{n}$-dimensional domain of an arbitrary shape that contains aset of points $P_{i}=$

$(x_{J}^{i}, x_{\mathit{2}}^{j}, \ldots, x_{n}^{j}):i=1,2$ , $\ldots,N$. We assume that the points $P_{j}$ are distinct and lie on some surface. The goal of
the reconstruction is to find asmooth ffinction $f(x_{\mathit{1}}, x_{\mathit{2}}, \ldots, xn)$ that approximately describes the surface. In the
three-dimensional case, avolume object is represented by the equation $\mathrm{f}\mathrm{i}\mathrm{x},\mathrm{y},\mathrm{z}$) $=0$. The general idea of our
algorithm [16] is to introduce acarrier solid with adefining function $f_{c}$ and to construct avolume spline $U$

interpolating values of the ffinction $f_{c}$ in the points Pt. The algebraic difference between $\mathrm{U}$ and $f_{c}$ describes a
reconstructed solid. The algorithm consists of two steps. At the first step, we introduce acarrier solid object,
which is an initial approximation of the object being searched for. In the simplest case, it can be asphere. The
data set $r$ associated with the points $\{r_{j}=f_{c}(P_{i}):i=1,2, \ldots, N\}$ is then calculated at all given points. In the
second step, these values are approximated by avolume spline derived for random or unorganized points. The
problem is to construct an interpolation spline ffinction $U(Pj)\in W_{\mathit{2}}^{m}(\mathcal{J}\delta$ , where $W_{\mathit{2}}^{m}$ is the set of all functions
whose squares of all derivatives of order 5 $m$ are integrable over $\mathrm{R}^{\mathrm{n}}$, so that $U(P_{j})=r_{j}$, $i=1,2$, $\ldots$ , $N$, and has
the minimum energy of all ffinctions that interpolate the values $r_{i}$ . This conforms to the following minimum
condition (see [8], [10]), which defines operator $T$:

$\int_{\Omega}\sum_{-}|a|-mm’\alpha./(D^{\alpha}u)^{\mathit{2}}d\Omegaarrow\min$,

where $m$ is aparameter of the variational ffinctional and $a$ is amulti-index. The minimization of the
functional results in the nonsingular system $\mathrm{o}\mathrm{f}N+k$ linear algebraic equations for the spline coefficients, where
$k=\mathit{4}$ for the $3\mathrm{D}$ case. After solving for the weight $\lambda_{\mathrm{i}}$ and $\mathrm{v}_{0,1,2,3}$ (if apolynomial is required) that satisfy the
known constraints $\{r_{i}=f_{c}(P_{i}):i=\mathit{1},\mathit{2}, \ldots, N\}$, we can restore the spline-ffinction ofthe form

$U(x,y,z)=l/ \mathit{2}\sum_{i=1}^{N}$ $\lambda,\mu|P- P_{j}|)$ $\mathrm{p}(\mathrm{P})$, 2

where $p=v_{\mathit{0}}+v_{I}x+v\nu$ $+Vjz$ is apolynomial of low degree and $\mathrm{P}$ is apoint with coordinates $(x,y,z)$ . The
zero set of the ffinction $f(x,y.z)=U(x,y,z)- \mathrm{f}\mathrm{c}(\mathrm{x},\mathrm{y},\mathrm{z})$ for $n=\mathit{3}$ approximates the unknown surface. The isosurface
of the $3\mathrm{D}$ object can then be produced. In three dimensions, the thin-plate solution is equivalent to using the
radial basis ffinction $\mathrm{A}r$) $=r^{3}$ . Since the ffinction $\phi(\mathrm{r})=r^{3}$ is not compactly supported, the corresponding SLAE
is not sparse or bounded. Storing the lower triangle matrix requires $\mathrm{O}(N^{2})$ real numbers and the computational
complexity is $\mathrm{O}(N^{3})$ . Thus, the amount of computation becomes significant, even for amoderate number of
points. Wendland in [21] recently constructed anew class of positive definite and compactly supported radial
ffinctions of the form

$P(r)$ $0\leq r<1$

$\mu_{\Gamma})=$

0 $r>1$ ,

whose the radial of support is equal to 1. For $3\mathrm{D}$ space, we use a $4r$) $=(\mathit{1} -r)^{\mathit{2}}$ interpolated ffinction that
supports only $\mathrm{C}^{O}$ continuity. However, other ffinctions that support higher continuity can be used. An
investigation [23] of the smoothness of this family of polynomial basis ffinctions shows that each member $\#\mathrm{r}$)
possesses an even number of continuous derivatives
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3. Algorithm for reconstruction

3.1 Sorting scattered data
Space recursive subdivision is an elegant and popular way of sorting scattered $3\mathrm{D}$ data. We propose an

efficient approach based on the use of variable-depth octal trees for space subdivision, which allows us to obtain
the resulting matrix as aband diagonal matrix that reduces the computational complexity. The structure of octal
trees [24] is very similar to that of binary trees, and has been very well studied in the literature (see, for example
[25] $)$ . For each node ofthe tree, we need to store the following:

-apointer to the parent node,

-8pointers to child nodes,

-apointer to the list of points (empty this node is not aleaf).

the
$\frac{\mathrm{A}1\alpha \mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{I}1-}{\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}}.$

.
“Searching using the tree,” $\mathrm{a}" \mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}$

” Mction is used to state for each node in the tree that

(a) entirely inside the given r-sphere,

-(b) entirely outside the given r-sphere,

(c) partly inside the given $\mathrm{r}$-sphere, partly outside it.
To accelerate the search the tree is simplified after creation. If node $A$ has only one sub-node $B$, we can

remove node $A$ and replace it with $B$. For example, consider the following octal tree (numerals represent node
numbers):

This procedure is needed only if $K$ is small. For instance, for data in the Example 1(see Table 1.
Processing time (in seconds).), $\mathrm{i}\mathrm{f}K$ is set to 1this procedure removes 113 nodes from the initially created
2427 nodes.

The maximum complexity of the two algorithms that have been described strongly depends on the initial data
and the parameter $K$. The depth ofthe tree depends on the length of the cube edge corresponding to the leaf. This
length is equal to $($ 1/2$)^{}$ , where $M$ is the depth of the tree and depends on the original data. If the initial points
are distributed more or less uniformly, then the tree will have sufficiently uniform filling and will be symmetric.
If $K=1$ , at that time the tree will be close to affill octal tree with $N$ leaves. The maximum complexity of
searching the tree will be proportional to the depth of this tree, which is $\log_{8}N$. The case in which the depth of
the tree would be $N$ is also possible, but it is very improbable (all points would have to belong to the one selected
$\mathrm{r}$-sphere). Amore detailed account of these algorithms, including a $\mathrm{C}++\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{y}$ description can be found in [26].
The procedure of searching for the neigbors of apoint in agiven $r$-sphere is applied several times in the
application. Mainly, it is used for calculating the Mction 2to sum uP only the points that are neighbors of the
specified point with coordinates $(x,y,z)$ . But the first application is the construction of the band diagonal sub-
matrix $\alpha|P- P_{j}|$ ), which accounts for asignificant portion ofthe computational cost. In our application, to store
the band matrix, we use the s0-called profile form or aslightly modified version of the Jennings envelope
scheme [27]. To store the matrix $\mathrm{A}$, an array can be used for diagonal elements; values ofnon-diagonal elements
and correspondent indices of the first non-zero elements in the matrix lines are placed in two additional arrays
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Figure 1. PseudO-code ofAlgorithm III

As aresult of this algorithm aband with maximum size $a_{1}$ of the neighbors of apoint is obtained. The
maximum complexity of this algorithm is the complexity of searching for neighbors through the octal tree for
each point, that is, $N\mathrm{x}$ (the maximum complexity of the algorithm $\mathrm{H}$). We can reduce our computational outlays
by calculating the matrix and the order ofthe points simultaneously.

Figure 2. Typical matrix with band-diagonal part created by algorithm IIL

After sorting we have abanded matrix shown in Figure 2, the matrix has the maximum number of nonzero
elements for some point. Naturally, the results of matrix construction depend on the proper selection of the
radius of the $r$-sphere. Note that the special order prescribed by sparse matrix to minimize fill-ins is not
important. Note also that the half-width for selected $r$ cannot be decreased. Considering the following unlikely
event would clarify this concept. If we connect all neighboring points we will obtain agraph, and if this graph
has acycle, then the maximum size we will get is less than or equal to the cycle length. Thus, if the radius is
quite large, then the cycle will include nearly all the points ffom the input data. In this case, the maximum size of
the band will also be large, and we will have an expansion of the band at some point. The position of the
expansion is not important for our implementation
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EIample 1. uHead”, AMD Athlon 1
$\mathrm{G}\mathrm{h}\mathrm{z}$ I2$ MB RAM, Windows 98
(Inlel Penlium $III$ $7\mathit{0}\theta$ $MH\iota$ $\mathit{3}\mathit{2}\theta$ $MB$

RAM, W$i$ndows $N$

$\mathrm{E}\mathrm{I}\cdot \mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}$ $2$ . “Seashell”, AMD Athlon
1 $\mathrm{G}\mathrm{h}\iota$ $128$ MB RAM, Windows 98
(Intel $Pen\ell ium$ $III$ $7\theta\theta$ $MH\mathrm{z}$ $\mathit{3}\mathit{2}\theta$ $MB$

RAM, W$i$ndows $NT$)

Number ofpoints–N 1487 (model ofthe head) 915 (model ofthe seashell)

${\rm Max}$ . number ofpoints in the $\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{f}-K$ 10 10

Tree creation (inc. f$\mathrm{i}$ le reading time) 467 nodes at 6 levels. 0.05 (0. 11) $\mathrm{s}\mathrm{e}\mathrm{c}$. 291 nodes at 8 levels. 0.05 (0.07) $\mathrm{s}\mathrm{e}\mathrm{c}$.

Selected $\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{s}-r$ 0.2 0.2
Matrix ealeulation 0.17 (0.98) $\mathrm{s}\mathrm{e}\mathrm{c}$ . 0.1 (0.2 $\mathrm{s}\mathrm{e}\mathrm{c}$.
$\mathrm{M}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{l}\gamma$ requirement to store the band
diagonal sub-matrix of the matrix A

426811 $\mathrm{d}\mathrm{o}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{e}\approx 3$ MB (if stored
traditionally it would be 2211169
$\mathrm{d}\mathrm{o}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{e}\approx 16$

$\mathrm{M}\mathrm{B})$

189310 double $\approx$ $1$ MB (if stored
traditionally it would be 837225
$\mathrm{d}\mathrm{o}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{e}\approx 6$

$\mathrm{M}\mathrm{B})$

Solution time by Cholesky
decomposition

1.98 (1.722) $\mathrm{s}\mathrm{e}\mathrm{c}$. 0.61 (0.501) see.

Root mean square measure (RMS) and
maximum absolute error (MAX)

RMS $=1.36945\mathrm{e}- 008$

MAX $=4.4884$ le-006

RMS $=5.8$ 138e-008
MAX $=3.07849\mathrm{e}- 005$

Result: Figure 3 (a). Figure 3 (b).

Table 1. Processing time (in seconds).

(a) (b)

Figure 3. (a) $u\mathrm{H}\mathrm{e}\mathrm{a}\mathrm{d}^{n}$ reconstruction, (b) “Seashell” reconstruction

3.2 SLAE solution
Note that solving any sparse system has the goals of saving time and space. The advantage of Gaussian LU

[28] decomposition has been well recognized, and many software routines have been developed. For a
symmetric and positive definite matrix, aspecial factorization, called Cholesky decomposition, is about twice as
ffit compared to alternative methods for solving linear equations. From the discussion in section 3.1 it follows
that in the most common case there is adoubly bordered band diagonal system $\mathrm{T}$, which consist of three blocks,
square sub-matrices Aand $\mathrm{D}$ of size $NxN$ and $k\mathrm{x}k$ respectively, and $\mathrm{B}$, which is not necessarily square and has

68



the size Nxk. Acombination block Gauss solution and Cholesky decomposition was proposed by George and
Liu [29] and in our software tools we follow their proposal.

3.3 Surface evaluation and extraction

Figure 4. “Cactus” reconstruction by using the combination of Turk and O’Brien approach and approach
presented here.

Note that the approach taken in this study does not guarantee arestoration of highly topologically complex
volume objects (like objects with branching, see Figure 4for example). For $3\mathrm{D}$ reconstruction using cross-
sectional data, in [31] it is proposed that, for $m$ different contours in one slice, $m$ different ffinction descriptions
of separate contours must be used, and that union of the $\mathrm{m}$ carrier ffinctions calculates the description of the
reconstructed $2\mathrm{D}$ object. For the $3\mathrm{D}$ case such an approach looks exceedingly complicated. Moreover, RBFs
demonstrate excessive blending features that lead to undesirable smoothing effects. The approach taken by Turk
and O’Brien in [32] of using points specified on both sides of the surface will provide successffil restoration of a
surface, but it involves drawbacks that leads one to suppose that it would be inefficient for applying RBFs for
volume reconstruction. Since it is out of the scope of this paper to discuss all these matters, we would like to
mention the following: this approach does not produce CSG-like solids as required in CSG (see [1]); the “both
sides” approach has aproblem with the surface extraction (a surface extractor can jump outside the band ofnon-
zero points). There is also aproblem of constructing or specifying off-surface points along asurface normal that
also leads to adoubling ofthe given number of surface points.

4. Other applications

Figure 5. Metamorphosis with constraints: spatial and temporal transformations.
It seems also interesting to use the developed CSRBF toolkit with the combination of dynamic programming for
the sealing ofthe holes ofthe $3\mathrm{D}$ objects. It is atypical task in engineering, occurring for the objects scanned by
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laser scanners. For example, object on the Figure 6was defined by 18355 vertices (3107 borders) and it was
processed in only 21,0 seconds by our software.

(a) (b)

Figure 6. Sealing holes in the object: (a) original object, (b) after reconstruction.
CSRBF ffinctions offer amechanism to get extrapolated points of adamaged surface, and, actually, exhibit high
quality restoration results in $\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}/\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{e}$ retouching examples. Developed algorithms demonstrate very good
results for both black and white images and color images inpainting in small and large areas.

For the example, look at the old photo of president Lincoln on Figure 7. For this example Bertalmio et al. [33]
(algorithm based on partial differential equations) reported an inpainting time of approximately 7 $\min$ (PII,
$300\mathrm{M}\mathrm{h}\mathrm{z})$ , while with our software we got inpainting time 0.12 $\sec$ on Athlon lGhz

(a) (b)

Figure 7. Inpainting: (a) original photo with defective part, (b) after reconstruction.

5. Results and final remarks
In this contribution, the problem of using RBFs spline reconstruction for volume modeling was thoroughly

investigated. The main goal of the ongoing project was to understand the processing characteristics and
capabilities ofthe RBF reconstruction approach and its visualization aspects.
Visual inspection (images in Figure 3(a), (b)) allows us to judge the interpolation features ofthe algorithm that
has been discussed. Some ofthe results can be seen in Table 1.

Thanks to the efficient octree algorithm, the resulting matrix is aband diagonal matrix (not asparse one) that
reduces the computational complexity.

An online reconstruction server has been established [26], which makes it possible to get avisualization of a
VRML object using aweb-browser (Netscape Communicator 4.x is recommended).

Finally, it should be noted that the key concept of “classes” in Cr language might not be ideal for scientific
computing. Nevertheless, $\mathrm{C}++\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{a}\mathrm{g}\mathrm{e}$was used in this application to create reusable, extensible, and reliable
components, which can be used in later research
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