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LOCAL INTEGRAL ESTIMATES OF GRADIENTS
FOR DEGENERATE PARABOLIC SYSTEMS

Masashi Misawa (=R IE5)T
Dept. of Mathematics, Fac. of Science, Kumamoto Univ.

ABSTRACT: We consider L7—estimates of gradients for degenerate p—Laplacian sys-
tems with discontinuous coefficients and external force of divergence of BMO-functions.

1. INTRODUCTION Let Q be a domain in an Euclidean space R™ for m > 2
and T be a positive number. Suppose that 52% < p < oo. We consider the evolutional
p-Laplacian system

B’ — Dy (|1Dull;?g* Dgu') = div (|FP?FY) in Q= (0,T)xQ, i=1,---,n, (11)

where gg“ﬁ (z)? and (h;;(2)) are symmetric matrices with measurable coefficients satisfying
the uniform ellipticity and boundedness condition with positive constants v, I’

YIEP < 9°%(2)€kebhi;(2) S TIEP for any € = (1) € R™ and almost every z € Q@ (1.2)

and the notation €12, = g*P€i&shy; and €[ = (€4)? is used. Here and what follows, the
summation notation over repeated indices is adopted.
Given F' = (Fy) € L{ .(Q,R™) for ¢ > p — 1, we define a weak solution of (1.1) to

be a function u € Lf3 ((0 T); L}, (2, R")) NL} . ((O, T); Wloc(Q’ R")) satisfying, for all
¢€ C10 (Qa Rn) ) :

/{ u- 8+ |Dul’; gaﬂDﬂu.Da¢+|F|P-2F-D¢}dz=o (1.3)

Such evolution systems as (1.1) describe the gradient flow of the p—energy functlonal with
varlable coefficients and lower order terms :

E(u) = /‘( **(z) Do Dﬁ“”lij(ﬂf))%ﬂL |[FIP™* F'- Duhy(z) da. (19)

In this paper, we study how the regularity of a function F is reflected to the one of a
solution under some assumption on the coefficients. Let us consider a L?—regularity of the
gradient of a solution. Such regularity on integrability is known to hold for linear elliptic and
parabolic systems of divergence form (see [10, pp. 87-89), [2, 1] and the references in them).
It is shown in [1] that, if p = 2 and the coefficients are of vanishing mean oscillation, called
VMO-function, then L?—estimate of the gradient holds for any LY—functions F. In [9, 12],

t This research was partially supported by the Grant-in-Aid for Scientific Research (C) No.11640066 at the
Ministry of Educations, Science, Sports and Culture. This report is the preliminary version of the paper[17].




the similar L9—estimate as in the case p = 2 is shown to hold for stationary p—Laplacian
systems. For a function F' of bounded mean oscillation, called BMO-function, a BMO-
regularity of the gradient may be expected to hold under some assumption for the coefficients.
In fact, in the case p = 2, such BMO-estimate holds for VMO-coefficients and this condition
for the coefficient is the optimal one for BMO estimates (see [1]). For stationary p—Laplacian
systems, related results are known to hold in the degenerate case p > 2 [9]. The above L? and
BMO estimates of the gradient are accomplished by using the growth estimates for the mean
oscillation of the gradient of solutions to homogeneous systems with constant coefficients in
the perturbation arguments. In the just linear case p = 2, we can combine the duality and
interpolation arguments with L2 and BMO estimates to have LY—estimates of the gradient
(see [1, 18]). In the p—Laplacian case, since the interpolation argument can not directly
adopted, we have to study L? and BMO estimates, separately. Here, anyway, the growth
estimates for the mean oscillation of the gradient for homogeneous systems with constant
coefficients obtained in [9], also play a important role. However, since the estimate in [9] is
for the mean oscillation of the gradient in L2 — norm, but not in L? — norm, it does work
only for BMO-estimates of the gradient in the degenerate case, but not in the singular case
1 < p < 2. For Li—estimates of the gradient for stationary p—Laplacian systems, somewhat
rough estimate for the mean oscillation is well-worked by combination with L>°—estimate of
the gradient and the localized Fefferman and Stein’s inequality for a sharp maximal function
(see [12, 9]). On the other hand, it is not known whether such growth estimate for the mean
oscillation holds for evolutional p—Laplacian systems with constant coefficients and only
principal part or not (except the “scalar” case). The inconvenience of estimates gives some
difficulties in L? and BMO estimates of the gradient in the evolutional case and it comes
from the non-homogeneity of the evolutional p—Laplacian operator, the situation of which is
completely different from the stationary case. In Holder estimates of the gradient for a given
Holder continuous function F', similar problem as above appears and thus, a technical device
is needed even to obtain a Holder estimate with “lower” Holder exponent than the one of a
given function F' (see [15]). The method in [15] does not seem to be applied for L? and BMO
estimates of the gradient. In this paper, we show that, for evolutional p—Laplacian systems
with a BMO-function F and VMO-coefficients, a L9—estimate for the gradient holds for any
q > p. Of cource, it seems more natural to consider L9—regularity of the gradient for a given
L?—function F. However, as described above, we are now faced with some difficulty, which
concerns the estimate for L*°—norm and the mean oscillation in LP—norm of the gradient
for evolutional p—Laplacian systems. ,

To state our main result, we recall the definition of the function spaces: Let G C @ be
a domain. Then we define that an integrable function f € L9(G), ¢ > 1, is of bounded
mean oscillation in G (with respect to LY—norm), referred as BMO (in G), if, for a positive
number p,

[Flegoc = Sup. (r}sT/PIf = (f)qudZ); < 0 (1.5)

diam(P) < p _



holds for a parabolic cylinder P = Q,, = (to — T, to) X B;(xo) with a vertex (to, zo) € G and
r,7 > 0 and the integral mean (f)p in P, where diam(P) = 4/(2r)? 4+ 72 is the diameter of
a region P measured by the Euclidean metric in R™*!. Recall that Lebesgue’s differential
theorem (see (2.7) below) holds for any f € L .(Q),q > 1 (refer to [19, 5.3 (c), pp. 23-24]),
which motivates the definition (1.5). If (1.5) holds for all P C G, we abbreviate (1.5) to
[flq.c- If (1.5) converges to zero as p \, 0, then we say that f is of vanishing mean oscillation
in G (with respect to L9—norm), referred as VMO (in G). A locally integrable function in
Q is said to be of locally bounded or vanishing mean oscillation in @, if the above conditions
hold for all domains G compactly contained in Q. Locally continuous functions are of locally
vanishing mean oscillation, but, in general, functions of local VMO functions need not to be
locally continuous.

Theorem 1 Suppose that the coefficients are of locally vanishing mean oscillation in Q and
that the function F is of locally bounded mean oscillation in Q. Let u be a weak solution of
(1.1). Then Du is also locally Li—integrable in Q for any ¢ > p and, for any q > p and
20 € Q, there exist positive constants C and d depending only on m,p,q,~,T, dist,(20, 0pQ)
and the VMO-norm of the coefficients such that

)1 +(1+ %) &

/ |Du|ldz < C(ro)(ﬂo )P(=+2>( /|Du|”dz

2
P

e(g— 1+ 1+00 <
+C (ro) (& ~ V) 55 ( L /__|Du|pdz) (+2) &
| | ] o
+C (1 + (7.0)‘2‘;‘,2;2;‘; 2 ( / |F|sz)

P

+()™ (1err Lza) ) |, |Dudz, (16)
holds for ro = Ldist, (20,8,Q), @ = Qroy2.re(20) and @ = Q 2 (20).

2(r0)2,2(ro) ?

For the proof, we use the perturbation argument with the p—Laplacian systems with
constant coefficients and only principal part. The main task is to choose the “good” parabolic
cylinders on which the L*° and Hélder estimates of gradients for such p—Laplacian systems
can be improved to be well-worked in the perturbation arguments. The approach is similar
to the one of Kinnunen and Lewis ([11], also see [14]), who obtained the higher integrability
of the gradients for evolutional p-Laplacian systems. Employ Whitney decomposition with
the covering argument and sum up the resulting integral estimates on such “good” local
cylinders as above to obtain the estimation for the upper level set of gradients of solutions.
Then, we apply the usual integral formula to arrive at the desirable L?—estimates.

2. PRELIMINARY In this section, we gather the local estimates needed in the
proof of our main theorem. Take arbitrarily and fix 29 = (to, Zo) € Q = (0,T) x Q and put



o = 3diste(20,3,@). Let h > 1 be determined later and Qq(20) = (to — d?, to) X Ba(z) for a
positive constant d < g-disty(20, Q) = 52. Then Qq4(20) C Qy,(20) be compactly contained
in Q.

Employ the Whitney decomposition to divide P;; = (—1, 1) x B;(0) into a family { P;} of
cylinders P, = P2 5, (2:) = (ti—(pi)?, ti+(pi)?) X By, (:) with center z; = (t;,2;) € Py g, i =
1,2,---. We can refer to [20, p. 339} for the precise way of the Whitney decomposition. (also
see [10, pp.126-128]). This family of cylinders has the following properties: The cylinders
P, i =1,2,---, are of uniformly bounded overlap and each Ps,,)25,,(2i) 1 = 1,2,---, is
totally contained in P, ;. To make the decomposition result to be well-worked in our setting,
we divide each P; into two cylinders Q,, (¢ + (p:)?, ;) and Q,,(t;, z;) and then relabel the
resulting cylinders to be Q; = Q,,(t;,z:), ¢ = 1,2,-- - so that cylinders Q;, i =1,2,-- -, have
the uniformly finite overlaps each other and each Q(sp,)25,, ¢ = 1,2,-- -, is totally contained
in Ql-

By the parallel and scaling transformation, t = ty + d?s,z = zo + dy, we transform
Qa(z0) into Q;, use the decomposition as above and make a scaling back to divide Q4(20)
into Whitney type cylinders

Qi = Qr,2(2:), z = (t:, 7:) € Qu(20), 74 = Ldist2(2:,0Q) (i =1,---). (2.1)

Then, clearly, Qsr,)2,5,(2i) C Qa(20)-

In the followings, by a parallel transformation, we assume that 2 is the origin and put
Q4 = Qa(z0) and Q = Qr,(20). We will divide the arguments into the degenerate case p > 2
and the singular case 2™ < p < 2. First we treat the degenerate case. Let s > p be

m+2
stipulated later and )\ be a positive number such that

Ao > max {1, (]—é’[ /5 |Du|3dz)"_:’“} . (2.2)

For all z, € Qq4, we can choose a cylinder Q;, with some iy = 1,2, - - - such that

1Qio| = mnggi Qi (2.3)
since cylinders @;, ¢ = 1,2, - - -, are of uniformly bounded overlap.

For any 2y € Q4 and all A > 0, we take a positive integer 7o in (2.3) and set a positive
number p = p(zg, A)
1
[1(2:0, A) = A |Qio| sTP¥Z, (24)
Then there exists a positive constant C depending only on m and p such that

3

b 4

1 Y4 1 . L]
] / | Du|Pd= < r———IQ,,z—p,,z_,, / | Dul|®dz

Q,2-p,2,,(20) u2-pp2,,(20)



< ClQul 72 [ |Duldz
' Q

< TlR|(MQulI™=7) =CT°|Q|wr (25)
holds for all A > Ag, any 29 € Q4(20) and all positive numbers p,
| 1o <p <o (2:6)

Here we note the followings: Since |Q:| < 1foralli=1,2, -, we have that u?=? < ()27
holds for any A > Ao, and then, Q,2-52 ,(20) C Q(rg)2.r0(20) C Qa2 4 for all p satisfying (2.6).
We see from Lebesgue’s differentiation theorem (refer to [19, 5.3 (c), pp. 23-24]) that

lim 1 / Dupdz) = |Du(z)P > C° O
AN ( Quz-pp2,, Q,2-p,2,(20) | Dy | Du(z)] ’Q

holds for almost every zq € Qg2 4(0) satisfying |Du(zq)|P > C* ]@

!
For all A > X\ and any zy € {|Du(2o)| > 6]@ *u}, put p= /\IQiO|—8~II’+2, where iy and u
are determined in (2.3) and (2.4). Then, noting the continuity of integral, we find from (2.5)

and (2.7) that, for all A > )\ and any 2z, € {|Du(z)| > Ul@
number pg, 0 < po < 1 p;,, such that :

1 / |Du|Pdz = C* ’@
’Quz‘l’(po)z.ﬂo Q2= (pg)2,0g (0)

2
TP (2.7)

)4
S P
uP.

1
* u}, there exists a positive

2
P (2.8)

and

| 2_1,, - f |DulPdz < o] 2_1,, - / | Dul*dz

u2-p2,p(20) u2=7,2,5(20)

~ B
< C°lQ|* w (2.9)
holds for all p, py < p < 2hd, and, in particular, for p = hp, and p = 2hp,.

Now, let 2o = (to, Zo) € Qq satisfying |Du(z)|? > C” '@‘ uP for = A |Qiol‘;ﬁ A Ao
and 1 is as in (2.3). For brevity, we assume that z; is the origin. Put A = u?? and R = hps.
From now on, we proceed to local estimates on Qg2 g and Q A(po)?,p0- We observe to improve
the L>°—estimate and Holder estimate for the p—Laplacian system with constant coefficients
and only principal part in Qagz g and Qa(s)2 4, referred as “good “ parabolic cylinders.

Let v € L®(—A(2R)?,0 : L*(Byg, R")) N LP(—A(2R)%,0 : W'P(Byg, R")) be a weak
solution of '

8{1} = Da (|D’U'Ig_1%2§a’3Dﬁ'U) in QA(2R)2,2R
v=u on 8pQA(2R)212R, (210)



aff a8 [ - 1 g
g dz’ hl] - lQA(2R)2’2RIL h1JdZ,

A(2R)2,2R

=af _ 1

9 QA(M)Z‘M ‘/QA(2R)2.2R
g=(3"%), h=(hy). (2.11)

First we state the L>—estimate in the “good” parabolic cylinders.

Lemma 2 (L™ —estimate) There ezists a positive constant C depending only on m,p,~,T",C
and 'Ql such that

sup |DvfP < Cr—1 / | Du|Pdz 2.12
QARz’R I | IQA(Po)z-Pol QA(Po)z-Po ( )
Proof. We have the L*®—estimate [3, Proposition 3.1, p. 109]
P
|DofP < o( A / |Dv|”dz) e t=" (2.13)
su v o P -P. :
QARER B Onar22R1 JQ, 4py2 2n
The perturbation estimates (2.14) gives
L DvuPdz < C]-—[l / DulPdz + C. 2.14
[Qu2r)2,2R] ~/QA(28)2,2R 1D T 19em22r] JQuepy2n (Dl ( )
Substitute (2.14) into (2.13) to have
ty
-
sup |[DvlP < C (]——————-TA / Du ”dz) +C (A% + A7) 2.15
AR2.R I | QA@zR)2,2R Qaczry2.2r l | ( ) ( )

We now make estimation of each term in the right hand side of (2.15). Since A > 1 and
|Qi,| < 1, we find by (2.8) that

~ 2\ 1
A <1< (U”|Q ) —— |DulPdz. (2.16)

Q(00)2,00

Also the direct calculation with (2.8) and (2.9) gives

~ B\ 1
AT = (@il =) = ('C"’ 2 ) S / \DufPdz,  (2.17)
P0)“.P0 QA(Po)z,FO
2 it |52\ !
L] ——— pupaz) < (T°[QF)" (2.18)
2R,A(2R)2 QzR,A(zR)2

Combine (2.15), (2.16) and (2.18) with (2.13) and note (2.8) and (2.9) to have the desired
estimate (2.12).

The next estimate concerns the Holder estimates in the “good” parabolic cylinders.



Lemma 3 (Holder estimate) There exist positive constants C depending only onm,p,v, T, C
and 'Q‘ and o, 0 < a < 1, depending only on m and p such that

N ,
P
osc (Dv) < Ch™@ 1 / Du ”dz) 2.19
QA(PO)21P0( ) ( QA(Po)z,po QA(PO)ZvPO | ' ( )
Proof.

From (2.12) with (2.17), we see that

sup |Dv| < Cu= CATF . (2.20)
AR2.R

Let M be a positive number such that M = Cp in (2.20). Note that the transformed map

v(t,z) = v (M—f,_g, x) is also a weak solution of (2.10). Apply the Holder estimate for the

map ¥ [5, Theorem 1.1”, p. 258] to have

osc (Dv)
QM”‘2A(90)2.P0
252Y\ @

2

( |
po + (M”‘zA(po)2)% max ¢ 1, ( sup ]Dz7|)

QA“’—ZA(PO)ZJ’O

<C sup |D7|

: (2.21)
QumP-2AR2,R dist (QMP_ZA(po)z,poa apQMPfZARZ,R)

We can evaluate the denominator in the right hand side of (2.21)

dist (QMP—ZA(po)2,po, 3pQMp—2AR2,R)
(]a: —y|+ M5 AR [t — slé)

(B2)€2 (50)2, 09’
(s4)€3pR g2 o

= min{po(h — 1), M"T AZpg(h® —1)2} | o
> Cpo(h — 1) > Cpoh, : : (2.22)

D=

since, by the definition of A and (2.20), we have
MY A =C (2.23)

and the positive constant h is sufficiently large. Transforming back and noting (2.22) and
the fact that supg _, . |Dv| <1, we obtain, from (2.21),

& osc |Dv| < Ch™°. { (2.24)

A(p0)2,p0



We now estimate the difference of u from v in the local LP—norm. Let us use the notation
in (2.11) for the integral average.

Lemma 4 There ezists a positive constant C depending only on m,p,~,T such that

=r s—p s=p s :
Jo  IDv=DuPdz < C|Qranpan| * (lola+hle) ([ IDulaz
QA(2R)2,2R QA(zR)2,2R
g TR
+ |FIP=2F — TFP=2F|™" dz, (2.25)
QA(2R)2.2R

where a positive number s > p is the same one as in (2.2).

Proof. Subtract (1.1) from (2.10) and use a test function h;;(v’ — w/), which is shown to
be admissible by the usual approximation argument, in the resulting equation. We utilize
algebraic inequalities

3 (IPP*P - |QEQ%) (PS - @b) hyy > C|P - QP, (2.26)
|(IPE2?9%° Pihs; — | P *5°° Pihys)| < Clgh — gkl PP,

which hold for any P = (P.),Q = (Q},) € R™ with a positive constant C' depending only
on p, A and A. We use Young’s inequality to have, for any € > 0,
Lo o (! — ) - )
Qa@Rr)2,2R )
+3% (|1 Dvff;* Dgv' — | Duft;* Dgu') (Dot — Dats?) hyjdz
= (IFP=2F - [FP2F%) (D — Dw) hyjdz
QA@R)2.2R
- (IDul?;%3% Dgu'hi; — | Dulf; g™ Dguihss) (Dav? — Dow?) dz
QA(2R.)2,2R g
- / |Dul?:29% Dygui? (hyj — is) (Dav? — Dot d. (2.27)
QA(zn)Z,zk
Let s > p be the same positive number as in (2.2), which is stipulated later, and recall

g 2 p > 1. We use Holder’s and Young’s inequality to make the second term in the right
hand side bound by

/ |gh — gh| | Dul~| Du — Du|dz
QA(2R)2.2R
<é |Du — Dv|Pdz
QA(2R)2,2R
ps =t :
+C(671) (/ 'gh — gh|®VC? dz) (/ |Du|3dz)
QA(ZR)2,2R QA(2R)2,2R




<46 / |Du— DvfPdz (2.28)
QA(zR)2,2R N
2
-1 s_;2 =P s °
+C(677) ]QA(2R)2,2R (|9)+.na + |Plena) = (/ | Du| dz) )
A(2R)2,2R

where, by the boundedness (1.2) of the coefficients, we have the bound for the mean oscilla-
tion of the coefficients

| —2Ps
P=Dls=p) dZ S C (|g|*,hd + |hr|*,hd) ) (229)

1 / gh —gh
QA(2R)2,2RI QAR)2,2R '

where note that, since we choose a positive number d to be so small that hd < 1 and
2R = 2hpy < hd < 1 and the notation |f|. nq is an abbreviation for (1.5). Similarly as (2.28)
and (2.29), the third term is estimated by

5 / \Dv — DulPdz (2.30)
QA(2R)2 2R
2
s—p s s
+C(d ’QA(2R)2 23' |A]\ha (/ | Dyl dz)
A(2R)2,2R

The first term are bounded by

c (IDU — Dup +||[FP*F ~ FF-

QA(2R)2,2R

peT ) dz. (2.31)

Combining (2.28), (2.30) and (2.31) with (2.27), using (2.26) and choosing a positive number
d to be small, we choose the positive constant C' depends only on p, A and A to arrived at
the desired estimate (2.25).

3. PROOf Of THEOREM Let 1 be a positive number determined later and X\ be
a positive number such that nA > Ag. Then, in the exactly same way as in (2.8) and (2.9),
we can choose a “good” parabolic cylinder Q7} A(po)2,p(20) for almost every zo € {|Du| >

u}, where g = nA (min,yeq, |Qi|)_8~1’+2 . Thus (2.12) and (2.19) hold for A replaced

by nA and Qa(p)2,0, Teplaced by QX’? 20)2.p0° EOT brevity, we use the notation for the integral
average

(=g fop, 122 (2.32)

Using the elementary inequality

[|PIP —|QP| < C67F|P - QFF +4|Q, (2.33)
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which holds for any positive number § and all P = (P!),Q = (Q}) € R™, we have, for any
positive number 6,

o |1Pul = (|Dul)p | dz

A(pg)2.p0
C(é 1)/M |Dv — (Dv) | dz + 6 / |DolPdz
Alpg)2.p0 /\(r’o>2 PO
+C(67Y) / . |Dv—Dupd. (2.34)
A(pg)2,p0

}I}eplacing QA(po)2,00 DY Qx’zm)z' » and substituting (2.12), (2.19) and (2.25) into (2.34), we
ave

|1 Dul? — (| Dul?) | d2

nA

A(p0)2.00
< C(CH+CO6 Y hPe) / . |Dupdz
A(p0)2,p0

2

=p a=p 2=p y
* (1ol + 152) ( Lo IDuI“dz)
QA(zR)Z,m
_B_
+ / |FP=2F — (IFP-?F), |7 d. (2.35)
QA(ZR)2 2R

We proceed to the estimation for the right hand side in (2.35).

. A(po)2p0| C/nA IDu|de

A(po) .0
= | Du|Pdz + | DulPdz
QA(po)2 {lD“|<"C|Q| } QA(po)2 {IDu|>nC|Q| }
S QX + / | DulPdz. (2.36)
| Alpo)?, po’ QL o {|Du|>nC|Q| }

where we used (2.8). We choose a positive number 7 to be so small that ” < 1 and, then

|QA (p0)2, po’ c / |DufPdz < C

. | Dul|Pdz. (2.37)
Q012,00 Qi (01200 {lDul>nC|Q| }
We obtain from (2.9) and (2.37)
. |Duldz < C°|Q|u (2.38)
QA(zR)2 2R
% S
1-5

< cenm| [ DupPdz| |Q7, .,
< c@h (Q fowerat }| | )IQMM
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Noting that A = p>7? and pu = (77)\)|Qio|“s—zl7+2 and using (2.37), we have the boundedness
for the third term of (2.35) by

m+2 A
(Qh) ’Qx(po)z,po

< (2h)m+2,’,’—p/\—p"c‘—l’ 1@

(IFP2Fl. =) & (2.39)

Alpg)2.p0

_B 2
' _ 1\ IDuPdz(IFP2F), )7
QY ﬂ{IDUI>n5IQ|’u} o
where we use that |Q;,| < 1 and [|F|P7?F], ,_g is abbreviated to [|F|p‘2F]*,;p__l. Since, by
b _1, -_—
the definition of “good” parabolic cylinders,p

2
s

|DulPdz = C* P l@

A 1
Qlrep]s 1= (NIQil =7,

na
A(po)?2,00

we put I = )\IQiol_s—;H , and note that u = nf to have the estimation

|1 Dul? — (| DulP),0| d2

ni
A(pg)2.pg

> [ _ 3y [IDul = (1DuP) o d2
49 n{|Du|>c|Q| “E}

A(p0)2.00
1
s —
M

. (2.40)

Y4
s—p
%

> (1-7)C"|Q
>40°1Q

Qx?po)z,po N {'Dul > 6 ’Q
Qiye o N {1Dul > TQ]* )

where, in the second inequality, we use (2.38) and, in the last inequality, we choose a positive
number 7 to be small such that 2n? < 1. Combine (2.38), (2.39), (2.40) with (2.35) and

~ B P
divide the resulting inequality by C” ’Q * |Qi,|”*"P*2 to have

4
s P
T

5P| Qo0 N (1G] > A} | (2.41)
<C@+h) [ IGIPdz
QX(pO)2ypon{Ig|>7’A}

2Zp ot 23
+C (@0 (19 7 + bl ) glPdz

Q™ N{IG|>nA}

A(pg)2,p0

+OP Q[ hym N ((IFP2F, o)™

|G|Pdz,

nA N{IG|P>nP AP
QA(PO)z,PO {Ig|P>nPar}

where we put

6(2) =T (mipl.

F) =0 Q" (tmin |Qi|#+—z) IF(2)| for all 2 € Q (2.42)

= ) |Du(2)),
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and we use that |Q;,| < 1 and we see from the way of dividing Q4 into the Whitney type
cylinders Q;,i =1,2,---, that, forall z € QZ’}Q R)2.2R) the ratio of min,¢q, |Q:| for mingeg, | Q|
is bounded above and below by the absolute constant.

Note that the set Qx’zpo)z‘ 2 (20) is selected for any z € {|G| > nA} in the way as in

(2.8) and (2.9) and thus, we can choose the set QX?po)ﬁ,po(ZO) for each z € {|G] > A}

Apply the Vitali type covering lemma to obtain the family of cylinders Q; = QX’?pi)z, p,-(zi)’
z €{|G] > A\} i=1,2,---, such that

Qi n Q] = @a 1 # j1 :
(o ]
{IG] > A} c |JQ: C Qa almost everywhere, (2.43)
i=1
where Q) = Qy\?sﬁi)z’spi(zi)’ i =1,2,---,. Then (2.41) with Qx?m)g,po(zo) replaced by. Q;,
= 1,2,---, hold. Multiply the both side of (2.41) with Qx?m)z,po(zo) replaced by Q;,
i=1,2,---, by A7P~! and sum up the resulting inequality over the coverings Q;,i = 1,2, -- -,
to have
A7HQan {IG] > A} -
< C5m+? (6 + h™%) + (2B)™+? (lgl*?,f + |h|,§;2 ) (2.44)
+]@] 7 @ryrn (FP-2Fl. )T A7) 2ot [ GlPdz,
-t Q4N{IGI>nA}
where we use the disjointness of Q;, ¢ = 1,2,---. For a moment, we assume that G is

L7—integrable and proceed to our arguments. Integrate the both side of (2.44) on A in
(inﬂ, oo) to have

J X711QaN (1G] > A}l dA
<C (5 s @ (lolk +IAE) | (2.45)

Fany e (U R ) o) [T ([ 9P
n

By changing variables and Fubini’s theorem, we make calculation of the integral in the both
side of (2.45)

J X Ian (191> MHar =4 | Gdz,

Qun{Ig|>22}

A9-P-1 Pdz | dA
/ %“ (/an{lglmx} 191 z)

s g/ Glidz — () ‘H’/ g”dz). 2.46
-p (" Qaﬂ{lgl>/\o}| | (%) o.,n{|c|>Ao}l | (2.46)
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Combine (2.45) with (2.46) to have
L igraz < 0o [ GlPd= + [ Gled
Qu Qan{|G|< A0} Qan{IG]1>Xo}
- —a m+2 =2 =2
< o[ opdz +C (54 h+ @02 (ko + IhlLGe) (247

+Q™
We choose positive numbers § and h small and large enough, respectively, to have

C(6+h™) < patazpi=r,

(g—p)

(@)™ ([FPFlue) ™ X7) 855 [ folid:
Qa

Then we let a positive number d to be so small that

s-p s=p N g
¢ (2h)"‘+2( cha T Ihl*,zd) < plegrr,
Moreover, we choose a positive constant Ag such that
2 o £
§(o) 2 C (2h)m+2m (1FP- 2F] L) (2.48)

where note that the positive number 7 is determined in (2.37) and thus, positive numbers h
and 7 are depending only on v, ', m and p. Therefore, we can absorb the second term in the
right hand side into the left hand side in (2.47) to have

[, 161z < C ()7 | [GIPdz (2.49)

<cC (1+ (T%[/§|Du]3dz) = ([ |) (IFPP-2F1., )“)/Qd IGPdz.

Here we need the Gehring iﬁequality available for a solution of (1.1). The proof is referred
to [11, 16]. Let ap and [y be positive numbers such that ap =p (g +1)-m and

2, if p> 2,
ﬁo—{ i

4 — p, lf'—fl%<p<2

Lemma 5 Letu be a small solution of (1.1) withp > 2=.. Then there exist positive constants
€ and C depending only on m,p,a,", I' and M such that

1+ 4
|DufPrdz < Cp(& 1) / o sz)
W /Q », (zo) | p m Q207,20 (20) s
( | 1+ 5
(2 _1 1 '
+Cp"\a / Dulfaz
p (m Q(20)7,20(20) ' |

+OgE s /Q |FlPdz. (2.50)

(2p)P,20(20)

holds for all Qv ,(20) C Q(2p)r,20(20) C Q with p > 0.
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Now we note (2.42) to rewrite (2.49) for |Du| and set s = p + € in the resulting inequality,
and then we apply (2.50) with p = (ro)% to arrived at the desired estimation (1.6).

As a result, we have shown the validity of (1.6), provided G is L?—integrable. Now we
will remove the integrability assumption of G. Let L > )¢ be a positive number and put
Gr = min{G, L}. Then we see that (2.45)-(2.49) hold with G replaced by G,. Finally, we can
take the limit as L — oo in (2.49) with G replaced by G; and use Fatou lemma to obtain
(2.49).
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