

Title	Univalence of certain integral operators (Inequalities in Univalent Function Theory and Its Applications)
Author(s)	Pescar, Virgil; Owa, Shigeyoshi
Citation	数理解析研究所講究録 (2002), 1276: 75-78
Issue Date	2002-07
URL	http://hdl.handle.net/2433/42305
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Univalence of certain integral operators

Virgil Pescar and Shigeyoshi Owa

Abstract

Let A_n be the class of functions f(z) which are analytic and n-fold symmetric in the open unit disk \mathbb{U} . The integral operator $G_{\alpha}(z)$ for $f(z) \in A_n$ is considered. The object of the present paper is to derive univalence conditions of the integral operator $G_{\alpha}(z)$ for $f(z) \in A_n$.

1 Introduction

Let A_n denote the class of functions f(z) of the form

$$f(z) = z + \sum_{k=1}^{\infty} a_{nk+1} z^{nk+1}$$
 $(n \in \mathbb{N} = \{1, 2, 3, \dots\})$

which are analytic and n-fold symmetric in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. We denote by \mathcal{S}_n the subclass of \mathcal{A}_n consisting of functions f(z) which are univalent in \mathbb{U} . Many authors studied the problem of integral operators for functions f(z) in the class \mathcal{S}_1 . In this sense, the following useful result is due to Pfaltzgraff [3].

Theorem 1.1. If f(z) is univalent in \mathbb{U} and α is complex number with $|\alpha| \leq \frac{1}{4}$, then the integral operator $G_{\alpha}(z)$ given by

$$G_{\alpha}(z) = \int_0^z (f'(t))^{\alpha} dt \tag{1}$$

is also univalent in U.

Further, Pascu and Pescar [2] gave

Theorem 1.2. If $f(z) \in S_1$ and α is a complex number with $|\alpha| \leq \frac{1}{4n}$, then the integral operator $G_{\alpha,n}(z)$ given by

$$G_{\alpha,n}(z) = \int_0^z (f'(t))^{\alpha} dt$$

is also in the class S_1 for all positive integer n.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C45

Key Words and Phrases: Univalent, n-fold symmetric, integral operator.

2 Properties of integral operators

To discuss our problems for integral operators, we need to recall here the following lemma due to Becker [1].

Lemma 2.1. If $f(z) \in A_1$ satisfies

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le 1 \qquad (z \in \mathbb{U}), \tag{2}$$

then $f(z) \in \mathcal{S}_1$.

Applying the above lemma, we derive

Theorem 2.1. If $f(z) \in A_1$ satisfies the inequality (2) for all $z \in \mathbb{U}$, then the integral operator $G_{\alpha}(z)$ defined by (1) belongs to the class S_1 for all α ($|\alpha| \leq 1$).

Proof. Note that $G_{\alpha}(z) \in \mathcal{A}_1$ for $f(z) \in \mathcal{A}_1$ and that

$$\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \frac{zG''_{\alpha}(z)}{G'_{\alpha}(z)}.$$

It follows that

$$(1-|z|^2)\left|\frac{zG''(z)}{G'_{\alpha}(z)}\right| = |\alpha|(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le |\alpha| \le 1$$

for $z \in \mathbb{U}$. Thus, using Lemma 2.1, we have $G_{\alpha}(z) \in \mathcal{S}_1$.

Next, we prove

Corollary 2.1. If $f(z) \in A_1$ satisfies

$$\left|\frac{f''(z)}{f'(z)}\right| \le 1 \qquad (z \in \mathbb{U}),$$

then the integral operator $G_{\alpha}(z)$ defined by (1) is in the class S_1 with $|\alpha| \leq \frac{3\sqrt{3}}{2}$.

Proof. In view of the proof of Theorem 2.1, we see that

$$(1-|z|^2)\left|\frac{zG''_{\alpha}(z)}{G'_{\alpha}(z)}\right| \leq |\alpha|(1-|z|^2)|z| \leq 1,$$

because $|\alpha| \leq \frac{3\sqrt{3}}{2}$ and

$$\max_{|z| \leq 1} (1 - |z|^2)|z| = \frac{2}{3\sqrt{3}}.$$

Thus, by Lemma 2.1, we prove that $G_{\alpha}(z) \in \mathcal{S}_1$.

Finally, we show

Theorem 2.2. If $f(z) \in A_n$ satisfies

$$\left|\frac{f''(z)}{f'(z)}\right| \le |z|^{n-1} \qquad (z \in \mathbb{U}),$$

then the integral operator $G_{\alpha}(z)$ defined by (1) belongs to the class \mathcal{S}_n with

$$|\alpha| \leq \frac{(n+2)^{\frac{n+2}{2}}}{2n^{\frac{n}{2}}}.$$

Proof. Since

$$\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \frac{zG''_{\alpha}(z)}{G'_{\alpha}(z)} = n(n+1)a_{n+1}z^n + \cdots,$$

we have that

$$(1-|z|^2)\left|\frac{zG''_{\alpha}(z)}{G'_{\alpha}(z)}\right| = |\alpha|(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right|$$

$$\leq |\alpha|(1-|z|^2)|z|^n \qquad (z \in \mathbb{U}).$$

Note that

$$|\alpha| \leq \frac{(n+2)^{\frac{n+2}{2}}}{2n^{\frac{n}{2}}}$$

and

$$(1-|z|^2)|z|^n \le \frac{2n^{\frac{n}{2}}}{(n+2)^{\frac{n+2}{2}}} \qquad (z \in \mathbb{U}).$$

This gives us that

$$(1-|z|^2)\left|\frac{zG''_{\alpha}(z)}{G'_{\alpha}(z)}\right| \leq 1 \qquad (z \in \mathbb{U}).$$

Further, it is easy to see that $G_{\alpha}(z) \in \mathcal{A}_n$. This completes the proof of the theorem.

Remark. For n = 1, Theorem 2.2 becomes Theorem 2.1.

References

- [1] J. Becker, Löwnersch Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255(1972), 23 43.
- [2] N. N. Pascu and V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Mathematica(Cluj) 32(1990), 185 192.
- [3] J. A. Pfaltzgraff, Univalence of the integral $(f'(z))^{\lambda}$, Bull. London Math. Soc. 7(1975), 254

V. Pescar Department of Mathematics Transilvania University of Brasov 2200 Brasov Romania

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka, 577-8502 Japan