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Infinite Dimensional Cauchy Process
Associated with the Lévy Laplacian

KIMIAKI SAITO
DEPARTMENT OF INFORMATION SCIENCES
MEO UNIVERSITY
TEMPAKU, NAGOYA 468-8502, JAPAN

1 Introduction

Let E = S(R) be the Schwartz space consisting of rapidly decreasing functions defined
on R, where R means the set of all real numbers. Fix a finite interval T of R and take
nr € E satisfing nr = I—;Tl on T. Let {X["}:>0,m € N, be an independent sequence of Cauchy

processes such that the characteristic function of each X[ is given by E[e**X"] = e¢—antll
for all z € R, where N is the set of natural numbers and {a,}32, is some sequence in
R\ Q, Q being the set of all rational numbers. Then an infinite dimensional stochastic
process {(&m + X™"nr)men;t > 0},€m € Ec,m = 1,2,... , has the Lévy Laplacian as the
infinitesimal generator on some domain consisting of S-transforms of generalized white noise
functionals.

In this paper we give the domain of the Lévy Laplacian and prove that the Laplacian on
the domain is the infinitesimal generator of the above stochastic process.

The paper is organized as follows. In Section 2 we summarize some basic definitions and
results in white noise theory. In Section 3 we introduce the definition of the Lévy Laplacian
acting on vectors of generalized white noise functionals and give an equi-continuous semi-
group of class (Cp) generated by the Laplacian. In Section 4 we give an infinite dimensional
Cauchy process generated by the Lévy Laplacian.

2 Generalized white noise functionals

In this section we assemble some basic notations of white noise analysis following [6, 9,
15, 18, 23, 27).

We take the space E* = S'(R) of tempered distributions with the standard Gaussian
measure u such that

/E. exp{i(z, §)} du(z) = exp (—%Iélﬁ) , €€E=S(R),

where (-, ) is the canonical bilinear form on E* x E and |- |o is the L?(R)-norm.

Let A = —(d/du)?+u?+ 1. Then this is a densely defined self-adjoint operator on L2(R)
and there exists an orthonormal basis {e,; v > 0} C E for L?(R) such that Ae, = 2(v+1)e,.
Define the norm |- |, by |f|, = |APf|o for f € E and p € R, and let E, be the completion
of E with respect to the norm | - |,. Then E, is a real separable Hilbert space with the
norm | - |, and the dual space E; of E, is the same as E_, (see [12]). The space E is the
projective limit space of {E,; p > 0} and the space E* is the dual space of E. We denote the
complexifications of L(R), E and E, by L%(R), Ec and Ec,, respectively.
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The space (L?) = L?(E*, u) of complex-valued square-integrable functionals defined on
E* admits the well-known Wiener-It6 decomposition:

(L) = €D Har

n=0

where H,, is the space of multiple Wiener integrals of order n € N and Hy = C. Let
L% (R)®" denote the n-fold symmetric tensor product of LE(R). If ¢ € (L?) is represented
by o = 32 In(fa), fn € LE(R)®", then the (L?)-norm ||<p||0 is given by

o 1/2
lello = (Zn!lfnlﬁ) ,

n=0

where | - |, means also the norm of L%(R)®".

For p € R, let ||¢|l, = [|IT'(A)?¢||o, where I'(A) is the second quantization operator of A.
If p >0, let (E), be the domain of I'(4)?. If p < 0, let (E), be the completion of (L?) with
respect to the norm || - ||,. Then (E),, p € R, is a Hilbert space with the norm || - |,. It is
easy to see that for p > 0, the dual space (E); of (E), is given by (E)_,. Moreover, for any
p € R, we have the decomposition

(E)p = @Hr(zp)a
n=0

where HY) is the completion of {I,(f); f € E®"} with respect to || - ||p- Here‘ Eg’" is the
n-fold symmetric tensor product of Ec. We also have HY = {I.(f);f € E "} for any

p € R, where E‘S’" is also the n-fold symmetric tensor product of Ecp. The norm |||, of
Y= En—o n(fn) E ( ) is glven by

. o 1/2
loll, = (Zn'lfnlz) fn€E c,pa

n=0

where the norm of E®';, is denoted also by | - |,.

The projective limit space (E) of spaces (E),, p € R is a nuclear space. The inductive
limit space (E)* of spaces (E),,p € R is nothing but the dual space of (E). The space (E)*
is called the space of generalized white noise functionals. We denote by ((-,-)) the canonical
bilinear form on (E)* x (E). Then we have

(@,0) = 3 nl(Fr, fa)

n=0

forany ® = 3 > [ I,(Fy) € (E)* and ¢ = Y ;. I.(fz) € (E), where the canonical bilinear
form on (E&")* x (E&") is denoted also by (:,-).
Since p¢ = exp{(-, &) — 3(£, &)} € (E), the S-transform is defined on (E)* by

S[®](€) = (@, ), € € Ec.
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A complex-valued function F on Ec is called a U-functional if for every €, € Ec, the
function z =& F(€ + zn), 2z € C, is an entire function of 2z and there exist non-negative
constants K, a and p such that

IF(€)] < K exp{alé];}, €€ Ec.

Theorem 1 (see e.g. [9, 18, 23, 27]) A complez-valued function F on Ec is the S-transform
of an element in (E)* if and only if F is a U-functional.

3 The Lévy Laplacian acting on vectors of generalized white noise
functionals

Let F € S[(E)*]. Then, by Theorem 1, we see that for any £,7 € Ec the function
F(& + zn) is an entire function of z € C. Hence we have the series expansion:

Fe+m) =Y ZFO@)m,... ),
n=0

where F(™(£) : Ec x --- x Ec —= C is a continuous n-linear functional.

We fix a finite interval T in R. Take an orthonormal basis {(,}32, C E for L*(T)
satisfying the equally dense and uniform boundedness property (see e.g. [18, 19]). Let D,
denote the set of all ® € (F)* such that the limit

N-1
R.S[9](6) = Jim = 3~ S[B"(E)(Gn o)

n=0
exists for any € € E¢ and is in S{(E)*]. The Lévy Laplacian Ay is defined by
AL® = S'ALS®
for ® € D;. We denote the set of all functionals ® € D, such that S[®](n) =0forallne E

with supp(n) C T* by DT.
Take a generalized white noise functional

P = / f(ul, L ,un) . eiaz(ul) .. .eiuz(un) . du, f € Eg",a €R,
™

which its S-transform S[®] is given by

S[®](¢) = / f(u)e®é®) | gidlun)gy

T
We put
Dg = {/ f(u): He‘“‘“"’ tdu; f € Eg”, suppf C T"}
™ v=1

for each n € N U {0}. Then D, is a linear subspace of (E)_, for any p > 2. (See [20].) We
define a space D2 by the completion of D2 in (E)_, with respect to || - ||, Then for each
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n € NU{0} and a € R, D¢ becomes a Hilbert space with the inner product of (E)_p. Using
the simillar method in [33], we get the following:

Theorem 2 (cf. [33], see also [20, 30]) For each n € NU {0} and a € R, the operator A
becomes a continuous linear operator from D¢ into itself such that

2
Apd = —m

® for any & € Da.
7]

Proposition 3 (cf. [33]) Let ® =Y > &, and ¥ = 32, ¥, be generalized white noise
functionals such that ®, and ¥, are in D& for eacha € R andn € NU{0}. If ® = ¥ in
(E)*, then ®, =¥, for alln € N U {0}.

The operator Ay is a self-adjoint operator on D2 for each n € NU {0} and a € R.

2
Put o%(n) = S n, ( iy ) and define a space E, v by

[ o)
SN = {Z‘I’ € (E)5 Y a&(n)|®all?, < 00,8, € Dyyn = 0,1,2,...}
n=1
with the norm ||| - |||-p,~.e given by

00 1/2
1®@1l-pv.e = (Za?\f(n)”@ﬂ”ip) , &= 2‘1’ €El N
n=1

foreachNENp> > and a € R. ThenforanyNeNp>—2anda€R E_lesm
(E)_, and is a Hllbert space with respect to the norm ||| - |||-p,n,a-

Put E2 = Ny, E* ¢~ With projective limit topology. Then we have the followmg
inclusion relations:

E® - C E®, ny1 CEL vy C - CEL | C(E)-

-poo

The space EZ, ., includes D¢ for any n € N U {0} and m € N. The operator A be-
comes a continuous linear operator defined on E?, into E?,; satisfying |||AL®]||-p,N.a <
®|l-pNs1a0 N =1,2,3,..., ®€E®, . With these properties, we have the following:

Theorem 4 ([20, 33]) The operator Ay is a self-adjoint operator densely deﬁned on E?

foreachNGNandp>ﬁanda€R

For each ¢t > 0 and a € R we consider an operator G§ on E2 p,00 defined by

X na2
Gio=) e,
n=1

ford=>5 &, cE? Then we have the following:

—p,00°
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Theorem 5 (cf. [20, 31]) For each a € R the family {G¢;t > 0} is an equi-continuous
semigroup of class (Cp) generated by AL as a continuous linear operator defined on E® .00

Proposition 6 Let {a,}2, be a sequence in R\ Q such that a, # a,, holds for any
¢,m € N,£# m. Then EX, y NE7 v = {0} holds for each N € N.

Proof Let £,m € N, £ # m. Take an element ® in E*, ;v N E? . Then the functional ®
has two expressions:

[ o] (o o]
=) &,=) ¥, &, cD¥V¥,cD:.
n=1 n=1

For each n € N, ®,, and ¥,, are expressed in the forms

hm/ N (uy,. .. uy,) He'“"("") du

N—)oo

and n
¥, = lim g,[.N](ul, ety Up) He‘“"‘"“"’ : du,

N-ooo
v=1

respectively, where f,[; € E®" and g[N] S Eg". Take &+ € Ec with & = 1 on T. Put
& = a&r + n for arbitrarily ﬁxed a € C. Then, by taking the S-transforms, we have

o0 n
inaca 1: [N} iaen(uy)
26 I}EI:O/T"fn (uq,. .. ,un)ge du

[o o] n
= Z e lim [N ] (u1,...,up) H eomn(u)dy,
n=1 N=oo v=1
This implies ®, = ¥, =0 for alln € N, i.e., ® = 0. O

By Proposition 6, for N € N we can define a space £_, v by

€y = { @87 = 307 € B2 ¥ 3 1071 < 0
with norm given by

1/2
l12llle_pn = (z HI‘P’"III-,,,N".)

m=1

for & € £_,n. Then for each N € N, we have £_pni1 C E_pn. Put E_poo = N1 E-pN
with projective limit topology.
The Lévy Laplacian A is defined on the space £_p o by

AL® = (AL®™)men for each @ = (P™)meN € E—poo-

The operator Ay becomes a continuous linear operator from £_, o, into itself. For any ¢ > 0,
we introduce an operator G; on £_p o by

= (G @™ )men for each @ = (P™)pmen € €_p oo
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Then we have the following:

Theorem 7 The family {Gy;t > 0} is an equi-continuous semigroup of class (Cp) generated
by AL as a continuous linear operator defined on E_p .

Proof Let p > % be a number arbitrarily fixed. For any t > 0 and N € N, the norm
[1Ge®||le_, x for @ = (2™)men € E_p N can be estimated as follows:

NG:2lliz_, . = Z NG ™I p N m = Zza n)lle” tﬂ@mll

m= m_l n=1
00 00
Z Z red COT] [ 2 [ Z ™12 nm = H@IIIE, 4

Hence the family {Gy;t > 0} is equi- continuous in ¢. By Theorem 5, for any t,s > 0, and
= (™) meN € E_p,N, We get

GiG,® = (GG @™ )men = (Gi7, @™ )meN = G14,2

and
Go® = (G ™) men = (8")men = .
Since
(G~ = Gem)™ 12y wm < A" 2N m: m=1,2,.
and

Z”'q)m”'—pN,m

by Theorem 5 we have

liGe - Gl = 3 (G - GEmam|2 >,

m=1

ast — to for each t, 2o > 0, N > 1 and ® = (3™)men € E—poo- Thus the family {Gy;t > 0} is
an equi-continuous semigroup of class (Cp). We next prove that the 1nﬁmte31mal generator
of the semigroup is given by Ar. For N > 1 we see that

2

Gd - 2 2 - et —1  nal
G:2-® _ _ am am|| . (31
H mif| =303 e -+ e (3.1)

=P

Since ® = (®™);men € €-p 00, We have

5 e mlierie, (3.2)

m=1 n=1



178

By the mean value theorem, for any ¢ > 0 there exists a constant § € (0,1) such that

2
na
et —1| na? _tprsp _ nal

: = |T| € < W
Therefore we can estimate each term in (3.1) as follows.
_ynal , 2 _yne? , 2
() ||| oL + o o I Ol Lt e
=P
< day, (m)lIeT2,.
By (3.2),

] T
and the Lebesgue convergence theorem, we obtain
- & 2
lim G2 —® AP = 0.
t—0 E_pn
Thus the proof is completed. , O

4 An infinite dimensional stochastic process associated with the
Lévy Laplacian
For any p € R we define a space Gp DY

Eap = {(é.m)mEN;gm € Ec,,,,Vm}.

This space is a linear space and a complete metric space with metric d, given by

_ > _1_ Ifm_nﬂtl
o

for € = (¢ém)meN, T = (Tm)men € EZ,. We also define a space C™ by
C*® = {(zm)mEN; Zm € C-: Vm}

with metric

o0
_ 1 |zm — wh
plz, w) = Z 2™ 1 + |2 — Wiy

m=1

for z = (zm)meN, W = (Wm)men € C™. This space is also a linear space and a complete
metric space with metric p.
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Since d, < d, if p > ¢, we introduce the projective limit topology to £ = ﬂp EZ,. The
S-transform can be extended to a continuous linear operator on £_p o by

S@(f) = (Sq)m(fm))meNv §= (gm)mEN € E%oa

for any ® = (®™)men € E—poo- The space S[E_p o] is endowed with the topology induced
from £_po by the S-transform. Then the S-transform becomes a homeomorphism from
E_p.oo 0Nt0 S[€_p o). The transform SP of & € £_p  is a continuous operator from EZ into
C>. We denote the operator by the same notation S®.

Let G; be an operator defined on S[€_p ] by

G, = SG,S™!

for t > 0. Then by Theorem 7, {a, t > 0} is an equi-continuous semigroup of class (Cp)
generated by the operator EZ

Let {X["}+>0 be an independent sequence of the Cauchy processes such that the charac-
teristic function of each X™ is given by E[e?*X{"] = e*=4 for all z € R. Take a smooth
function nr € E with npr = I'%—I on T. Define an infinite dimensional stochastic process

{Xi; ¢ > 0} starting at £ = (én)men € ES by
xt = (gm + X{n'r’T)meNa t> 0.
Then this is an EZ-valued stochastic process and we have the following:

Theorem 8 Let F be the S-transform in S[€_, ]. Then the equality

GLF(€) = E[F(X¢)|Xo = ¢]

holds for t > 0.
Proof We first consider the case when F € S[€_, | is given by

F() = (Fm(fm))meN, F™(&n) = f(u)ei“mfm(“l) .o . gtamém(un) Jyy

Tﬂ.
with f € E&". Then we have
E[F(XiXo=¢)] = (E[F™(m+ X{"nr)])men
— ( f(u)eiamfm(ul) . eiamfm(un)E[einamX{‘]du>
Tn

(;tﬁ% F”‘({m))

= (GI"F™(&n))men
= G.F(§).

meN

f

meN

Next let F = (302, F,’:‘)meN € S[€_p - Then for any m,n € N, F* is expressed in the
following form:

FrEn) = Jim, [ Al .o,
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where (fn v ]) is a sequence of functions in Ec(R)®". Hence, for each m € N, we have

> EUFT 6n+ X)) =3 F | i / f[N](u)He‘“'"f'"(“")e'“'"xt ”T("")du]
n=1 v=1
' 00
=3 lim / My mmfm(u»)du
n=1

[\”13

|EZ" (6m)-

1

3
Il

Since F]* € S[E_; )], there exists some &7 € E_, o, such that F* = S[®™] for any m and
n. By the Schwarz inequality, we see that

SIERER) < Y 11eR|-pllwenllp
n=1 n=1

oo 1/2
< {Zai’v"‘(n)“l} {Za (m)ll@7]12 } llogmllp < o0,

for each m € N, &, € Ec and N € N. Therefore by the continuity of éz’_"", m € N, we get
E[F(X¢|Xo=¢)] = (E[F™(ém+ X{"nr)])men

(Z E[F™(ém + X{"nr)])
meN

n=1

= (Z éF"F:(em))
meN

n=1

= (é“ ZF:."(fm))

= G.F(£).

meN

Thus we obtain the assertion. / a
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