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DYNAMIC BOUNDARY CONDITIONS FOR
HAMILTON-JACOBI EQUATIONS*

金沢大学理学部 後藤俊一
(GOTO, SHUN’ICHI)

Abstract. Anon standard dynamic boundary condition for aHamilton-Jacobi equa-
tion in one space dimension is studied in the context of viscosity solutions. Acomparison
principle and, hence, uniqueness is proved by consideration of an equivalent notion of vis-
cosity solution for an alternative formulation of the boundary condition. The relationship
with aNeumann condition is established. Global existence is obtained by consideration
of arelated parabolic approximation with adynamic boundary condition. The problem
is motivated by applications in superconductivity and interface evolution.

1. Introduction. We consider the first order equation

$u_{t}$ –F $(u_{x}^{2}+\gamma^{2})^{1/2}=0$ in $\Omega\cross(0, \infty)$ (1.1)

supplemented with the dynamic boundary condition

$u_{t}-F\alpha=0$ on $\partial\Omega\cross(0, \infty)$ , (1.2)

where $\Omega$ is abounded open interval. The function $F$ and aare given con-
tinuous functions on $\overline{\Omega}\cross[0, \infty)$ , $\partial\Omega\cross[0, \infty)$ respectively and $\gamma\geq 0$ is a
constant.

Asource of this problem is found in $\mathrm{t}1_{1}\mathrm{e}$ mean field theory of supercon-
ductivity. Consider the mean field vortex density model in acylinder $D\cross \mathbb{R}$

$(D\subset \mathbb{R}^{2})$ when the magnetic field $\vec{H}$ is orthogonal to the axis of the cylinder;
Chapman [3]. The vorticity field $\vec{\omega}=(\nabla^{[perp]}\psi, 0)$ , $\nabla^{[perp]}=(-\partial_{x_{2}}, \partial_{x_{1}})$ is required
to satisfy the conservation of vorticity

$\vec{\omega}_{t}+\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}$ $(\vec{\omega}\cross\vec{v})=0$ .

If the velocity field $\vec{v}$ is of the form $\vec{v}=\mathrm{c}\mathrm{u}\mathrm{r}1\vec{H}\cross\vec{\omega}/|\vec{\omega}|$ and $\vec{H}$ is given, then
the conservation of vorticity yields

$\psi_{t}=|\nabla\psi|F$,

where $F$ is agiven function. Our equation (1.1) is derived by assuming that
$.\partial_{x_{2}}\psi=\gamma$ is aconstant on $D=\Omega\cross \mathbb{R}$ if we set $u(x_{1}, t)$ $=\psi(x_{1}, x_{2}, t)$ $-7\mathrm{x}2$ .

’This is joint work with Charles M. Elliott (University of Sussex) and Yoshikazu Giga
(Hokkaido University)
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The $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}-\psi_{t}$ on the boundary corresponds to the flux $\vec{n}\cross(\vec{\omega}\cross\vec{v})$ on
$\partial D\cross \mathbb{R}$ . The condition $\psi_{t}=F\alpha$ is considered as aspecial case of assigning
the value of flux and we obtain (1.1), (1.2). Afull system with adifferent
boundary condition $\vec{\omega}\cdot$ $\vec{n}=0$ is studied by Elliott, Sch\"atzle and Stoth [6].

Our goal is to study the unique global-in-time solvability of (1.1), (1.2)
for agiven initial data. Since the problem is of first order, it is convenient
to handle this problem in the realm of viscosity solutions; see e.g. G. Barles
[2]. We establish the comparison principle for (1.1) and (1.2) by deriving
an equivalent definition of solutions. Although the dynamic boundary value
problem is studied in [2, P.102 (4.23)], it is essentially of Neumann type and
does not include (1.2).

We further prove that the solution of (1.1) and (1.2) solves the Neumann
problem for (1.1) with

$\partial u/\partial\nu=(\mathrm{S}\mathrm{i}\mathrm{g}\mathrm{n}F)\{(\alpha-\gamma)_{+}(\alpha+\gamma)\}^{1/2}$ (1.3)

in the viscosity sense, where $\beta_{+}$ denotes the positive part of $\beta$ and SignF
denotes the sign of $F$ i.e. SignF $=\pm 1$ if $F<>0$ and SignF $=0$ if $F=0$ .
It might be possible to prove the comparison principle for (1.1) with the
inhomogeneous data $\partial u/\partial\nu=p(t)$ when $p$ is continuous; see J. Claisse [4].
However, our comparison principle for (1.1) and (1.2) still holds when $F$

changes sign in which case the Neumann data in (1.3) is discontinuous and
hence it is not included in the literature. Moreover, our proof is more direct
and does not use (1.3). Our comparison principle yields the uniqueness of
viscosity solutions for (1.1) and (1.2).

We also prove tlie global existence of asolution for (1.1), (1.2) when tlue
initial data $a$ is aLipschitz function in $\overline{\Omega}$ , by using the approximate equation

$u_{t}-\epsilon u_{xx}-F(u_{x}^{2}+\gamma^{2})^{1/2}=0$ in $\Omega\cross(0, \infty)$ (1.1)

with the dynamic boundary condition

$u_{t}-F\alpha+\epsilon\partial u/\partial\nu=0$ on $\partial\Omega\cross(0, \infty)$ , (1.5)

where $\epsilon$ is apositive parameter. The dynamic boundary condition for uni-
formly parabolic equations is well studied, for example by Hinterman [10]
and Escher $[7, 8]$ . Their results may be applied to (1.4) and (1.5) in order
to yield at least alocal solution. However, the global existence of solutions
of (1.4), (1.5) is easy to show, directly. By the maximum principle we derive
apriori bounds for the $\sup$ norms of $u_{t}^{\epsilon}$ , $u_{x}^{\epsilon}$ , $u^{\epsilon}$ in $\overline{\Omega}\cross[0, T]$ for solutions of
(1.4), (1.5) independent of $\epsilon\in(0,1)$ . This yields the solution of (1.1), (1.2)
as alimit as $\epsilonarrow 0$ . The presence of the term $\epsilon\partial u/\partial\nu$ in (1.5) is crucial in
order to obtain the apriori bound
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Finally, we remark that the boundary condition (1.2) cannot be replaced
by aformally equivalent Dirichlet boundary condition

$u(x, t)= \int_{0}^{t}F(x, \tau)\alpha(x, \tau)d\tau+a(x)$ (1.6)

even in the viscosity sense. We give in Section 5an explicit solution of (1.1)
which solves (1.2) (resp. (1.6)) but does not solve (1.6) (resp. (1.2)) when
a $\equiv 1$ , $F\equiv 1$ and $\alpha>\gamma$ .

2. Definitions and Equivalent Notions of Solutions. Let $\Omega$ be a
bounded interval $(0, L)\subset \mathbb{R}$ and $T$ $>0$ be aconstant. For brevity we set
$Q=\Omega\cross(0, T),\hat{Q}=\overline{\Omega}\cross(_{\wedge}0, T)$ and their closure $\overline{Q}=\overline{\Omega}\cross[0, T]$ . Given a
mapping $k:=k(x, t, \tau,p)$ : $Q\cross \mathbb{R}\cross \mathbb{R}arrow \mathbb{R}$ we recall the following definitions
of viscosity sub- and supersolutions $u\in C(\hat{Q})$ for $k$ .

DEFINITION 2.1. A function $u$ is said to be a viscosity subsolution of $k$

(in $\hat{Q}$ ) provided for any $(\hat{x},\hat{t}, \phi)\in\hat{Q}\cross C^{1}(\hat{Q})$ such that

$(u- \phi)(\hat{x},\hat{t})=\sup_{\hat{Q}}(u-\phi)$

then the inequality $k(\hat{x},\hat{t}, \tau,p)\leq 0$ holds where $\tau=\phi_{t}(\hat{x},\hat{t})$ and $p=\phi_{x}(\hat{x},\hat{t})$ .

DEFINITION 2.2. A function $u$ is said to be a viscosity supersolution of
$k$ (in $\hat{Q}$) provided for any $(\hat{x},\hat{t}, \phi)\in\hat{Q}\cross C^{1}(\hat{Q})$ such that

$(u- \phi)(\hat{x},\hat{t})=\inf_{\hat{Q}}(u-\phi)$

then the inequality $k(\hat{x},\hat{t}, \tau,p)\geq 0$ holds where $\tau=\phi_{t}(\hat{x}, t)$ and $p=\phi_{x}(\hat{x},\hat{t})$ .
Let $F$ and abe given functions in $C(\overline{Q})$ , $C(\partial\Omega\cross[0, T])$ respectively and

$\gamma\underline{>}0$ be agiven constant. We use the notation, since $\partial\Omega=\{0, L\}$ , that
$\partial/\partial\nu=\nu\partial/\partial x$ on an with $\nu$ $=-1$ for $x=0$ and $\nu$ $=+1$ for $x=L$ . The
initial boundary value problem is

$\{\begin{array}{l}u_{t}-F(u_{x}^{2}+\gamma^{2})^{1/2}=0u_{t}-F\alpha=0u|_{t=0}=a\end{array}$
$0\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{n}$ $\Omega\partial\Omega.\cross Q,(0,$T), (2.1)

In order to formulate the definition of aviscosity solution to (2.1) we define,
for (x, t,$\tau,p)\in\hat{Q}\cross \mathbb{R}\cross \mathbb{R}$

$E(x, t, \tau,p):=\tau-F(x, t)(p^{2}+\gamma^{2})^{1/2}$ ,

$F_{\mathrm{n}1\mathrm{i}\mathrm{n}}(x, t, \tau,p):=\{$

$E(x, t, \tau,p)$ if $x\in\Omega$ ,
$\min\{\tau-F(x, t)\alpha(x, t), E(x, t, \tau,p)\}$ if $x\in \mathrm{a}\mathrm{n}$ ,

$F_{\mathrm{n}\mathrm{u}\mathrm{a}\mathrm{x}}(x, t, \tau,p):=\{$

$E(x, t, \tau,p)$ if $x\in\Omega$ ,
$\max\{\tau-F(x, t)\alpha(x, t), E(x, t, \tau,p)\}$ if $x\in\partial\Omega$ .
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DEFINITION 2.3. We say that $u\in C(\overline{Q})$ is a viscosity solution of (2.1)
provided $u(x, \mathrm{O})=a(x)$ , $x\in\overline{\Omega}_{f}u$ is a viscosity subsolution for $F_{\min}$ and $a$

viscosity supersolution for $F_{\max}$ .
This is the usual notion of viscosity solution for boundary value prob-

lems (cf. [5]). We give an equivalent notion of solution by introducing, for
$(x, t, \tau,p)\in\hat{Q}\cross \mathbb{R}\cross \mathbb{R}$

$G(x, t, \tau,p):=\{_{\tau-F(x,t)\max\{\alpha(x,t),(([p\nu \mathrm{S}\mathrm{i}\mathrm{g}\mathrm{n}F]_{-})^{2}+\gamma^{2})^{1/2}\}}^{E(x,t,\tau,p)}$
$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}x\in\partial\Omega x\in\Omega$

,

where $f_{-}$ is the negative part of f.
The main result of this section is the following proposition:

PROPOSITION 2.4. A function $u$ is a viscosity solution of (2.1) if and
only if $u\in C(\overline{Q})$ , $u(x, \mathrm{O})=a(x)$ , $x\in\Omega$ , and $u$ is both a viscosity subsolution
and a viscosity supersolution for $G$ .

3. Comparison Principle. We have the comparison principle for (1.1)
and (1.2) by driving the equivalent definition of solutions.

THEOREM 3.1. Assume that $F\in C(\overline{Q})$ , $\alpha\in C(\partial\Omega\cross[0, T])$ and

$|F(x, t)-F(y, t)|\leq C|x$ -y| for all (x, t), (y,$t)\in\overline{Q}$

holds for some constant $C>0$ independent of $t$ . Let $uand-v$ be bounded
upper semicontinuous functions on $\overline{\Omega}\cross[0, T)$ . Let $u$ be a viscosity subsolution
for $G$ in $\hat{Q}$ and $v$ be a viscosity supersolution for $G$ in $\hat{Q}$ . If $u(\cdot, 0)\leq v(\cdot, 0)$

in $\overline{\Omega}$ , then $u\leq v$ in $\hat{Q}$ .

4. Existence Theorem. Our goal is to show the existence of viscosity
solutions of the dynamic boundary problem (2.1).

THEOREM 4.1. Assume that $F\in C^{1}(\overline{Q})$ and $\alpha\in C(\partial\Omega\cross[0, T])$ . Assume
that $a$ is a Lipschitz function over $\overline{\Omega}$ . Then there eists a function $u\in C(\overline{Q})$

which is a unique viscosity solution of (2.1). Moreover, $|u_{x}|$ is bounded in
$\overline{Q}$ .

Let $\epsilon>0$ . First, we shall prove apriori estimates for aclassical solution
$u^{\epsilon}$ for the approximate problem

$\{u_{t}^{\epsilon}u^{\epsilon}u_{t}^{\epsilon}+\epsilon\nu u_{x}^{\epsilon}=F^{\epsilon}\max\{\alpha^{\epsilon},$$(([\nu u_{x}^{\epsilon}\mathrm{S}\mathrm{i}\mathrm{g}\mathrm{n}F^{\epsilon}]_{-})^{2}+\gamma^{2})^{1/2}\}|_{t=0}=a^{\epsilon}-\epsilon u_{xx}^{\epsilon}=F^{\epsilon}((u_{x}^{\epsilon})^{2}+\gamma^{2})^{1/2}$ $\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{n}$ $\Omega\partial\Omega,\cross Q,(0, T)$ ,
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where $\nu$ denotes the outer unit normal of an. The existence of asolution of
(4.1) is omitted here.

PROPOSITION 4.2. Assume that $F^{\epsilon}\in C^{1}(\overline{Q})\cap C^{\infty}(Q)$ and $\alpha^{\epsilon}\in C^{1}(\partial\Omega\cross$

$[0, T])$ . Assume that $a^{\epsilon}$ is a $C^{3}$ function over $\overline{\Omega}$ and $\epsilon a_{xx}^{\epsilon}$ is bounded on $\overline{\Omega}$

uniformly for $\epsilon$ . Let $u^{\epsilon}$ be a classical solution of (4.1). Then the estimate
holds

$\mathrm{m}_{\frac{\mathrm{a}}{Q}}\mathrm{x}(|u^{\epsilon}|+|u_{x}^{\epsilon}|+|u_{t}^{\epsilon}|)\leq C$ (4.2)

with some constant C $>0$ depending only on T, $\gamma$ , $|a^{\epsilon}|_{C^{1}(\overline{\Omega}))}|\epsilon a_{xx}^{\epsilon}|_{C(\overline{\Omega})}$ ,
$|F^{\epsilon}|_{C^{1}(\overline{Q})}$ and $|\alpha^{\epsilon}|_{C(\partial\Omega\cross[0,T])}$ .

Proof of Theorem 4.1. For agiven Lipschitz function $a$ there is asequence
$a^{\epsilon}\in C^{\infty}(\overline{\Omega})$ such that $a^{\epsilon}arrow a$ uniformly and that $|a_{x}^{\epsilon}|_{C(\overline{\Omega})}$ and $|\epsilon a_{xx}^{\epsilon}|_{C(\overline{\Omega})}$ are
bounded. For agiven $F\in C^{1}(\overline{Q})$ and $\alpha\in C(\partial\Omega\cross[0, T])$ there is asequence
$\{F^{\epsilon}, \alpha^{\epsilon}\}$ with $F^{\epsilon}\in C^{1}(\overline{Q})\cap C^{\infty}(Q)$ , $\alpha^{\epsilon}\in C^{1}(\partial\Omega\cross[0, T])$ such that $F^{\epsilon}arrow F$

uniformly in $\overline{Q}$ and $\alpha^{\epsilon}arrow\alpha$ uniformly in an $\cross[0, T]$ and that $|F^{\epsilon}|_{C^{1}(\overline{Q})}$ and
$|\alpha^{\epsilon}|c(\partial\Omega\cross[0,T])$ are bounded as $\epsilonarrow 0$ .

By the uniform estimate (4.2) the Arzela-Ascoli theorem implies that
there exists afunction $u$ such that

$u^{\epsilon}arrow u$ uniformly on $\overline{Q}$ .

We shall show that $u$ is the viscosity solution of the original dynamic bound-
ary problem (2.1). Since the proof for viscosity supersolutions is symmet-
ric, we only prove that $u$ is aviscosity subsolution for $G$ . To do this, let
$\phi$ $\in C^{2}(\overline{Q})$ be atest function and $(\hat{x},\hat{t})\in\hat{Q}$ be the maximum point of $u-\phi$ .
We may assume that $(\hat{x},\hat{t})$ is astrict maximum of $u-\phi$ . Then there exists
$(x_{\epsilon}, t_{\epsilon})$ such that $(x_{\epsilon}, t_{\epsilon})arrow(\hat{x},\hat{t})$ and $\sup_{\hat{Q}}(u^{\epsilon}-\phi)=(u^{\epsilon}-\phi)(x_{\epsilon}, t_{\epsilon})$ .

By the standard argument we see that $u$ is aviscosity solution of (2.1)
and it is unique by the comparison principle. The Lipschitz continuity of $u$

in $x$ follows from the estimate for $u_{x}^{\epsilon}$ . $\square$

5. Relation to Other Boundary Conditions. We shall relate an
$\mathrm{i}\mathrm{n}\mathrm{h}_{01}\mathrm{n}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{s}$ Neumann boundary value problem for

$u_{t}-F(u_{x}^{2}+\gamma^{2})^{1/2}=0$ (5.1)

supplemented with the dynamic boundary

$u_{t}-F\alpha=0$ . (5.2)
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Formally, (5.1) and (5.2) yields

$F(u_{x}^{2}+\gamma^{2})^{1/2}=F\alpha$ .

If $F$ is not zero, this implies $u_{x}^{2}+\gamma^{2}=\alpha^{2}$ . Thus we obtain

$\partial u/\partial\nu=u_{x}\nu=\pm(\alpha^{2}-\gamma^{2})^{1/2}$ (5.3)

on the boundary. The Neumann data in (5.3) needs more explanation since
both its sign and its value for $\alpha^{2}<\gamma^{2}$ are unclear. We shall clarify these
points and prove that asolution of (5.1), (5.2) solves an inhomogeneous
Neumann problem in the viscosity sense.

THEOREM 5.1. Assume that $F$ and aare continuous on $\overline{Q}$ and $\partial\Omega\cross$

$[0, T]$ , respectively. Assume that $u$ is a viscosity subsolution (resp. supersO-

lution) for $G$ in $\hat{Q}$ . Then $u$ is a viscosity subsolution (resp. supersolution)

of the Neumann problem of (5.1) in $\hat{Q}$ with

$\partial u/\partial\nu=\mathrm{S}\mathrm{i}\mathrm{g}\mathrm{n}F\{(\alpha-\gamma)_{+}(\alpha+\gamma)\}^{1/2}$

Here $\beta_{+}$ is the plus part of $\beta$ defined by $\beta_{+}=\max(\beta, 0)$ .

When we are asked to solve (5.1) and (5.2), we are tempted to integrate
(5.2) in order to obtain the Dirichlet condition:

$u(x, t)= \int_{0}^{t}F(x, \tau)\alpha(x, \tau)d\tau+a(x)$ , x $\in\partial\Omega$ . (5.4)

However, unfortunately, (5.1) with the Dirichlet condition (5.4) is not equiv-
alent to (5.1), (5.2).

We shall give acounterexample to show that the problem (5.1), (5.2) is
different from the Dirichlet problem (5.1), (5.4) in the viscosity sense. We
suppress the word viscosity.

We shall give two different functions $u$ and $v$ which initially agree with
each other but $u$ solves (5.1), (5.2) while $v$ solves (5.1), (5.4) when $\alpha\equiv 1$ , $F\equiv$

$1$ , $\alpha>\gamma$ and $\Omega=(0, \infty)$ . Although it is not difficult to give such functions for
$\Omega$ $=(0, L)$ with more general $\alpha$ and $F$ , we keep such assumptions to clarify
the argument. Let $\beta$ be a constant strictly greater than $\sigma=(1-\gamma^{2})^{1/2}$ so
that $\eta=(\beta^{2}+\gamma^{2})^{1/2}>1$ . We set

$w(x, t)=1\mathrm{n}\mathrm{i}\mathrm{n}\{\beta+\gamma t, \beta x+\eta t, -\sigma x+\sigma+\beta+t\}$ , x $\in\overline{\Omega}$ . (5.5)

This function is nondecreasing in t and

$w(x, 0)= \min\{\beta x, -\sigma x+\sigma+\beta\}$
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so $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}w(x, 0)$ is linear except at $x=1$ . At time $t_{0}=\beta(\eta-\gamma)^{-1}$

$w(x, t_{0})= \min\{\beta+\gamma t_{0}, -\sigma x+\sigma+\beta+t_{0}\}$ .

Since $\beta\geq\sigma$ , it is easy to see that

$\phi_{t}-(\phi_{x}^{2}+\gamma^{2})^{1/2}\leq 0$ at $(\hat{x},\hat{t})$

if $w-\phi$ attains its maximum at $(\hat{x},\hat{t})$ over $\overline{\Omega}\cross(0, t_{0}]$ even if $\hat{x}\in\partial\Omega$ . So $w$

is asubsolution of $\overline{\Omega}\cross(0, t_{0}]$ of (5.1), (5.2) and (5.1), (5.4). It is easy to see
that $w$ is asupersolution of (5.1), (5.2) and (5.1), (5.4) in $\overline{\Omega}\cross(0, t_{0}]$ since
$w_{t}\geq 1$ , $w\underline{>}t_{0}$ on the boundary. We now set

$u(x, t)=v(x, t)=w(x, t)$ for $t\leq t_{0}$ , $x\in\overline{\Omega}$ (5.6)

and

$v(x, t)= \min\{\beta+\gamma t, -\sigma x+\sigma+\beta+t\}$ for $t\geq t_{0}$ , $x\in\overline{\Omega}$ , (5.7)

$u(x, t)= \max\{\beta+(\gamma-1)t_{0}+t-\sigma x, v(x, t)\}$ for t $\geq t_{0}$ , x $\in\overline{\Omega}$ . (5.8)

As for $w$ it is easy to see that $v$ is asubsolution of both the dynamic (5.1),
(5.2) and the Dirichlet problem (5.1), (5.4) in $\overline{\Omega}\cross(0, \infty)$ . Since $\eta>1$ so
that $t_{1}=\beta(1-\gamma)^{-1}>t_{0}$ , and since $v(0, t)>t$ for $t<\mathrm{t}_{1}$ , $v$ is asupersolution
of the Dirichlet problem in $\overline{\Omega}\cross(0, t_{1})$ . However, $v$ is not asupersolution in
$\overline{\Omega}\cross(0, t_{1})$ of (5.1), (5.2) since at the boundary $v_{t}<1$ with $v_{x}=0$ .

Since $u_{t}=1$ on the boundary and since it is easy to see that $u$ is a
solution of (5.1) in $\Omega\cross(0, \infty)$ , we conclude that $u$ is asolution of (5.1), (5.2)
in $\overline{\Omega}\cross(0, \infty)$ . This is not asubsolution of (5.1), (5.4) in $\overline{\Omega}\cross(0, \infty)$ since
$u(0, t)>t$ by $\eta>1$ and

$\phi_{t}-(\phi_{x}^{2}+\gamma^{2})^{1/2}>0$ at (0,$\hat{t})$

if u $-\phi$ attains its maximum on $\overline{\Omega}\cross(0, \infty)$ and $\hat{t}>t_{0}$ . (The function u is a
supersolution of (5.1), (5.4) since $u(0$ , ?$)>t.$ ) We summarize our results.

PROPOSITION 5.2. Assume that $\alpha\equiv F\equiv 1$ and $\gamma<1$ . Let $\beta>\sigma=$

$(1-\gamma^{2})^{1/2}$ . For $\Omega=(0, \infty)_{\rangle}$ let $u$ and $v$ be functions defined by (5.5)-
(5.8). Then $u$ is a solution of the dynamic boundary problem (5.1), (5.2)
in $\overline{\Omega}\cross(0, \infty)$ while $v$ is a solution of the Dirichlet problem (5.1), (54) in

$\overline{\Omega}\cross(0, t_{1})$ with $t_{1}=\beta(1-\gamma)^{-1}$ However, $u$ is not a subsolution of (5.1),
(5.4) in $\overline{\Omega}\cross(0, T)$ , $T>t_{0}$ while $u$ is a supersolution of (5.1), (54) in

$\overline{\Omega}\cross(0, \infty)$ . The function $v$ is not a supersolution of (5.1), (5.2) while it is
a subsolution of (5.1), (5.4)
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