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On minimal vertical singular diffusion preventing
overturning

儀我美保
北大・理 儀我美一

Mi-Ho Giga and Yoshikazu Giga*

*Department of Mathematics
Hokkaido University

Sapporo 060-0810, Japan

1Introduction

This is apreliminary version of our work to acontinuation of recent works [9], [10] of the
second author.

In [9] we introduce the notion of proper viscosity solutions for aclass of equations whose
solutions may develop jump discontinuities. The class contains (scalar) conservation laws
as special examples and aproper viscosity solution is essentially equivalent to an entropy
solution for conservation laws. In [10] we propose to interpret this evolution as aresult of
the vertical singular diffusion. By aformal argument we have noted in [10] that there is a
threshold value of the strength of the vertical diffusion such that it prevents overturning
of the solution.

In this paper we give arigorous proof for the fact that asolution develops overturning
if the strength $M$ of the vertical diffusion is smaller than the critical value by studying
the Riemann problem for the Burgers equation:

$u_{t}+uu_{x}=0$ , (1.1)

$u(x, \mathrm{O})=(\mathrm{s}\mathrm{g}\mathrm{n}x)d/2$ . (1.2)

If one views the graph of $u$ as alevel set of auxiliarly function $\psi(x,y, t)$ , $\psi$ must satisfy

$\psi_{t}+y\psi_{x}=0$ . (1.3)

If we consider (1.3) in $\mathrm{R}^{2}\cross(0, T)$ , each level set of $\psi$ moves by (1.1) if it is represented by
the graph of afunction $u=u(x, t)$ . This formulation is successful to track discontinuous
solutions for

$u_{t}+H(u, u_{x})=0$
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if $r$ -$ $H(r, p)$ is nondecreasing so that solution does not develop discontinuities if the
initial data is continuous [12]. However, for (1.1) the zero level set of the solution of (1.3)
certainly overturn if initially

$\{(x,y);\psi(x,y,0) >0\}=\{(x, y);y<-d/2\}\cup\{(x,y);x<0, -d/2\leq y<d/2\}$ ; (1.4)

in fact, the zero level set $\psi=0$ for $t>0$ cannot be viewed as the graph of asingle valued
function in any sense.

In [10] we propose to add the vertical diffusion term

$\psi_{t}+y\psi_{x}=M|\nabla\psi|\partial_{y}(\psi_{y}/|\psi_{y})$ . (1.5)

Aformal argument [10, Theorem 2.1] reflecting [3] says that if $M$ is large so that

$V_{I}\geq V-2M$ on $I=-\mathrm{d}/2$ } $d/2$ ), (1.6)

then the zero level set of $\psi$ with initial condition (1.4) does not overturn and equals the
graph of the entropy solution of (1.1), (1.2). Here $V(\eta)=-\eta^{2}/2$ which is the primitive
of $-y$ and $V_{I}$ denotes its convex hull in $I$ . An elementary calculation shows that the
minimum value $M_{0}$ of $M$ satisfying (1.6) is $d^{2}/16$ . In the numerical simulation [16] we
also observe that the overturning occurs if and only if $M<M_{0}=d^{2}/16$ . (There I is
replaced by $(a, b)$ but the value of $M_{0}$ equals $(b-a)^{2}/16.)$

In this paper we show analytically that $M_{0}$ is optimal in the sense that if $M<M_{0}$ ,
the overturning is not prevented. It is also possible to prove that the overturning does
not occur $M\geq M_{0}$ for more general equations but we shall discuss this problem in one
of forthcoming papers.

Although the level set method (see e.g. [8]) allowing the singular diffusivity is well-
studied by [4], [5], [6], the equation handled there is spatially homogeneous and excludes
(1.5). Instead of developing ageneral theory for (1.5) we rather study its approximation.
In fact, we shall prove that there is asequence of level set equations

$\psi_{t}+y\psi_{x}=M|\nabla\psi|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\gamma_{\epsilon}(-\nabla\psi))$ (1.7)

approximating (1.5) such that the limit of zero level set of $\psi=\psi^{\epsilon}$ develops ‘overturning’
if $M<M_{0}$ . Here $\gamma_{\epsilon}\in C^{2}(\mathrm{R}^{2}\backslash \{0\})$ is convex and positively homogeneous of degree one.

The main idea of the proof is to convert the problem of evolution of $\{\psi=0\}$ to the
evolution of $x=v(y, t)$ starting with $v(y, 0)=0$. (For this purpose we assume that
$\nabla^{2}\gamma(0,1)=0$ so that the line segment on the line $y=\pm d/2$ does not move.) We study
the equation for $v$ derived from (1.7) and prove that it converges to afunction which
has strictly monotone increasing part in $y$ if $M<M_{0}$ . This means that ‘overturning’
occurs. Unfortunately, the boundary condition for $v$ at $y=\pm d/2$ is not conventional. It
is formally equals the Neumann condition

$v_{y}(\pm d/2, t)=-\infty$ .
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This is hard to handle so we estimate from above and below by solutions of ahomogeneous

Neumann problem and on inhomogeneous Dirichlet problem. We prove that solutions of

the latter two problems converges to the same function having desired property.

2Explicit solutions for some inhomogeneous very
singular diffusion equations

We consider asingular degenerate parabolic equation for v $=v(\eta,$ t) of the form

$v_{t}=M(\mathrm{s}\mathrm{g}\mathrm{n}v_{\eta})_{\eta}+\eta$ in $I\cross(0, \infty)$ , (2.1)

$v=0$ on $\partial I\cross(0, \infty)$ , (2.2)

$v|_{\ell=0}=0$ (2.3)

with $I=(-d/2, d/2)$ , where $M>0$ is aparameter. Since $(\mathrm{s}\mathrm{g}\mathrm{n}v_{\eta})_{\eta}$ formally equals
$\delta(v_{\eta})v_{\eta\eta}$ , the diffusion is degenerate for $v_{\eta}\neq 0$ and is very strong for $v_{\eta}=0$ . Naively,

the meaning of a‘solution’ is not clear. Fortunately, the theory of nonlinear semigroups
[15] or subdifferential equations provides asuitable notion of asolution. We shall briefly

review its notion and give an explicit representation formula of the solution.

We first give asubdifferential interpretation of the problem (2.1)-(2.3). For $v\in H=$

$L^{2}(I)$ we associate the energy $E(v)$ defined by

$E(v):= \int_{\mathrm{R}}\{M|\tilde{v}_{\eta}(\eta)|-\eta\tilde{v}(\eta)\}\mathrm{d}\eta$ if $v\in BV(I)$

and $E(v):=\infty$ if $v\not\in BV(I)$ . Here $BV(I)$ denotes the space of functions with bounded
variation in I and $\tilde{v}$ denotes the extention of $v$ to $\mathrm{R}$ such that $\tilde{v}=0$ outside $I$ . The

integral $\int_{\mathrm{R}}|\nabla\tilde{v}(n)|d\eta$ denotes the total variation of $\tilde{v}$ in R. Then as in [7, the first lemma

in \S 2] the functional $E$ is convex, lower semicontinuous in the Hilbest space $H$ equipped
with the standard inner product $(f,g)= \int_{I}$ fgdrj. Note that (2.1) is formally agradient
flow of $E$ . Thus we formulate the problem (2.1)-(2.3) as

$\frac{dv}{dt}\in-\partial E(v)$ , (2.4)

$v(0)=0$ , (2.5)

where $\partial E$ denotes the subdifferential of $E$ in $H$ . Ageneral theory [15], [1] yields that

there is aunique solution $v$ of (2.4) and (2.5) in the sense that

(i) v $\in C([0, \infty),$ H) i.e., v is continuous from the time interval [0,$\infty)$ to H. Moreover,

v satisfies (2.5)
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(ii) v is absolutely continuous with values in H on each compact set in (0,$\infty)$ and solves
(2.4) for almost all t $\geq 0$ .

As well-known (e.g. [1], see also [7, \S 2]) the solution $v(t)$ is right-differentiable at all
$t>0$ with values in $H$ and its right derivative $d^{+}v/dt$ satisfies

$\frac{d^{+}v}{dt}=-\partial^{0}E(v)$ for all $t>0$ . (2.6)

where $\partial^{0}E(v)$ is the canonical restriction (or minimal section) of $\partial E(v)$ , i.e., $\partial^{0}E(v)$ is
the unique element of the closed convex set $\partial E(v)$ which is closest to the origin of $H$ .
Moreover, we have another definition of solution equivalent to (i) (ii). Namely, $v$ is the
solution of (2.4) and (2.5) if and only if $v$ fulfills (i) and

(ii)’ $v$ is absolutely continuous with values in $H$ on each compact set in $(0, \infty)$ and solves
(2.6) for all $t>0$ .

Here and hereafter by solution of (2.1)-(2.3) we mean that $v$ satisfies (i) and (ii)’. Fortu-
nately, the solution can be represented in an explicit formula.

Lemma 2.1. Let v be the solution of (2.1)-(2.3). Then v is represented by

$v(\eta, t)=tv_{1}(\eta)$ , $t\geq 0$ (2.7)

$with$ $v_{1}$ satisfying

$v_{1}( \eta)=\mathrm{m}.\mathrm{n}(\eta, (\frac{d}{2}-2M^{1/2})_{+})$ for $\eta\in[\mathrm{o}_{d}, \frac{d}{2})$

$v_{1}(\eta)=-v_{1}(-\eta)$ for $\eta\in(-_{\overline{2}},0]$ ,

where $\alpha_{+}=\max(\alpha, 0)$ . In particular, $v_{1}\equiv 0$ if and only if $M\geq d^{2}/16$ and other wise $v_{1}$

has astrictly increasing part.

Remark 2.2. (i) If we replace the homogeneous Dirichlet condition (2.2) by the hom0-
geneous Neumann condition

$v_{\eta}=0$ on $\partial I\cross(0,T)$ , (2.2)

the solution of (2.1) with $(2.2’)$ , (2.3) is the same as in (2.7). Here we should replace the
definition of $E$ by

$E_{N}(v):= \int_{I}\{M|v_{\eta}|-\eta v\}\mathrm{d}\eta$ if $v\in BV(I)$ (2.8)

and $E_{N}(v):=\infty$ if $v\not\in BV(I)$ so that (2.1), $(2.2’)(2.3)$ is formulated by (2.4), (2.5) with
$E$ replaced by $E_{N}$ .
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(ii) We may replace the homogeneous Dirichlet condition (2.2) by inhomogeneous
Dirichlet condition

$v=\mp R$ at $\eta=\pm d/2$ . $(2.2’)$

The solution of (2.1) with $(2.2’)$ , (2.3) is the same as in (2.7) for $R>0$ . Here we should
replace $E$ by

$E_{R}(v):= \int_{\mathrm{R}}\{M|\overline{v}_{\eta}|-\eta\overline{v}\}\mathrm{d}\eta$ if $v\in BV(I)$ (2.9)

and $E_{R}(v):=\infty$ if $v\not\in BV(I)$ . The extention $\overline{v}$ of $v\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{s}-R$ for $\eta\geq d/2$ and $R$ for
y7 $\leq-d/2$ . The equation (2.1), $(2.2’)$ , (2.3) is now formulated by (2.4), (2.5) with $E$

replaced by $E_{R}$ .

To show these statements it suffices to verify (2.6) as in [3].

3Neumann problems for some non-uniform parabolic
ic equations

To study solutions of problems approximating (2.1)-(2.3) we consider the Neumann prob-
lem:

$v_{t}=a(v_{\eta})v_{\eta\eta}+\eta$ in $I$ $\cross(0, \infty)$ , (3.1)

$v_{\eta}=-\alpha$ on $\partial I\cross(0,\infty)$ , (3.2)

$v|_{t=0}=0$ . (3.3)

Here $a\in C^{1}(\mathrm{R})$ is assumed to be positive and $\alpha$ is anon-negative constant. Since $v_{\eta}$ of
(3.1) solves

$v_{\eta t}=(a(v_{\eta})v_{\eta\eta})_{\eta}+1$ , (3.1)

by the maximum principle we have an apriori bound $|v_{\eta}(n,t)| \leq\max(t, \alpha)$ for $v_{\eta}$ . So in
$I$ $\cross$ $(0, T)$ with $T>0$ we may assume that equation is uniformly parabolic by restricting
$a$ on $[- \max(T, \alpha), \max(T, \alpha)]$ . Ageneral theory of parabolic equations [14] yields an
unique global classical solution $v\in C^{2,1}(I \cross[0, \infty))\cap C^{2,1}(\overline{I}\cross(0, \infty))$ of (3.1)-(3.3).

Our main goal in this section is to prove several properties of the solution of (3.1)-(3.3).

Theorem 3.1. Let $v^{\alpha}$ be the solution of (3.1)-(3.3) with $\alpha\geq 0$ .

(i) (Symmetry). $v^{\alpha}(\eta,t)=-v^{\alpha}(-\eta,t)$ for $\eta\in I$ , $t\geq 0$ . In particular, $v^{\alpha}(0, t)=0$ for
$t>0$ .

(ii) (Concavity). $v^{\alpha}(\eta,t)\leq\eta t$ , $v_{t}^{\alpha}(\eta,t)\leq\eta$ for $\eta\in I_{+}$ , $t\geq 0$ with $I_{+}=(0, d/2)$ . In
particular, $v_{\eta\eta}^{\alpha}\leq 0$ in $I_{+}\cross(0, \infty)$ .
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(Hi) (Monotonicity). $v^{\alpha}\leq v^{\beta}$ in $I_{+}\cross(0, \infty)$ if $\alpha\geq\beta\geq 0$ . Moreover $v_{\eta}^{\alpha}\leq v_{\eta}^{\beta}$ in
$I_{+}\cross(0, \infty)$ if $\alpha\geq\beta\geq 0$ .

(iv) (Lower bound). Assume that

$c_{0}:= \int_{-\infty}^{0}a(\tau)\mathrm{d}\tau\leq\frac{d^{2}}{8}$ (3.5)

and
$c_{1}:= \int_{-\infty}^{0}|\tau|a(\tau)\mathrm{d}\tau<\infty$ . (3.6)

Then $v^{\alpha}(\eta, t)\geq-c_{0}c_{1}$ for $\eta\in[0, d/2]$ , $t\geq 0$ .

Proof, (i) Since $-v^{\alpha}(-\eta, t)$ solves (3.1)-(3.3), the uniqueness of asolution yields the
symmetry.
(ii) Clearly $\eta t$ is asupersolution of (3.1)-(3.3) in $I_{+}\cross(0, \infty)$ with zero boundary condition
at $\eta=0$ so the comparison principle yields $v\leq\eta t$ in $I_{+}\cross(0, \infty)$ . We differentiate (3.1),
(3.2) in $t$ to get

$w_{t}=a(v_{\eta}^{\alpha})w_{\eta\eta}+a’(v_{\eta}^{\alpha})w_{\eta}v_{\eta\eta}^{\alpha}$ in $I\cross(0, \infty)$

$w_{\eta}(d/2, t)=0$ , $w(0, t)=0$ (by (i))

for $w=v_{t}^{\alpha}$ . Since $v_{t}^{\alpha}\leq\eta$ at $t=0$ on $I_{+}$ by $v^{\alpha}\leq\eta t$ , the maximum principle implies that
$w\leq\eta$ in $[0, d/2]\cross[0, \infty)$ . The concavity follows from $v_{t}\leq\eta$ and the equation (3.1) since
$a>0$ .
(ii) For $\beta\leq\alpha$ the solution $v^{\beta}$ i $\mathrm{s}$ asupersolution of (3.1)-(3.3) with $v=0$ at y7 $=0$ in
$I_{+}\cross(0, \infty)$ , the comparison principle yields $v^{\alpha}\leq v^{\beta}$ in $I_{+}\cross(0, \infty)$ . Since $v^{\alpha}\leq v^{\beta}$ and
$v^{\alpha}=v^{\beta}=0$ at $\eta=0$ , we observe that $v_{\eta}^{\alpha}\leq v_{\eta}^{\beta}$ at $\eta=0$ . Since $v_{\eta}^{\beta}$ solves (3.4) and $v_{\eta}^{\alpha}\leq v_{\eta}^{\beta}$

at $\eta=d/2$ , the comparison principle yields $v_{\eta}^{\alpha}\leq v_{\eta}^{\beta}$ in $I_{+}\cross(0, \infty)$ .
(iv) As in the next Lemma we shall construct atime independent subsolution $f=f_{\alpha}$

for (3.1)-(3.3) in $I_{+}\cross(0, \infty)$ with the zer0-boundary condition at $\eta=0$ such that $f_{\alpha}\geq$

$-c_{0}c_{1}$ . Once such asubsolution is constructed, the comparison principle yields the bound
$v^{\alpha}\geq-c_{0}c_{1}$ for $v^{\alpha}$ .

Lemma 3.2. Assume that (3.5) holds. Then there exists aunique cy $\in I_{+}=(0, d/2)$

and a $C^{1}$ function f $=f_{\alpha}$ on $\tilde{I}_{+}$ such that

$-(A(f’(\eta))’=\eta$ on $I_{+}$ , (3.7)

$f’(d/2)=-\alpha$ , $f’(\sigma)=f(\sigma)=0$ , (3.8)

where $A(q)= \int_{0}^{q}a(\tau)\mathrm{d}\tau$ and $f’$ denotes the derivative of $f$ . If moreover $a$ satisfies (3.6),
then

$-c_{0}c_{1} \leq\inf\{f_{\alpha}(\eta); \eta\in[0, d/2], \alpha\geq 0\}=\inf\{f_{\alpha}(d/2);\alpha\geq 0\}$ (3.5)
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(The zerO-exterision of $f_{\alpha}$ to [0, $\sigma]$ is still denoted by $f_{\alpha}$).

Proof. Integrating (3.7) from $\sigma$ to $\eta$ yields

$-A(f’(\eta))=(\eta^{2}-\sigma^{2})/2$ (340)

since $f’(\sigma)=0$ . Since $A(p)\leq d^{2}/8$ for $p\leq 0$ by (3.5), there is unique $\sigma\in I_{+}$ such that

$-A(- \alpha)=\frac{1}{2}(\frac{d}{2})^{2}-\frac{\sigma}{2}2$

We fix such a $\sigma$ and then taking the inverse $A^{-1}$ of (3.10) to get

$f’(\eta)=A^{-1}((\sigma^{2}-\eta^{2})/2)$ , $\eta\in[\sigma,d/2]$ . (3.11)

Integrating this with $f(\sigma)=0$ we obtain the solution $f$ and $\sigma\in I_{+}$ satisfying (3.7), (3.8).

By (3.11) $f’(\eta)\leq 0$ in $I_{+}$ so $\inf_{I}f+=f(d/2)$ . Thus to prove (3.9) if suffices to prove
that

$\inf_{\alpha}f_{\alpha}(d/2)>-\infty$ . (3.12)

Integrating (3.11) over $[\sigma, d/2]$ to get

$-f_{\alpha}(d/2)=- \int_{\sigma}^{d/2}A^{-1}((\sigma^{2}-\eta^{2})/2)\mathrm{d}\eta$

$=- \int_{A(-\alpha)}^{0}A^{-1}(\xi)\xi \mathrm{d}\xi\leq-A(-\infty)\int_{A(-\infty)}^{0}A^{-1}(\xi)\mathrm{d}\xi$ .

Since
$- \int_{A(-\infty)}^{0}A^{-1}(\tau)\mathrm{d}\tau=\int_{-\infty}^{0}(A(p)-A(-\infty))\mathrm{d}p=\int_{-\infty}^{0}|\tau|a(\tau)\mathrm{d}\tau=C_{0}$

we now obtain that $-f_{\alpha}(d/2)\leq c_{0}c_{1}$ . $\square$

4Approximate problems

Let $v^{\alpha}$ be the solution of (3.1)-(3.3). We define $v^{\infty}$ by

$v^{\infty}( \eta,t)=\inf_{\alpha>0}v^{\alpha}(\eta,t)$ , $\eta\in I_{+}=(0, d/2)$

$v^{\infty}(\eta,t)=-v^{\infty}(-\eta, t),\eta\in(-d/2,0)$

$v^{\infty}(0,t)=0$ .

By the monotone properties and bounds (Theorem 3.1) $v^{\infty}$ is well-define$\mathrm{d}$ and $\eta\vdash*$

$v^{\infty}(\eta,t)$ is $C^{1}$ and concave in $I_{+}$ .
Our goal in this section is to prove the convergence of $v^{\infty}$ to $v$ in (2.7) when $\int^{q}a$

approximates Msgng
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Theorem 4.1. Assume that $a=a^{\epsilon}\in C^{1}(\mathrm{R})$ , $a^{\epsilon}>0$ satisfies (3.5) and (3.6). Assume
that $c_{0}^{\epsilon}$ , $c_{1}^{\epsilon}$ defined by (3.5), (3.6) with $a=a^{\epsilon}$ are bounded as $\epsilon$ $arrow 0$ . Assume that
$A^{\epsilon}(q)= \int_{0}^{q}a^{\epsilon}(\tau)\mathrm{d}\tau$ converges to Msgny7 $+c$ with some constant $c$ as $\epsilonarrow 0$ (in the sense
of monotone graphs). Let $v_{\epsilon}^{\infty}$ be the solution of (3.1), (3.2), (3.3) with $a=a^{\epsilon}$ and let
$v_{\epsilon}^{\infty}= \inf_{\alpha>0}v_{\epsilon}^{\alpha}$ . Let $v$ be the function defined in (2.7). Then $v_{\epsilon}^{\infty}$ converges to $v$ as $\epsilon$ $arrow 0$

uniformly in every compact subset of $I\cross[0, \infty)$ .

We shall prove this result by estimating $v_{\epsilon}^{\infty}$ from above by the solution of the homogeneous
Neumann problem and from below by that of anonhomogeneous Dirichlet problem.

4.1 Convergence of the Neumann problem

Proposition 4.2. Assume that $A^{\epsilon}(q)= \int_{0}^{q}a^{\epsilon}(\tau)\mathrm{d}\tau$ convergence to Msgn $\eta+c$ with some
constant $c$ as $\epsilon$ $arrow 0$ , where $a^{\epsilon}\in C^{1}(\mathrm{R})$ and $a^{\epsilon}>0$ . Let $v_{\epsilon}^{0}$ be the solution of (3.1)-(3.3)
with $\alpha=0$ . Then $v_{\epsilon}^{0}$ converges to $v$ (defined by (2.7)) as $\epsilonarrow 0$ uniformly in $\overline{I}\cross[0,T]$

for any $T>0$ .

Proof. We formulate the problem (3.1)-(3.3) by using asubdifferential equation $u_{t}\in$

$-\partial E_{N}^{\epsilon}(u)$ , $u|_{t=0}=0$ . By astability theorem of J. Watanabe [17] based on [2] the solution
$v_{\epsilon}^{0}$ converges to asolution $u$ of $u_{t}\in-\partial E_{N}$ in $C([0, T], L^{2}(I))$ for any $T>0$ . Since the
solution of $u_{t}\in-\partial E_{N}$ with $u|_{t=0}=0$ equals $v$ of (2.7) as in Remark 2.2, $v_{\epsilon}^{0}arrow v$ in
$C([0, T], L^{2}(I))$ . By Theorem 3.1 $v_{\epsilon}^{0}(\eta,t)$ is concave in $\eta\in I_{+}$ and $v_{\epsilon\eta}^{0}\leq 1$ at $\eta=0$ . Since
$v_{\epsilon\eta}^{0}(d/2, t)=0$ , we see that $v_{\epsilon_{\mathrm{j}}^{j}}^{0}(\cdot, t_{j})$ always contains auniform convergent subsequence on
I as $jarrow\infty$ if $\epsilon_{j}arrow 0$ , $t_{j}\in[0, T]$ . Since $v_{\epsilon}^{0}arrow v$ in $C([0, T], L^{2}(I))$ this implies the uniform
convergence of $v_{c}^{0}$ in $\overline{I}\cross[0, T]$ as stated in the next lemma whose proof is elementary.

Lemma 4.3. Assume that $u^{\epsilon}arrow u$ in $C([0,T], L^{2}(\Omega))$ as $\epsilonarrow 0$ , where $\Omega$ is an open
set in $\mathrm{R}^{d}$ . Assume that $\{u^{\epsilon_{j}}(\cdot, t_{j})\}$ has auniform convergent subsequence in $\overline{\Omega}$ provident
that $\epsilon_{j}arrow 0$ , $t_{j}\in[0, T]$ . Then $u^{\epsilon}arrow u$ uniformly in $[0, T]$ $\cross$ Q.

4.2 Dirichlet problem

We consider the Dirichlet problem for (3.1), (3.3) with $a=a^{\epsilon}$ with the boundary condition

$v(\pm d/2, t)=\mp R$ , (4.1)

where $R$ is apositive constant. Let $v_{R^{e}}$ be the solution of (3.1), (3.3) with (4.1). The
solution may not be satisfies (4.1). It can be understood as the limit of auniformly
parabolic problem which approximates (3.1), (3.3) and (4.1). Since we may assume that
we conclude that $v_{R\epsilon,\eta\eta}\leq 0$ in $I_{t}\cross(0, \infty)$ .
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Proposition 4.4 Assume the same hypotheess of Proposition 4.2 concerning $a^{\xi j}$ . Let
$vRe$ be the solution of (3.1), (3.3) and (4.1). with $a=a^{\epsilon}$ . Then $v_{R^{\epsilon}}arrow v$ as $\epsilon$ $arrow 0$

uniformly in each compact subset of $I\cross[0, \infty)$ , where $v$ is defined by (2.7).

Proof. As in the proof of Proposition 4.2 we observe that $v_{R^{e}}arrow v$ in $C([0,T], L^{2}(I))$ .
Again $v_{R\epsilon}$ is concave in y7 $\in I_{+}$ and $v_{R\epsilon,\eta}(0, t)\leq 1$ . However, there is no control on
$v_{R\epsilon,\eta}(d/2, t)$ . All we expect is that $v_{R\epsilon}$ is bounded in $I_{+}\cross[0, T]$ and $v_{R\epsilon}$ is concave in $\eta$ .
From these facts we are able to prove that $v_{R\epsilon_{v}}$

$(\cdot$ , $t_{j})$ has auniform convergent subsequence
in $[0, d/2-\delta]$ for each $\delta>0$ if $t_{j}\in[0.T]$ and $\epsilon_{j}arrow 0$ . By Lemma 4.3 we now conclude
that $v_{R\epsilon}arrow v$ in each compact subset of $I\cross[0, \infty)$

Proof of Theorem 4.1. By Theorem 3.1 (iii) we see that $v_{\epsilon}^{\infty}\leq v_{\epsilon}^{0}$ in $I_{+}\cross(0, \infty)$ . We take
R $\geq c_{0}^{\epsilon}f_{1}$ for small $\epsilon>0$ . Then by the comparison for the Dirichlet problem

$v_{R\epsilon}\leq v_{\epsilon}^{\alpha}$ in $I_{+}\cross(0, \infty)$ .

since $v_{Re}=v_{\epsilon}^{\alpha}=0$ at $\eta=0$ . This implies

$v_{Re}\leq v_{c}^{\infty}$ in $I_{+}\cross(0, \infty)$ .

The convergence results (Propositions 4.2, 4.4) yield the convergence $v_{\epsilon}^{\infty}arrow v$ . $\square$

5Level set solutions

We consider the level set equation of the form

$\psi_{t}+y\psi_{x}=M|\nabla\psi|\mathrm{d}\mathrm{i}\mathrm{v}\{\nabla\gamma(-\nabla\psi/|\nabla\psi|)\}$ in $\mathrm{R}^{2}\cross(0, \infty)$ (5.1)

Here $\gamma$ is aconvex, positively homogeneous of degree one in $\mathrm{R}^{2}$ . If $M=0$ , the set $\{\psi=0\}$

formaly represents the graph of asolution of the Burgers equation for $u=u(x,t)$ :

$u_{t}+uu_{x}=0$ .

We shall use the convention that $\psi>0$ below the graph of $u$ . By astandard theory
of the level set equation for each $\psi_{0}\in \mathrm{B}\mathrm{U}\mathrm{C}(\mathrm{R}^{2})$ there is aunique viscosity solution
$\psi\in \mathrm{B}\mathrm{U}\mathrm{C}(\mathrm{R}^{2}\cross[0, T])$ for any $T>0$ of (5.1) satisfying $\psi(x, y, t)=\psi_{0}(x, \eta)$ provided that
$\gamma\in C^{2}(\mathrm{R}\backslash \{0\})$ ; see [11], [13]. We consider the initial data $\psi_{0}$ satisfying

$\{\psi_{0}>0\}=\{(x, \eta);y<-d/2\}\cup\{(x,\eta);x>0,y<d/2\}=:D_{0}$ .

and call the set $D=\{\psi>0\}$ is the level set solution (of (5.1)) with the initial data Do.
The set $D$ is independent of the choice of $\psi_{0}$ and is uniquely determined by $D_{0}$ .
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Our main goal is to show that if M $<d^{2}/16$ , then for alarge class of $\gamma$ such that
$\nabla\gamma(-\nabla\psi/|\nabla\psi|)$ approximating $\psi_{y}/|\psi_{y}|$ , the limit of D develop ‘overturning’.

Lemma 5.1. Let $\gamma\in C^{2}(\mathrm{R}^{2}\backslash \{0\})$ be convex and positively homogeneous of degree
one. Then

$\nabla^{2}\gamma(0,1)=0$

if and only $\mathrm{i}f|q|^{3}W’(q)arrow 0$ as $qarrow-\infty$ for $W(q)=7(1, -q)$ .

Proof. By definition

$\gamma_{2}(1, -q)=-W’(q)$ and $\gamma_{22}(1, -q)=W’(q)$ ,

where $\gamma_{i}=\partial\gamma/\partial p_{i}$ , $\gamma_{ij}=\partial^{2}\gamma/\partial p_{i}\partial p_{j}$ . Since $\gamma_{i}$ is positively homogeneous of degree one,
we have

$\gamma_{12}(1, -q)-q$ X22 $(1, -q)=0$

$\gamma_{11}(1, -q)-q\gamma_{12}(1, -q)=0$ .

Thus
$\gamma_{11}(1, -q)=q^{2}W’(\gamma)$ , $\gamma_{12}(1, -q)=gW’(q)$ .

Since $\gamma_{ij}$ is positively homogeneous of $\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}-1$ ,

$\gamma_{ij}(1/(1+q^{2})^{1/2}, -q/(1+q^{2})^{1/2})=(1+q^{2})^{1/2}\gamma_{j}(1, -q)arrow\gamma_{ij}(0,1)$

as $qarrow-\infty$ . Thus $q^{3}W’(q)arrow 0$ as $qarrow\infty$ is equivalent to $\gamma_{ij}(0, 1)=0$ for all $1\leq i$ , $j\leq$

$2$ . $\square$

The next lemma relates the level set solution $D$ and asolution of (3.1), $(3,3)$ .

Lemma 5.2 Let $\gamma\in C^{2}(\mathrm{R}\backslash \{0\})$ be convex and positively homogeneous of degree.
Assume that $|q^{3}|W’(q)arrow 0$ as $qarrow$ $-\mathrm{o}\mathrm{c}$ for $W(q)=\gamma(1, -q)$ . Assume that $W’(q)>0$ .
For $a(q)=M(1+q^{2})^{1/2}W’(q)$ let $v^{\alpha}$ the solution of (3.1)-(3.3) and $v^{\infty}= \inf_{\alpha>0}v^{\alpha}$ . Let
$D$ be the level set solution with initial data $D_{0}$ . Then

$D=\{(x, y, t);y<-d/2\}\cup\{(x, y, t);x<v^{\infty}(y, t), -d/2\leq y<d/2\}$ . (5.2)

The proof is not short. We here indicate the idea of the proof.

Stepl. The right hand side (denoted $\tilde{D}$ ) of (5.2) is asolution of (5.1) in the sense that
the characteristic function of $\tilde{D}$ solves (5.1) in the viscosity sense. We use the fact that
the straight part of $\partial\tilde{D}\subset\{y=\pm d/2\}$ does not move because of Lemma 5.1. We also
note that $v_{\eta}^{\infty}(\eta, t)arrow-\infty$ as $\eta\uparrow d/2$ , This is important to prove that $\tilde{D}$ is the solution of
(5.1). Note that if the boundary of $\tilde{D}$ is written as $x=v(y, t)$ , then $v$ satisfies (3.1)
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Step.2 The set $\tilde{D}$ is the level set solution. This can be proved by showing that there is
no fattening for $\tilde{D}$ .

As an application of Theorem 4.1 we have aconvergence result.

Theorem 5.3. Let $\gamma^{\epsilon}$ fulfills the assumption of $\gamma$ in Lemma 5.2 with $W^{\epsilon}(q)=\gamma^{\epsilon}(1, -q)$ .
Assume that $W^{\epsilon’}(q)$

$arrow \mathrm{s}\mathrm{g}\mathrm{n}q$ $+c$ with some constant $c$ as $\epsilon$ $arrow 0$ in the sense of monotone
graphs. Let $D^{\epsilon}$ be the level set solution of (5.1) with $\gamma=\gamma^{\epsilon}$ starting with $D_{0}$ Assume
that there is $r>0$ such that

$\int_{-\infty}^{0}(1+q^{2})^{1/2}W^{\epsilon’}(q)\mathrm{d}q$ $\leq r$ for small $\mathrm{e}$

and
$\sup_{0<e<1}\int_{-\infty}^{0}|q|(1+q^{2})^{1/2}W^{\epsilon’}(q)\mathrm{d}q<\infty$.

Then $\overline{D}^{\epsilon}$ converges to

$E=\{(x,y,t);y<-d/2\}\cup\{(x, y,t);x<v(y, t), -d/2\leq y<d/2\}$

in the sense of Hausdorff distance topology provided that $Mr\leq d^{2}/8$ .

Example. If $W^{\epsilon}(q)= \int_{0}^{q}\tanh(\tau/\epsilon)d\tau$ , then

$\int_{-\infty}^{0}(1+q^{2})^{1/2}W^{d’}(q)\mathrm{d}qarrow 1$ ,

so for each $\delta>0$ , there is $\epsilon_{0}>0$ such that

$\int_{-\infty}^{0}(1+q^{2})^{1/2}W^{\epsilon’}(q)\mathrm{d}q\leq 1+\delta$ for $\epsilon$ $\in(0, \epsilon_{0})$ .

The condition
$\sup_{0<\epsilon<1}\int_{-\infty}^{0}q(1+q^{2})^{1/2}W^{\epsilon’}(q)\mathrm{d}q<\infty$

is evidently fulfilled. Thus the convergence results holds for $M(1+\delta)\leq d^{2}/8$ . If $\delta>0$

is taken small so that $(1+\delta)/16<8$ , then we have athreshold value $M=d^{2}/16$ such
that if $M<d^{2}/16$ , then $E$ experiences ‘overturning’ in the sense that there is apoint
$(x_{0},y_{0},t_{0})$ and $(x_{0},y_{1}, t_{0})$ satisfying $y_{1}<y_{0}$ such that

(0,$y_{0},t_{0})\in E$ while $(x_{1},y_{1},t_{0})\not\in E$ .

If M $\geq d^{2}/16$ , E $=D_{0}\cross(0,\mathrm{o}\mathrm{o})$ so no overturn occurs
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