Title	On minimal vertical singular diffusion preventing overturning （V iscosity Solutions of Differential Equations and Related Topics）
Author（s）	Giga，Mi－Ho；Giga，Y oshikazu
Citation	数理解析研究所講究録（2002），1287：114－126
Issue Date	2002－09
URL	http：／hdl．handle．net／2433／42481
Right	LyOTO UNIVERSITY
Type	Departmental Bulletin Paper
Textversion	publisher

On minimal vertical singular diffusion preventing overturning

儀我美保
北大•理 儀我美一
Mi－Ho Giga and Yoshikazu Giga＊
＊Department of Mathematics
Hokkaido University
Sapporo 060－0810，Japan

1 Introduction

This is a preliminary version of our work to a continuation of recent works［9］，［10］of the second author．

In［9］we introduce the notion of proper viscosity solutions for a class of equations whose solutions may develop jump discontinuities．The class contains（scalar）conservation laws as special examples and a proper viscosity solution is essentially equivalent to an entropy solution for conservation laws．In［10］we propose to interpret this evolution as a result of the vertical singular diffusion．By a formal argument we have noted in［10］that there is a threshold value of the strength of the vertical diffusion such that it prevents overturning of the solution．

In this paper we give a rigorous proof for the fact that a solution develops overturning if the strength M of the vertical diffusion is smaller than the critical value by studying the Riemann problem for the Burgers equation：

$$
\begin{gather*}
u_{t}+u u_{x}=0 \tag{1.1}\\
u(x, 0)=(\operatorname{sgn} x) d / 2 \tag{1.2}
\end{gather*}
$$

If one views the graph of u as a level set of auxiliarly function $\psi(x, y, t), \psi$ must satisfy

$$
\begin{equation*}
\psi_{t}+y \psi_{x}=0 . \tag{1.3}
\end{equation*}
$$

If we consider（1．3）in $\mathbf{R}^{2} \times(0, T)$ ，each level set of ψ moves by（1．1）if it is represented by the graph of a function $u=u(x, t)$ ．This formulation is successful to track discontinuous solutions for

$$
u_{t}+H\left(u, u_{x}\right)=0
$$

if $r \mapsto H(r, p)$ is nondecreasing so that solution does not develop discontinuities if the initial data is continuous [12]. However, for (1.1) the zero level set of the solution of (1.3) certainly overturn if initially

$$
\begin{equation*}
\{(x, y) ; \psi(x, y, 0)>0\}=\{(x, y) ; y<-d / 2\} \cup\{(x, y) ; x<0,-d / 2 \leq y<d / 2\} ; \tag{1.4}
\end{equation*}
$$

in fact, the zero level set $\psi=0$ for $t>0$ cannot be viewed as the graph of a single valued function in any sense.

In [10] we propose to add the vertical diffusion term

$$
\begin{equation*}
\psi_{t}+y \psi_{x}=M|\nabla \psi| \partial_{y}\left(\psi_{y} / \mid \psi_{y}\right) . \tag{1.5}
\end{equation*}
$$

A formal argument $[10$, Theorem 2.1] reflecting [3] says that if M is large so that

$$
\begin{equation*}
V_{I} \geq V-2 M \quad \text { on } \quad I=(-d / 2, d / 2), \tag{1.6}
\end{equation*}
$$

then the zero level set of ψ with initial condition (1.4) does not overturn and equals the graph of the entropy solution of (1.1), (1.2). Here $V(\eta)=-\eta^{2} / 2$ which is the primitive of $-y$ and V_{I} denotes its convex hull in I. An elementary calculation shows that the minimum value M_{0} of M satisfying (1.6) is $d^{2} / 16$. In the numerical simulation [16] we also observe that the overturning occurs if and only if $M<M_{0}=d^{2} / 16$. (There I is replaced by (a, b) but the value of M_{0} equals ($\left.b-a\right)^{2} / 16$.)

In this paper we show analytically that M_{0} is optimal in the sense that if $M<M_{0}$, the overturning is not prevented. It is also possible to prove that the overturning does not occur $M \geq M_{0}$ for more general equations but we shall discuss this problem in one of forthcoming papers.

Although the level set method (see e.g. [8]) allowing the singular diffusivity is wellstudied by [4], [5], [6], the equation handled there is spatially homogeneous and excludes (1.5). Instead of developing a general theory for (1.5) we rather study its approximation. In fact, we shall prove that there is a sequence of level set equations

$$
\begin{equation*}
\psi_{t}+y \psi_{x}=M|\nabla \psi| \operatorname{div}\left(\nabla \gamma_{\varepsilon}(-\nabla \psi)\right) \tag{1.7}
\end{equation*}
$$

approximating (1.5) such that the limit of zero level set of $\psi=\psi^{\varepsilon}$ develops 'overturning' if $M<M_{0}$. Here $\gamma_{\varepsilon} \in C^{2}\left(\mathbf{R}^{2} \backslash\{0\}\right)$ is convex and positively homogeneous of degree one.

The main idea of the proof is to convert the problem of evolution of $\{\psi=0\}$ to the evolution of $x=v(y, t)$ starting with $v(y, 0)=0$. (For this purpose we assume that $\nabla^{2} \gamma(0,1)=0$ so that the line segment on the line $y= \pm d / 2$ does not move.) We study the equation for v derived from (1.7) and prove that it converges to a function which has strictly monotone increasing part in y if $M<M_{0}$. This means that 'overturning' occurs. Unfortunately, the boundary condition for v at $y= \pm d / 2$ is not conventional. It is formally equals the Neumann condition

$$
v_{y}(\pm d / 2, t)=-\infty .
$$

This is hard to handle so we estimate from above and below by solutions of a homogeneous Neumann problem and on inhomogeneous Dirichlet problem. We prove that solutions of the latter two problems converges to the same function having desired property.

2 Explicit solutions for some inhomogeneous very singular diffusion equations

We consider a singular degenerate parabolic equation for $v=v(\eta, t)$ of the form

$$
\begin{gather*}
v_{t}=M\left(\operatorname{sgn} v_{\eta}\right)_{\eta}+\eta \text { in } I \times(0, \infty), \tag{2.1}\\
v=0 \quad \text { on } \quad \partial I \times(0, \infty) \tag{2.2}\\
\left.v\right|_{t=0}=0 \tag{2.3}
\end{gather*}
$$

with $I=(-d / 2, d / 2)$, where $M>0$ is a parameter. Since $\left(\operatorname{sgn} v_{\eta}\right)_{\eta}$ formally equals $\delta\left(v_{\eta}\right) v_{\eta \eta}$, the diffusion is degenerate for $v_{\eta} \neq 0$ and is very strong for $v_{\eta}=0$. Naively, the meaning of a 'solution' is not clear. Fortunately, the theory of nonlinear semigroups [15] or subdifferential equations provides a suitable notion of a solution. We shall briefly review its notion and give an explicit representation formula of the solution.

We first give a subdifferential interpretation of the problem (2.1)-(2.3). For $v \in H=$ $L^{2}(I)$ we associate the energy $E(v)$ defined by

$$
E(v):=\int_{\mathbf{R}}\left\{M\left|\tilde{v}_{\eta}(\eta)\right|-\eta \tilde{v}(\eta)\right\} \mathrm{d} \eta \text { if } v \in B V(I)
$$

and $E(v):=\infty$ if $v \notin B V(I)$. Here $B V(I)$ denotes the space of functions with bounded variation in I and \tilde{v} denotes the extention of v to \mathbf{R} such that $\tilde{v}=0$ outside I. The integral $\int_{\mathbf{R}}|\nabla \tilde{v}(n)| d \eta$ denotes the total variation of \tilde{v} in \mathbf{R}. Then as in $[7$, the first lemma in $\S 2$] the functional E is convex, lower semicontinuous in the Hilbest space H equipped with the standard inner product $(f, g)=\int_{I} f g d \eta$. Note that (2.1) is formally a gradient flow of E. Thus we formulate the problem (2.1)-(2.3) as

$$
\begin{gather*}
\frac{d v}{d t} \epsilon-\partial E(v) \tag{2.4}\\
v(0)=0 \tag{2.5}
\end{gather*}
$$

where ∂E denotes the subdifferential of E in H. A general theory [15], [1] yields that there is a unique solution v of (2.4) and (2.5) in the sense that
(i) $v \in C([0, \infty), H)$ i.e., v is continuous from the time interval $[0, \infty)$ to H. Moreover, v satisfies (2.5).
(ii) v is absolutely continuous with values in H on each compact set in $(0, \infty)$ and solves (2.4) for almost all $t \geq 0$.

As well-known (e.g. [1], see also [7, §2]) the solution $v(t)$ is right-differentiable at all $t>0$ with values in H and its right derivative $d^{+} v / d t$ satisfies

$$
\begin{equation*}
\frac{d^{+} v}{d t}=-\partial^{0} E(v) \text { for all } t>0 \tag{2.6}
\end{equation*}
$$

where $\partial^{0} E(v)$ is the canonical restriction (or minimal section) of $\partial E(v)$, i.e., $\partial^{0} E(v)$ is the unique element of the closed convex set $\partial E(v)$ which is closest to the origin of H. Moreover, we have another definition of solution equivalent to (i) (ii). Namely, v is the solution of (2.4) and (2.5) if and only if v fulfills (i) and
(ii)' v is absolutely continuous with values in H on each compact set in $(0, \infty)$ and solves (2.6) for all $t>0$.

Here and hereafter by solution of (2.1)-(2.3) we mean that v satisfies (i) and (ii)'. Fortunately, the solution can be represented in an explicit formula.

Lemma 2.1. Let v be the solution of (2.1)-(2.3). Then v is represented by

$$
\begin{equation*}
v(\eta, t)=t v_{1}(\eta), t \geq 0 \tag{2.7}
\end{equation*}
$$

with v_{1} satisfying

$$
\begin{array}{ll}
v_{1}(\eta)=\min \left(\eta,\left(\frac{d}{2}-2 M^{1 / 2}\right)_{+}\right) & \text {for } \eta \in\left[0, \frac{d}{2}\right) \\
v_{1}(\eta)=-v_{1}(-\eta) & \text { for } \eta \in\left(-\frac{d}{2}, 0\right]
\end{array}
$$

where $\alpha_{+}=\max (\alpha, 0)$. In particular, $v_{1} \equiv 0$ if and only if $M \geq d^{2} / 16$ and otherwise v_{1} has a strictly increasing part.

Remark 2.2. (i) If we replace the homogeneous Dirichlet condition (2.2) by the homogeneous Neumann condition

$$
v_{\eta}=0 \quad \text { on } \quad \partial I \times(0, T),
$$

the solution of (2.1) with $\left(2.2^{\prime}\right),(2.3)$ is the same as in (2.7). Here we should replace the definition of E by

$$
\begin{equation*}
E_{N}(v):=\int_{I}\left\{M\left|v_{\eta}\right|-\eta v\right\} \mathrm{d} \eta \quad \text { if } \quad v \in B V(I) \tag{2.8}
\end{equation*}
$$

and $E_{N}(v):=\infty$ if $v \notin B V(I)$ so that $(2.1),\left(2.2^{\prime}\right)(2.3)$ is formulated by (2.4), (2.5) with E replaced by E_{N}.
(ii) We may replace the homogeneous Dirichlet condition (2.2) by inhomogeneous Dirichlet condition

$$
v=\mp R \quad \text { at } \quad \eta= \pm d / 2 .
$$

The solution of (2.1) with $\left(2.2^{\prime \prime}\right),(2.3)$ is the same as in (2.7) for $R>0$. Here we should replace E by

$$
\begin{equation*}
E_{R}(v):=\int_{\mathbf{R}}\left\{M\left|\bar{v}_{\eta}\right|-\eta \bar{v}\right\} \mathrm{d} \eta \quad \text { if } \quad v \in B V(I) \tag{2.9}
\end{equation*}
$$

and $E_{R}(v):=\infty$ if $v \notin B V(I)$. The extention \bar{v} of v equals $-R$ for $\eta \geq d / 2$ and R for $\eta \leq-d / 2$. The equation (2.1), (2.2"), (2.3) is now formulated by (2.4), (2.5) with E replaced by E_{R}.

To show these statements it suffices to verify (2.6) as in [3].

3 Neumann problems for some non-uniform parabolic equations

To study solutions of problems approximating (2.1)-(2.3) we consider the Neumann problem:

$$
\begin{gather*}
v_{t}=a\left(v_{\eta}\right) v_{\eta \eta}+\eta \quad \text { in } I \times(0, \infty), \tag{3.1}\\
v_{\eta}=-\alpha \quad \text { on } \partial I \times(0, \infty), \tag{3.2}\\
\left.v\right|_{t=0}=0 \tag{3.3}
\end{gather*}
$$

Here $a \in C^{1}(\mathbf{R})$ is assumed to be positive and α is a non-negative constant. Since v_{η} of (3.1) solves

$$
\begin{equation*}
v_{\eta t}=\left(a\left(v_{\eta}\right) v_{\eta \eta}\right)_{\eta}+1, \tag{3.4}
\end{equation*}
$$

by the maximum principle we have an a priori bound $\left|v_{\eta}(n, t)\right| \leq \max (t, \alpha)$ for v_{η}. So in $I \times(0, T)$ with $T>0$ we may assume that equation is uniformly parabolic by restricting a on $[-\max (T, \alpha), \max (T, \alpha)]$. A general theory of parabolic equations [14] yields an unique global classical solution $v \in C^{2,1}(I \times[0, \infty)) \cap C^{2,1}(\bar{I} \times(0, \infty))$ of (3.1)-(3.3).

Our main goal in this section is to prove several properties of the solution of (3.1)-(3.3).
Theorem 3.1. Let v^{α} be the solution of (3.1)-(3.3) with $\alpha \geq 0$.
(i) (Symmetry). $v^{\alpha}(\eta, t)=-v^{\alpha}(-\eta, t)$ for $\eta \in I$, $t \geq 0$. In particular, $v^{\alpha}(0, t)=0$ for $t>0$.
(ii) (Concavity). $v^{\alpha}(\eta, t) \leq \eta t, v_{t}^{\alpha}(\eta, t) \leq \eta$ for $\eta \in I_{+}, t \geq 0$ with $I_{+}=(0, d / 2)$. In particular, $v_{\eta \eta}^{\alpha} \leq 0$ in $I_{+} \times(0, \infty)$.
(iii) (Monotonicity). $v^{\alpha} \leq v^{\beta}$ in $I_{+} \times(0, \infty)$ if $\alpha \geq \beta \geq 0$. Moreover $v_{\eta}^{\alpha} \leq v_{\eta}^{\beta}$ in $I_{+} \times(0, \infty)$ if $\alpha \geq \beta \geq 0$.
(iv) (Lower bound). Assume that

$$
\begin{equation*}
c_{0}:=\int_{-\infty}^{0} a(\tau) \mathrm{d} \tau \leq \frac{d^{2}}{8} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1}:=\int_{-\infty}^{0}|\tau| a(\tau) \mathrm{d} \tau<\infty . \tag{3.6}
\end{equation*}
$$

Then $v^{\alpha}(\eta, t) \geq-c_{0} c_{1}$ for $\eta \in[0, d / 2], t \geq 0$.
Proof. (i) Since $-v^{\alpha}(-\eta, t)$ solves (3.1)-(3.3), the uniqueness of a solution yields the symmetry.
(ii) Clearly ηt is a supersolution of (3.1)-(3.3) in $I_{+} \times(0, \infty)$ with zero boundary condition at $\eta=0$ so the comparison principle yields $v \leq \eta t$ in $I_{+} \times(0, \infty)$. We differentiate (3.1), (3.2) in t to get

$$
\begin{aligned}
& w_{t}=a\left(v_{\eta}^{\alpha}\right) w_{\eta \eta}+a^{\prime}\left(v_{\eta}^{\alpha}\right) w_{\eta} v_{\eta \eta}^{\alpha} \text { in } I \times(0, \infty) \\
& w_{\eta}(d / 2, t)=0, w(0, t)=0(\text { by }(i))
\end{aligned}
$$

for $w=v_{t}^{\alpha}$. Since $v_{t}^{\alpha} \leq \eta$ at $t=0$ on I_{+}by $v^{\alpha} \leq \eta t$, the maximum principle implies that $w \leq \eta$ in $[0, d / 2] \times[0, \infty)$. The concavity follows from $v_{t} \leq \eta$ and the equation (3.1) since $a>0$.
(iii) For $\beta \leq \alpha$ the solution v^{β} is a supersolution of (3.1)-(3.3) with $v=0$ at $\eta=0$ in $I_{+} \times(0, \infty)$, the comparison principle yields $v^{\alpha} \leq v^{\beta}$ in $I_{+} \times(0, \infty)$. Since $v^{\alpha} \leq v^{\beta}$ and $v^{\alpha}=v^{\beta}=0$ at $\eta=0$, we observe that $v_{\eta}^{\alpha} \leq v_{\eta}^{\beta}$ at $\eta=0$. Since v_{η}^{β} solves (3.4) and $v_{\eta}^{\alpha} \leq v_{\eta}^{\beta}$ at $\eta=d / 2$, the comparison principle yields $v_{\eta}^{\alpha} \leq v_{\eta}^{\beta}$ in $I_{+} \times(0, \infty)$.
(iv) As in the next Lemma we shall construct a time independent subsolution $f=f_{\alpha}$ for (3.1)-(3.3) in $I_{+} \times(0, \infty)$ with the zero-boundary condition at $\eta=0$ such that $f_{\alpha} \geq$ $-c_{0} c_{1}$. Once such a subsolution is constructed, the comparison principle yields the bound $v^{\alpha} \geq-c_{0} c_{1}$ for v^{α}.

Lemma 3.2. Assume that (3.5) holds. Then there exists a unique $\sigma \in I_{+}=(0, d / 2)$ and a C^{1} function $f=f_{\alpha}$ on \tilde{I}_{+}such that

$$
\begin{gather*}
-\left(A\left(f^{\prime}(\eta)\right)^{\prime}=\eta \quad \text { on } \quad I_{+}\right. \tag{3.7}\\
f^{\prime}(d / 2)=-\alpha, f^{\prime}(\sigma)=f(\sigma)=0, \tag{3.8}
\end{gather*}
$$

where $A(q)=\int_{0}^{q} a(\tau) \mathrm{d} \tau$ and f^{\prime} denotes the derivative of f. If moreover a satisfies (3.6), then

$$
\begin{equation*}
-c_{0} c_{1} \leq \inf \left\{f_{\alpha}(\eta) ; \quad \eta \in[0, d / 2], \alpha \geq 0\right\}=\inf \left\{f_{\alpha}(d / 2) ; \alpha \geq 0\right\} \tag{3.9}
\end{equation*}
$$

(The zero-exterision of f_{α} to $[0, \sigma]$ is still denoted by f_{α}).
Proof. Integrating (3.7) from σ to η yields

$$
\begin{equation*}
-A\left(f^{\prime}(\eta)\right)=\left(\eta^{2}-\sigma^{2}\right) / 2 \tag{3.10}
\end{equation*}
$$

since $f^{\prime}(\sigma)=0$. Since $A(p) \leq d^{2} / 8$ for $p \leq 0$ by (3.5), there is unique $\sigma \in I_{+}$such that

$$
-A(-\alpha)=\frac{1}{2}\left(\frac{d}{2}\right)^{2}-\frac{\sigma}{2}^{2}
$$

We fix such a σ and then taking the inverse A^{-1} of (3.10) to get

$$
\begin{equation*}
f^{\prime}(\eta)=A^{-1}\left(\left(\sigma^{2}-\eta^{2}\right) / 2\right), \eta \in[\sigma, d / 2] \tag{3.11}
\end{equation*}
$$

Integrating this with $f(\sigma)=0$ we obtain the solution f and $\sigma \in I_{+}$satisfying (3.7), (3.8).
By (3.11) $f^{\prime}(\eta) \leq 0$ in I_{+}so $\inf _{I_{+}} f=f(d / 2)$. Thus to prove (3.9) if suffices to prove that

$$
\begin{equation*}
\inf _{\alpha} f_{\alpha}(d / 2)>-\infty \tag{3.12}
\end{equation*}
$$

Integrating (3.11) over $[\sigma, d / 2]$ to get

$$
\begin{aligned}
& -f_{\alpha}(d / 2)=-\int_{\sigma}^{d / 2} A^{-1}\left(\left(\sigma^{2}-\eta^{2}\right) / 2\right) \mathrm{d} \eta \\
& \quad=-\int_{A(-\alpha)}^{0} A^{-1}(\xi) \xi \mathrm{d} \xi \leq-A(-\infty) \int_{A(-\infty)}^{0} A^{-1}(\xi) \mathrm{d} \xi
\end{aligned}
$$

Since

$$
-\int_{A(-\infty)}^{0} A^{-1}(\tau) \mathrm{d} \tau=\int_{-\infty}^{0}(A(p)-A(-\infty)) \mathrm{d} p=\int_{-\infty}^{0}|\tau| a(\tau) \mathrm{d} \tau=C_{0}
$$

we now obtain that $-f_{\alpha}(d / 2) \leq c_{0} c_{1}$.

4 Approximate problems

Let v^{α} be the solution of (3.1)-(3.3). We define v^{∞} by

$$
\begin{gathered}
v^{\infty}(\eta, t)=\inf _{\alpha>0} v^{\alpha}(\eta, t), \eta \in I_{+}=(0, d / 2) \\
v^{\infty}(\eta, t)=-v^{\infty}(-\eta, t), \eta \in(-d / 2,0) \\
v^{\infty}(0, t)=0
\end{gathered}
$$

By the monotone properties and bounds (Theorem 3.1) v^{∞} is well-defined and $\eta \mapsto$ $v^{\infty}(\eta, t)$ is C^{1} and concave in I_{+}.

Our goal in this section is to prove the convergence of v^{∞} to v in (2.7) when $\int^{q} a$ approximates $M \operatorname{sgn} q$.

Theorem 4.1. Assume that $a=a^{\varepsilon} \in C^{1}(\mathbf{R}), a^{\varepsilon}>0$ satisfies (3.5) and (3.6). Assume that c_{0}^{ε}, c_{1}^{ε} defined by (3.5), (3.6) with $a=a^{\varepsilon}$ are bounded as $\varepsilon \rightarrow 0$. Assume that $A^{\varepsilon}(q)=\int_{0}^{q} a^{\varepsilon}(\tau) \mathrm{d} \tau$ converges to $M \operatorname{sgn} \eta+c$ with some constant c as $\varepsilon \rightarrow 0$ (in the sense of monotone graphs). Let v_{ε}^{∞} be the solution of (3.1), (3.2), (3.3) with $a=a^{\varepsilon}$ and let $v_{\varepsilon}^{\infty}=\inf _{\alpha>0} v_{\varepsilon}^{\alpha}$. Let v be the function defined in (2.7). Then v_{ε}^{∞} converges to v as $\varepsilon \rightarrow 0$ uniformly in every compact subset of $I \times[0, \infty)$.

We shall prove this result by estimating v_{ε}^{∞} from above by the solution of the homogeneous Neumann problem and from below by that of a nonhomogeneous Dirichlet problem.

4.1 Convergence of the Neumann problem

Proposition 4.2. Assume that $A^{\varepsilon}(q)=\int_{0}^{q} a^{\varepsilon}(\tau) \mathrm{d} \tau$ convergence to $\operatorname{Msgn} \eta+c$ with some constant c as $\varepsilon \rightarrow 0$, where $a^{\varepsilon} \in C^{1}(\mathbf{R})$ and $a^{\varepsilon}>0$. Let v_{ε}^{0} be the solution of (3.1)-(3.3) with $\alpha=0$. Then v_{ε}^{0} converges to v (defined by (2.7)) as $\varepsilon \rightarrow 0$ uniformly in $\bar{I} \times[0, T]$ for any $T>0$.

Proof. We formulate the problem (3.1)-(3.3) by using a subdifferential equation $u_{t} \in$ $-\partial E_{N}^{\epsilon}(u),\left.u\right|_{t=0}=0$. By a stability theorem of J. Watanabe [17] based on [2] the solution v_{ε}^{0} converges to a solution u of $u_{t} \in-\partial E_{N}$ in $C\left([0, T], L^{2}(I)\right)$ for any $T>0$. Since the solution of $u_{t} \in-\partial E_{N}$ with $\left.u\right|_{t=0}=0$ equals v of (2.7) as in Remark 2.2, $v_{\varepsilon}^{0} \rightarrow v$ in $C\left([0, T], L^{2}(I)\right)$. By Theorem $3.1 v_{\varepsilon}^{0}(\eta, t)$ is concave in $\eta \in I_{+}$and $v_{\varepsilon \eta}^{0} \leq 1$ at $\eta=0$. Since $v_{\varepsilon \eta}^{0}(d / 2, t)=0$, we see that $v_{\varepsilon_{j}}^{\mathbf{0}_{j}}\left(\cdot, t_{j}\right)$ always contains a uniform convergent subsequence on I as $j \rightarrow \infty$ if $\varepsilon_{j} \rightarrow 0, t_{j} \in[0, T]$. Since $v_{\varepsilon}^{0} \rightarrow v$ in $C\left([0, T], L^{2}(I)\right)$ this implies the uniform convergence of v_{ε}^{0} in $\bar{I} \times[0, T]$ as stated in the next lemma whose proof is elementary.

Lemma 4.3. Assume that $u^{\varepsilon} \rightarrow u$ in $C\left([0, T], L^{2}(\Omega)\right)$ as $\varepsilon \rightarrow 0$, where Ω is an open set in \mathbf{R}^{d}. Assume that $\left\{u^{\varepsilon_{j}}\left(\cdot, t_{j}\right)\right\}$ has a uniform convergent subsequence in $\bar{\Omega}$ provident that $\varepsilon_{j} \rightarrow 0, t_{j} \in[0, T]$. Then $u^{\varepsilon} \rightarrow u$ uniformly in $[0, T] \times \bar{\Omega}$.

4.2 Dirichlet problem

We consider the Dirichlet problem for (3.1), (3.3) with $a=a^{\varepsilon}$ with the boundary condition

$$
\begin{equation*}
v(\pm d / 2, t)=\mp R \tag{4.1}
\end{equation*}
$$

where R is a positive constant. Let $v_{R^{\varepsilon}}$ be the solution of (3.1), (3.3) with (4.1). The solution may not be satisfies (4.1). It can be understood as the limit of a uniformly parabolic problem which approximates (3.1), (3.3) and (4.1). Since we may assume that we conclude that $v_{R \varepsilon, \eta \eta} \leq 0$ in $I_{t} \times(0, \infty)$.

Proposition 4.4 Assume the same hypotheess of Proposition 4.2 concerning a^{ε}. Let $v_{R^{e}}$ be the solution of (3.1), (3.3) and (4.1). with $a=a^{\varepsilon}$. Then $v_{R^{\varepsilon}} \rightarrow v$ as $\varepsilon \rightarrow 0$ uniformly in each compact subset of $I \times[0, \infty)$, where v is defined by (2.7).

Proof. As in the proof of Proposition 4.2 we observe that $v_{R^{e}} \rightarrow v$ in $C\left([0, T], L^{2}(I)\right)$. Again $v_{R \varepsilon}$ is concave in $\eta \in I_{+}$and $v_{R \varepsilon, \eta}(0, t) \leq 1$. However, there is no control on $v_{R \varepsilon, \eta}(d / 2, t)$. All we expect is that $v_{R \varepsilon}$ is bounded in $I_{+} \times[0, T]$ and $v_{R \varepsilon}$ is concave in η. From these facts we are able to prove that $v_{R \varepsilon_{v}}\left(\cdot, t_{j}\right)$ has a uniform convergent subsequence in $[0, d / 2-\delta]$ for each $\delta>0$ if $t_{j} \in[0 . T]$ and $\varepsilon_{j} \rightarrow 0$. By Lemma 4.3 we now conclude that $v_{R \varepsilon} \rightarrow v$ in each compact subset of $I \times[0, \infty)$

Proof of Theorem 4.1. By Theorem 3.1 (iii) we see that $v_{\varepsilon}^{\infty} \leq v_{\varepsilon}^{0}$ in $I_{+} \times(0, \infty)$. We take $R \geq c_{0}^{\varepsilon} c_{1}^{\varepsilon}$ for small $\varepsilon>0$. Then by the comparison for the Dirichlet problem

$$
v_{R \varepsilon} \leq v_{\varepsilon}^{\alpha} \quad \text { in } \quad I_{+} \times(0, \infty)
$$

since $v_{R \varepsilon}=v_{\varepsilon}^{\alpha}=0$ at $\eta=0$. This implies

$$
v_{R \varepsilon} \leq v_{\varepsilon}^{\infty} \quad \text { in } \quad I_{+} \times(0, \infty)
$$

The convergence results (Propositions 4.2, 4.4) yield the convergence $v_{\varepsilon}^{\infty} \rightarrow v$.

5 Level set solutions

We consider the level set equation of the form

$$
\begin{equation*}
\psi_{t}+y \psi_{x}=M|\nabla \psi| \operatorname{div}\{\nabla \gamma(-\nabla \psi /|\nabla \psi|)\} \quad \text { in } \quad \mathbf{R}^{2} \times(0, \infty) \tag{5.1}
\end{equation*}
$$

Here γ is a convex, positively homogeneous of degree one in \mathbf{R}^{2}. If $M=0$, the set $\{\psi=0\}$ formally represents the graph of a solution of the Burgers equation for $u=u(x, t)$:

$$
u_{t}+u u_{x}=0
$$

We shall use the convention that $\psi>0$ below the graph of u. By a standard theory of the level set equation for each $\psi_{0} \in \operatorname{BUC}\left(\mathbf{R}^{2}\right)$ there is a unique viscosity solution $\psi \in \operatorname{BUC}\left(\mathbf{R}^{2} \times[0, T]\right)$ for any $T>0$ of (5.1) satisfying $\psi(x, y, t)=\psi_{0}(x, \eta)$ provided that $\gamma \in C^{2}(\mathbf{R} \backslash\{0\})$; see [11], [13]. We consider the initial data ψ_{0} satisfying

$$
\left\{\psi_{0}>0\right\}=\{(x, \eta) ; y<-d / 2\} \cup\{(x, \eta) ; x>0, y<d / 2\}=: D_{0}
$$

and call the set $D=\{\psi>0\}$ is the level set solution (of (5.1)) with the initial data D_{0}. The set D is independent of the choice of ψ_{0} and is uniquely determined by D_{0}.

Our main goal is to show that if $M<d^{2} / 16$, then for a large class of γ such that $\nabla \gamma(-\nabla \psi /|\nabla \psi|)$ approximating $\psi_{y} /\left|\psi_{y}\right|$, the limit of D develop 'overturning'.

Lemma 5.1. Let $\gamma \in C^{2}\left(\mathbf{R}^{2} \backslash\{0\}\right)$ be convex and positively homogeneous of degree one. Then

$$
\nabla^{2} \gamma(0,1)=0
$$

if and only if $|q|^{3} W^{\prime \prime}(q) \rightarrow 0$ as $q \rightarrow-\infty$ for $W(q)=\gamma(1,-q)$.
Proof. By definition

$$
\gamma_{2}(1,-q)=-W^{\prime}(q) \quad \text { and } \quad \gamma_{22}(1,-q)=W^{\prime \prime}(q)
$$

where $\gamma_{i}=\partial \gamma / \partial p_{i}, \gamma_{i j}=\partial^{2} \gamma / \partial p_{i} \partial p_{j}$. Since γ_{i} is positively homogeneous of degree one, we have

$$
\begin{aligned}
\gamma_{12}(1,-q)-q \gamma_{22}(1,-q) & =0 \\
\gamma_{11}(1,-q)-q \gamma_{12}(1,-q) & =0 .
\end{aligned}
$$

Thus

$$
\gamma_{11}(1,-q)=q^{2} W^{\prime \prime}(\gamma), \quad \gamma_{12}(1,-q)=g W^{\prime}(q)
$$

Since $\gamma_{i j}$ is positively homogeneous of degree -1 ,

$$
\gamma_{i j}\left(1 /\left(1+q^{2}\right)^{1 / 2},-q /\left(1+q^{2}\right)^{1 / 2}\right)=\left(1+q^{2}\right)^{1 / 2} \gamma_{i j}(1,-q) \rightarrow \gamma_{i j}(0,1)
$$

as $q \rightarrow-\infty$. Thus $q^{3} W^{\prime \prime}(q) \rightarrow 0$ as $q \rightarrow \infty$ is equivalent to $\gamma_{i j}(0,1)=0$ for all $1 \leq i, j \leq$ 2.

The next lemma relates the level set solution D and a solution of $(3.1),(3,3)$.
Lemma 5.2 Let $\gamma \in C^{2}(\mathbf{R} \backslash\{0\})$ be convex and positively homogeneous of degree. Assume that $\left|q^{3}\right| W^{\prime \prime}(q) \rightarrow 0$ as $q \rightarrow-\infty$ for $W(q)=\gamma(1,-q)$. Assume that $W^{\prime \prime}(q)>0$. For $a(q)=M\left(1+q^{2}\right)^{1 / 2} W^{\prime \prime}(q)$ let v^{α} the solution of (3.1)-(3.3) and $v^{\infty}=\inf _{\alpha>0} v^{\alpha}$. Let D be the level set solution with initial data D_{0}. Then

$$
\begin{equation*}
D=\{(x, y, t) ; y<-d / 2\} \cup\left\{(x, y, t) ; x<v^{\infty}(y, t),-d / 2 \leq y<d / 2\right\} \tag{5.2}
\end{equation*}
$$

The proof is not short. We here indicate the idea of the proof.
Step1. The right hand side (denoted \tilde{D}) of (5.2) is a solution of (5.1) in the sense that the characteristic function of \tilde{D} solves (5.1) in the viscosity sense. We use the fact that the straight part of $\partial \tilde{D} \subset\{y= \pm d / 2\}$ does not move because of Lemma 5.1. We also note that $v_{\eta}^{\infty}(\eta, t) \rightarrow-\infty$ as $\eta \uparrow d / 2$, This is important to prove that \tilde{D} is the solution of (5.1). Note that if the boundary of \tilde{D} is written as $x=v(y, t)$, then v satisfies (3.1).

Step. 2 The set \tilde{D} is the level set solution. This can be proved by showing that there is no fattening for \tilde{D}.

As an application of Theorem 4.1 we have a convergence result.
Theorem 5.3. Let γ^{ε} fulfills the assumption of γ in Lemma 5.2 with $W^{\varepsilon}(q)=\gamma^{\varepsilon}(1,-q)$. Assume that $W^{\varepsilon^{\prime}}(q) \rightarrow \operatorname{sgn} q+c$ with some constant c as $\varepsilon \rightarrow 0$ in the sense of monotone graphs. Let D^{ε} be the level set solution of (5.1) with $\gamma=\gamma^{\varepsilon}$ starting with D_{0} Assume that there is $r>0$ such that

$$
\int_{-\infty}^{0}\left(1+q^{2}\right)^{1 / 2} W^{\varepsilon^{\prime \prime}}(q) \mathrm{d} q \leq r \text { for small } \varepsilon
$$

and

$$
\sup _{0<\varepsilon<1} \int_{-\infty}^{0}|q|\left(1+q^{2}\right)^{1 / 2} W^{\epsilon^{\prime \prime}}(q) \mathrm{d} q<\infty
$$

Then \bar{D}^{ε} converges to

$$
E=\{(x, y, t) ; y<-d / 2\} \cup\{(x, y, t) ; x<v(y, t),-d / 2 \leq y<d / 2\}
$$

in the sense of Hausdorff distance topology provided that $M r \leq d^{2} / 8$.
Example. If $W^{\epsilon}(q)=\int_{0}^{q} \tanh (\tau / \varepsilon) d \tau$, then

$$
\int_{-\infty}^{0}\left(1+q^{2}\right)^{1 / 2} W^{\varepsilon^{\prime \prime}}(q) \mathrm{d} q \rightarrow 1
$$

so for each $\delta>0$, there is $\varepsilon_{0}>0$ such that

$$
\int_{-\infty}^{0}\left(1+q^{2}\right)^{1 / 2} W^{\epsilon^{\prime \prime}}(q) \mathrm{d} q \leq 1+\delta \text { for } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

The condition

$$
\sup _{0<\varepsilon<1} \int_{-\infty}^{0} q\left(1+q^{2}\right)^{1 / 2} W^{\epsilon^{\prime \prime}}(q) \mathrm{d} q<\infty
$$

is evidently fulfilled. Thus the convergence results holds for $M(1+\delta) \leq d^{2} / 8$. If $\delta>0$ is taken small so that $(1+\delta) / 16<8$, then we have a threshold value $M=d^{2} / 16$ such that if $M<d^{2} / 16$, then E experiences 'overturning' in the sense that there is a point $\left(x_{0}, y_{0}, t_{0}\right)$ and $\left(x_{0}, y_{1}, t_{0}\right)$ satisfying $y_{1}<y_{0}$ such that

$$
\left(x_{0}, y_{0}, t_{0}\right) \in E \quad \text { while } \quad\left(x_{1}, y_{1}, t_{0}\right) \notin E
$$

If $M \geq d^{2} / 16, E=D_{0} \times(0, \infty)$ so no overturn occurs.

References

[1] V. Bardu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff Int. Pub., Groningen 1976.
[2] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 63-74.
[3] M.-H. Giga and Y. Giga, A subdifferential interpretation of crystalline motion under nonuniform driving force, Proc. of the International Conference on Dynamical Systems and Differential Equations, Springfield, Missouri (1996); in Dynamical Systems and Differential Equations" (W.-X. Chen and S.-C. Hu eds.,) Southwest Missouri State Univ. 1998, vol. 1 (1998), 276-287.
[4] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal., 141 (1998), 117-198.
[5] M.-H. Giga and Y. Giga, Stability for evolving graphs by nonlocal weighted curvature, Commun. in PDEs 24 (1999), 109-184.
[6] M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
[7] M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Advanced Studies in Pure Mathematics 31 (2001), Taniguchi Conference on Mathematics, Nara '98 (eds. T. Sunada and M. Maruyama) pp.93-125.
[8] Y. Giga, A level set method for surface evolution equation, Sugaku Expositions 10 (1999), 217-241. Translated from Sūgaku 47 (1995), 321-340.
[9] Y. Giga, Viscosity solutions with shocks, Comm. Pure Appl. Math., to appear.
[10] Y. Giga, Shocks and very strong vertical diffusion, Free boundary problems (Kyoto, 2000). Sūrikaisekikenkyūsho Kōkyūroku 1210 (2001), 156-166.
[11] Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving proparties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), 443-470.
[12] Y. Giga and M.-H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems. Comm. Partial Differential Equations 26 (2001), 813-839.
[13] H. Ishii and P. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227-250.
[14] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and QuasiLinear Equation of Parabolic Type, AMS (1968).
[15] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493-507.
[16] Y.-H.R. Tsai, Y. Giga and S. Oscher, A level set approach for computing discontinuous solutions of a class of Hamilton-Jacobi equations, Math. Comp. to appear.
[17] J. Watanabe, Approximation of nonlinear problems of a certain type, in 'Numerical analysis of evolution equations', (H. Fujita and M. Yamaguti, eds.), Lecture Notes Numer. Appl. Anal., 1, Kinokuniya Book Store, Tokyo (1979), pp. 147-163.

