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On minimal vertical singular diffusion preventing
overturning

B ER
ex-# O EERE—
Mi-Ho Giga and Yoshikazu Giga*
*Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan

1 Introduction

This is a preliminary version of our work to a continuation of recent works [9], [10] of the
second author. |

In [9] we introduce the notion of proper viscosity solutions for a class of equations whose
solutions may develop jump discontinuities. The class contains (scalar) conservation laws
as special examples and a proper viscosity solution is essentially equivalent to an entropy
solution for conservation laws. In [10] we propose to interpret this evolution as a result of
the vertical singular diffusion. By a formal argument we have noted in [10] that there is a
threshold value of the strength of the vertical diffusion such that it prevents overturning
of the solution.

In this paper we give a rigorous proof for the fact that a solution develops overturning
if the strength M of the vertical diffusion is smaller than the critical value by studying
the Riemann problem for the Burgers equation:

us + uu, =0, (1.1)

u(z,0) = (sgnz)d/2. (1.2)

If one views the graph of u as a level set of auxiliarly function ¢(z,y,t), ¥ must satisfy
¢t + y"/"x = 0. | (1.3)

If we consider (1.3) in R? x (0,T), each level set of ¢ moves by (1.1) if it is represented by
the graph of a function u = u(z,t). This formulation is successful to track discontinuous
solutions for

u+ H(u,u,) =0
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if r = H(r,p) is nondecreasing so that solution does not develop discontinuities if the
initial data is continuous [12]. However, for (1.1) the zero level set of the solution of (1.3)
certainly overturn if initially

{(z,9);9(2,9,0) > 0} = {(z,y);y < —d/2} U{(z,y);2 < 0,-d/2 <y < d/2}; (1.4)

in fact, the zero level set ¥ = 0 for ¢ > 0 cannot be viewed as the graph of a smgle valued
function in any sense. '

In [10] we propose to add the vertical diffusion term

Yt + Yy, = MIVY|0, (¢, /[¢y). (1.5)
A formal argument [10, Theorem 2.1] reflecting [3] says that if M is large so that

Vi2V -2M on I=(-d/2,d/2), (1.6)

then the zero level set of ¢ with initial condition (1.4) does not overturn and equals the
graph of the entropy solution of (1.1), (1.2). Here V() = —»?/2 which is the primitive
of —y and V; denotes its convex hull in I. An elementary calculation shows that the
minimum value Mo of M satisfying (1.6) is d?/16. In the numerical simulation [16] we
also observe that the overturning occurs if and only if M < M, = d? /16. (There I is
replaced by (a,b) but the value of M, equals (b — a)?/16.)

In this paper we show analytically that M, is optimal in the sense that if M < M,
the overturning is not prevented. It is also possible to prove that the overturning does
not occur M > M, for more general equations but we shall discuss this problem in one
of forthcoming papers.

Although the level set method (see e.g. [8]) allowing the singular diffusivity is well-
studied by [4], [5], [6], the equation handled there is spatially homogeneous and excludes
(1.5). Instead of developing a general theory for (1.5) we rather study its approximation.
In fact, we shall prove that there is a sequence of level set equations

Ye +yY. = M|V [div (V(-Vy)) (1.7)

approximating (1.5) such that the limit of zero level set of 1 = ¢ develops ‘overturning’
if M < M,. Here 7. € C*(R?\ {0}) is convex and positively homogeneous of degree one.

The main idea of the proof is to convert the problem of evolution of {1 = 0} to the
evolution of r = v(y,t) starting with v(y,0) = 0. (For this purpose we assume that
V27(0,1) = 0 so that the line segment on the line y = +d/2 does not move.) We study
the equation for v derived from (1.7) and prove that it converges to a function which
has strictly monotone increasing part in y if M < M,. This means that ‘overturning’
occurs. Unfortunately, the boundary condition for v at y = +d/2 is not conventional. It
is formally' equals the Neumann condition

vy(:l:d/Q, t) = —
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This is hard to handle so we estimate from above and below by solutions of a homogeneous
Neumann problem and on inhomogeneous Dirichlet problem. We prove that solutions of
the latter two problems converges to the same function having desired property.

2 Explicit solutions for some inhomogeneous very
singular diffusion equations

We consider a singular degenerate parabolic equation for v = v(7,t) of the form

v, = M(sgnvy), +n in I x (0,00), (2.1)
v=0 on dI x (0,00), (2.2)
vIt:O =0 (23)

with I = (—d/2,d/2), where M > 0 is a parameter. Since (sgnvy), formally equals
8(vy)vpg, the diffusion is degenerate for v, # 0 and is very strong for v, = 0. Naively,
the meaning of a ‘solution’ is not clear. Fortunately, the theory of nonlinear semigroups
[15] or subdifferential equations provides a suitable notion of a solution. We shall briefly
review its notion and give an explicit representation formula of the solution.

We first give a subdifferential interpretation of the problem (2.1)-(2.3). For v € H =
L*(I) we associate the energy E(v) defined by

E(v) = [ {M[3,(n)] - no(m)}dn if ve BV(I)

and E(v) := oo if v ¢ BV(I). Here BV (I) denotes the space of functions with bounded
variation in I and ¥ denotes the extention of v to R such that ¥ = 0 outside I. The
integral fg |V#(n)|dn denotes the total variation of 7 in R. Then as in [7, the first lemma
in §2] the functional E is convex, lower semicontinuous in the Hilbest space H equipped
with the standard inner product (f,g) = f; fgdn. Note that (2.1) is formally a gradient
flow of E. Thus we formulate the problem (2.1)-(2.3) as

‘;—’t’ € —0E(v), (2.4)

v(0) =0, (2.5)

where OE denotes the subdifferential of E in H. A general theory [15], [1] yields that
there is a unique solution v of (2.4) and (2.5) in the sense that

(i) v € C([0,00), H) i.e., v is continuous from the time interval [0,00) to H. Moreover,
v satisfies (2.5).
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(ii) v is absolutely continuous with values in H on each compact set in (0, 00) and solves
(2.4) for almost all ¢ > 0.

As well-known (e.g. [1], see also [7, §2]) the solution v(t) is right-differentiable at all
¢ > 0 with values in H and its right derivative d*v/dt satisfies
d*v

— = ~8°E(v) for all t>0. (2.6)

where 0°E(v) is the canonical restriction (or minimal section) of E(v), i.e., 3°E(v) is
the unique element of the closed convex set E(v) which is closest to the origin of H.

Moreover, we have another definition of solution equivalent to (i) (ii). Namely, v is the
solution of (2.4) and (2.5) if and only if v fulfills (i) and

(i)’ v is absolutely continuous with values in H on each compact set in (0, 00) and solves
(2.6) for all £ > 0.

Here and hereafter by solution of (2.1)-(2.3) we mean that v satisfies (i) and (ii)’. Fortu-

nately, the solution can be represented in an explicit formula.

Lemma 2.1. Let v be the solution of (2.1)-(2.3). Then v is represented by

”(ﬂ:t) = tvl(n)a t2 0 (27)
with vy satisfying
. d ' d
w(r) =min(y, (5 - 2MY7),)  for neo,5)
d
vi(n) = —v1(-n) forn € (—3,0];

where o, = max («,0). In particular, v; = 0 if and only if M > d?/16 and otherwise v,
has a strictly increasing part. '

Remark 2.2. (i) If we replace the homogeneous Dirichlet condition (2.2) by the homo-

geneous Neumann condition
v, =0 on 0OI x (0,T), : (2.2')

the solution of (2.1) with (2.2'), (2.3) is the same as in (2.7). Here we should replace the
definition of F by

En(v) := /I{M|v,,| —nuidnp if ve BV(I) (2.8)

and En(v) := oo if v ¢ BV(I) so that (2.1), (2.2') (2.3) is formulated by (2.4), (2.5) with
E replaced by Ey.
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(i) We may replace the homogeneous Dirichlet condition (2.2) by inhomogeneous
Dirichlet condition
v=FR at n==xd/2. (2.2")

The solution of (2.1) with (2.2”), (2.3) is the same as in (2.7) for R > 0. Here we should
replace E by
Er(v) := /R{Mlﬁnl —no}dy if veBV() (2.9)

and Eg(v) := oo if v ¢ BV(I). The extention v of v equals —R for > d/2 and R for
n < —d/2. The equation (2.1), (2.2"), (2.3) is now formulated by (2.4), (2.5) with E
replaced by Er. :

To show these statements it suffices to verify (2.6) as in [3].

3 Neumann problems for some non-uniform parabol-
ic equations

To study solutions of problems approximating (2.1)-(2.3) we consider the Neumann prob-

lem:
vy = a(vy)Vy, + 1 in I x (0,00), (3.1)
v, =—a on OI x (0,00), (3.2)
'Ult=0 =0. (33)

Here a € C!(R) is assumed to be positive and  is a non-negative constant. Since v, of
(3.1) solves

Ut = (a(vy)Vyn)y + 1, (3.4)
by the maximum principle we have an a priori bound |v,(n,t)| < max(t, a) for v,. So in
I x (0,T) with T > 0 we may assume that equation is uniformly parabolic by restricting

a on [— max(T,a), max(T,a)]. A general theory of parabolic equations [14] yields an
unique global classical solution v € C%!(I x [0,00)) N C%Y(I x (0,00)) of (3.1)-(3.3).

Our main goal in this section is to prove several properties of the solution of (3.1)-(3.3).

Theorem 3.1. Let v™ be the solution of (3.1)-(3.3) with a: > 0.

(i) (Symmetry). v*(n,t) = —v*(—n,t) forn € I, t > 0. In particular, v*(0,t) = 0 for
t>0.

(ii) (Concavity). v*(n,t) < nt, v¥(n,t) < nforn € Iy, t > 0 with I, = (0,d/2). In
particular, vy, < 0 in I, x (0,00).
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(iii) (Monotonicity). v®* < v? in I, x (0,00) if a > B > 0. Moreover vy < vf; in
I+X(0,00) IfaZﬂZO.

(iv) (Lower bound). Assume that

0 d?
Co = a(r)dr < 3 (3.5)
and 0
¢ = |r|a(r)dr < co. (3.6)

Then v(n,t) > —coc; forn € [0,d/2],t > 0.

Proof. (i) Since —v*(—m,t) solves (3.1)-(3.3), the uniqueness of a solution yields the
syminetry.

(ii) Clearly #t is a supersolution of (3.1)-(3.3) in I, x (0, 00) with zero boundary condition
at 7 = 0 so the comparison principle yields v < gt in I} x (0,00). We differentiate (3.1),
(3.2) in t to get | )

we = a(vy )Wy, + ' (v )wyvg, in I x (0, 00)

wn(d/27t) =0, w(Ovt) =0 (by (z))

for w = vf. Since vy < natt =0 on I} by v* < nt, the maximum principle implies that
w < nin [0,d/2] x [0,00). The concavity follows from v, < 5 and the equation (3.1) since
a > 0. ‘

(iii) For 8 < « the solution v” is a supersolution of (3.1)-(3.3) with v = 0 at = 0 in
I x (0,00), the comparison principle yields v* < v? in I, x (0,00). Since v* < v# and
v® = v” = 0 at = 0, we observe that vy < vg at n = 0. Since vg solves (3.4) and vy < vﬁ
at 77 = d/2, the comparison principle yields vy < vff in I x (0,00).

(iv) As in the next Lemma we shall construct a time independent subsolution f = f,
for (3.1)-(3.3) in I x (0,00) with the zero-boundary condition at = 0 such that f, >
—cgc1. Once such a subsolution is constructed, the comparison principlé yields the bound
v > —cocy for v

Lemma 3.2. Assume that (3.5) holds. Then there exists a unique 0 € I, = (0,d/2)
and a C' function f = f, on I, such that

—(A(f)) =n on I, (3.7)

f(d/2) = —a, f'(0) = f(os) =0, , | (3.8)

where A(q) = [f a(T)d7 and f' denotes the derivative of f. If moreover a satisfies (3.6),
then

e < inf{fa(n); 7€ [0,d/2 a2 0} =inf{fu(d/D;a >0}  (39)
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(The zero-exterision of f, to [0,0] is still denoted by f. ).

Proof. Integrating (3.7) from o to 7 yields

—A(f'(n)) = (n* = 0%)/2 (3.10)

since f'(a) = 0. Since A(p) < d?/8 for p < 0 by (3.5), there is unique o € I, such that

aa=5(35) -5

We fix such a o and then taking the inverse A™! of (3.10) to get

£/(m) = A7H(0" = n)/2), n € [0,d/2) (3.11)
Integrating this with (o) = 0 we obtain the solution f and o € I, satisfying (3.7), (3.8).

By (3.11) f'() < 0in I so inf;, f = f(d/2). Thus to prove (3.9) if suffices to prove
that
inf fo(d/2) > —oo. (3.12)

Integrating (3.11) over [g,d/2] to get

d/2
- fald/) == [ A7 = 1)/ D)dn
= [ aQed < -A(-o) [ A7)

A(-a) A(—o0)

Since

[0 arinar= [ (A() - A(-o0))dp = [_Irla(rdr = Co

A(—o00) —oco -
we now obtain that — f(d/2) < coc;. O

4 Approximate problems
Let v be the solution of (3.1)-(3.3). We define v by
v (n,t) = infosev*(n, t),n € I+ = (0,d/2)
v (n,t) = —v*=(-n,t),n € (—d/2,0)
v>(0,t) = 0.

By the monotone properties and bounds (Theorem 3.1) v* is well-defined and 7 —
v*®(n,t) is C* and concave in I.

Our goal in this section is to prove the convergence of v>® to v in (2.7) when [a
approximates Msgng.
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Theorem 4.1. Assume that a = a® € C'(R),a® > 0 satisfies (3.5) and (3.6). Assume
that 'c§, c¢] defined by (3.5), (3.6) with a = a° are bounded as ¢ — 0. Assume that
A%(q) = Ji a*(7)dT converges to Msgnyn + ¢ with some constant ¢ as € — 0 (in the sense
of monotone graphs). Let v°® be the solution of (3.1), (3.2), (3.3) with a = a° and let

oo

Ve

= info50v2. Let v be the function defined in (2.7). Then v converges tov as e — 0
uniformly in every compact subset of I x [0, 00).

We shall prove this result by estimating v2° from above by the solution of the homogeneous
Neumann problem and from below by that of a nonhomogeneous Dirichlet problem.

4.1 Convergence of the Neumann problem

Proposition 4.2. Assume that A°(q) = f¢ a*(7)dT convergence to Msgn n+c with some
constant ¢ as € = 0, where a¢ € C'(R) and a* > 0. Let v? be the solution of (3.1)-(3.3)
with a = 0. Then v? converges to v (defined by (2.7)) as € — 0 uniformly in I x [0,T)
for any T > 0.

Proof. We formulate the problem (3.1)-(3.3) by using a subdifferential equation u; €
—0E5(u), u|i=o = 0. By a stability theorem of J. Watanabe [17] based on [2] the solution
v? converges to a solution u of u; € —8Ey in C([0,T], L?(I)) for any T > 0. Since the
solution of u; € —0EN with uli—¢ = 0 equals v of (2.7) as in Remark 2.2, ¥ — v in
C([0,T], L*(I)). By Theorem 3.1 v2(7,t) is concave in 1) € I and %, < 1 at g = 0. Since
vg,(d/2,t) = 0, we see that vel (-,t;) always contains a uniform convergent subsequence on
Tasj— ocoife; = 0,¢; € [0,T)]. Since v? — v in C([0,T], L?>(I)) this implies the uniform
convergence of v? in I x [0, 7] as stated in the next lemma whose proof is elementary.

Lemma 4.3. Assume that u* — u in C([0,T],L*(Q)) as ¢ — 0, where § is an open
set in R?. Assume that {u% (-,t;)} has a uniform convergent subsequence in Q provident
that €; — 0, t; € [0,T]. Then u* — u uniformly in [0,T] x €.

4.2 Dirichlet problem

We consider the Dirichlet problem for (3.1), (3.3) with a = a® with the boundary condition
v(+d/2,t) = TR, (4.1)

where R is a positive constant. Let vg: be the solution of (3.1), (3.3) with (4.1). The
solution may not be satisfies (4.1). It can be understood as the limit of a uniformly
parabolic problem which approximates (3.1), (3.3) and (4.1). Since we may assume that
we conclude that vge ,, < 0in I; % (0,00).



122

Proposition 4.4 Assume the same hypotheess of Proposition 4.2 concerning a°. Let
vpe be the solution of (3.1), (3.3) and (4.1). with a = a°. Then vg. — v as € — 0
uniformly in each compact subset of I x [0,00), where v is defined by (2.7).

Proof. As in the proof of Proposition 4.2 we observe that vge — v in C([0,T], L*(1)).
Again vp, is concave in 7 € I, and vg.,(0,t) < 1. However, there is no control on
VRen(d/2,t). All we expect is that vp. is bounded in I x [0,T] and vg. is concave in 7.
From these facts we are able to prove that vg,, (-, t;) has a uniform convergent subsequence
in [0,d/2 — 4] for each § > 0 if ¢; € [0.T] and €; — 0. By Lemma 4.3 we now conclude
that vg. — v in each compact subset of I x [0, 00)

Proof of Theorem 4.1. By Theorem 3.1 (iii) we see that v < v? in I, X (0,00). We take
R > c§cf for small € > 0. Then by the comparison for the Dirichlet problem

Ve < v in I; x (0,00).
since vg, = v¥ =0 at = 0. This implies
vge < v in Iy x (0,00).

The convergence results (Propositions 4.2, 4.4) yield the convergence v — v. O

5 Level set solutions
We consider the level set equation of the form
Yo+ y¥= = M|VY|div{Vy(-V¥/|V¥])} in R’ x (0, 00) (5.1)

Here ~ is a convex, positively homogeneous of degree one in R2. If M = 0, the set {y = 0}
formally represents the graph of a solution of the Burgers equation for u = u(z,t):

Uy + uu, = 0.

We shall use the convention that ¢y > 0 below the graph of u. By a standard theory
of the level set equation for each v, € BUC(R?) there is a unique viscosity solution
¥ € BUC(R? x [0,71) for any T > 0 of (5.1) satisfying ¥(z,y,t) = ¥o(x,n) provided that
v € C*(R\ {0}) ; see [11], [13]. We consider the initial data ), satisfying

{¥o >0} = {(x,h);y < —d/2} U {(z,n);z > 0,y < d/2} =: D,.

and call the set D = {¢ > 0} is the level set solution (of (5.1)) with the initial data D,.
The set D is independent of the choice of ¥y and is uniquely determined by D,.
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Our main goal is to show that if M < d?/16, then for a large class of v such that
V+(=V¢/|Vy|) approximating ¥,/|¢,], the limit of D develop ‘overturning’.

Lemma 5.1. Let v € C*(R?\ {0}) be convex and positively homogeneous of degree
one. Then '

- V2(0,1) =0
if and only if |¢PW”"(gq) — 0 as ¢ = —oo for W(q) = (1, —q).

Proof. By definition

Y2(l,—q) = =W'(q) and 2(1,—q) = W"(g),

where v; = 0v/0pi, 7i; = 0%y/dp;Op;. Since +; is positively homogeneous of degree one,
we have

12(1, —q) — gy22(1,—¢) =0
7111, =) — gm2(1,—g) = 0.
Thus
m(l,—¢) = ¢W'(7), ma(l,—q) = gW'(q).

Since 7;; is positively homogeneous of degree —1,
%L/ (1 + )2, =g/ (1 + @)7?) = 1+ ¢%)2y;5(1, —¢) = 7;(0,1)

as ¢ = —oo. Thus ¢*W"(q) = 0 as ¢ = oo is equivalent to v;;(0,1) =0 forall 1 < i, j <
2.0

The next lemma relates the level set solution D and a solution of (3.1), (3,3).

Lemma 5.2 Let v € C*(R\ {0}) be convex and positively homogeneous of degree.
Assume that |¢*|W"(q) — 0 as ¢ = —oco for W(q) = (1, —q). Assume that W"(q) > 0.
For a(q) = M(1 + ¢*)/*W"(q) let v* the solution of (3.1)-(3.3) and v™® = infas¢v®. Let
D be the level set solution with initial data Dy. Then

D ={(z,5,2)y < ~d/2} U{(z, 0, 0)iz < v (,0), —d/2<y<df2}.  (52)
The proof is not short. We here indicate the idea of the proof.

Stepl. The right hand side (denoted D) of (5.2) is a solution of (5.1) in the sense that
the characteristic function of D solves (5.1) in the viscosity sense. We use the fact that
the straight part of 3D C {y = +d/2} does not move because of Lemma 5.1. We also
note that vy°(n,t) — —oo as 1 1 d/2, This is important to prove that D is the solution of
(5.1). Note that if the boundary of D is written as z = v(y, t), then v satisfies (3.1).
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Step.2 The set D is the level set solution. This can be proved by showing that there is
no fattening for D.

As an application of Theorem 4.1 we have a convergence result.

Theorem 5.3. Let ¢ fulfills the assumption of y in Lemma 5.2 with W¢(q) = 7°(1, —q).
Assume that W€ (q) — sgng + ¢ with some constant c as € — 0 in the sense of monotone
graphs. Let D* be the level set solution of (5.1) with v = * starting with Dy Assume
that there is r > 0 such that

) .
/ (14 ¢)Y2 W (q)dg < r for small ¢

-00

and 0
lgl(1 + ¢*)"/2 W' (g)dg < oc.

sup
0<e<1

Then D* converges to
E ={(z,y,t);y < —d/2} U{(z,y,t);z < v(y,t), —d/2 < y < d/2}

in the sense of Hausdorff distance topology provided that Mr < d?/8.

Example. If W¢(q) = f§ tanh (7/¢)dr, then

o 1
[+ w(gdg 1,
so for each § > 0, there is €9 > 0 such that

0 /"
/ 1+ )2 We'(q)dg <148 for € (0,z).

—00

The condition

0 "
sup [ q(1+¢%)? W (g)dg < oo
0<e<l J—©

is evidently fulfilled. Thus the convergence results holds for M(1 +4) < d?/8. If § > 0
is taken small so that (1 + 6)/16 < 8, then we have a threshold value M = d?/16 such
that if M < d?/16, then E experiences ‘overturning’ in the sense that there is a point
(Z0, Yo, to) and (zo, Y1, to) satisfying y; < yo such that

(iEo,yo,to) € E while (.’L‘l,yl,to) ¢ E.

If M > d*/16, E = Dy x (0,00) so no overturn occurs.
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