

Title	Incompressible surfaces of arbitrarily high genus in 3-manifolds (Low-Dimensional Topology of Tomorrow)
Author(s)	Qiu, Ruifeng; Wang, Shicheng
Citation	数理解析研究所講究録 (2002), 1272: 61-67
Issue Date	2002-06
URL	http://hdl.handle.net/2433/42219
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Incompressible surfaces of arbitrarily high genus in 3-manifolds

Ruifeng Qiu Shicheng Wang

Abstract

In this paper we shall show that given a compact, orientable 3-manifold M, then there is a link with at most three components whose complement contains separating, closed, incompressible surfaces of arbitrarily high genus.

Keywords Incompressible surface, Dehn surgery.

1 Introduction

Let M be a compact 3-manifold and F be a compact surface properly embedded in M. F is said to be compressible if either F bounds a 3-ball, or there is an essential, simple closed curve which bounds a disk in M; otherwise, F is said to be incompressible.

The Haken-Kneser finiteness theorem says that given M, there exist an integer c(M), such that any collection of pairwise disjoint, non-parallel, closed, incompressible surfaces in M has at most c(M) components. But it is possible that a compact 3-manifold contains closed, incompressible surfaces of arbitrarily high genus. W. Jaco has shown that a handlebody of genus at least two contains non-separating incompressible surfaces S of arbitrarily high genus such that $|\partial S| = 1$, and H. Howards and Ruifeng Qiu have independently shown that a handlebody of genus at least two contains separating incompressible surfaces S of arbitrarily high genus such that $|\partial S| = 1$, or 2. In this paper, we shall show that given a compact, orientable 3-manifold M, there exist a link in M such that the complement of L contains separating, closed, incompressible surfaces of arbitrarily high genus.

Let $L = k_1 \cup \ldots \cup k_m$ be a link in a compact 3-manifold M with m components. We denote by M_L the manifold $M - int(N(k_1) \cup \ldots \cup N(k_m))$ where $N(k_i)$ is a regular neighbourhood of k_i , and T_i the boundary of $N(k_i)$. Let r_i be a slope on T_i , $i = 1, \ldots, m$. We denote by $M_L(r_1, \ldots, r_m)$ the manifold obtained by attaching m solid tori J_1, \ldots, J_m to M_L along T_1, \ldots, T_m so that r_i bounds a disk in J_i , $i = 1, \ldots, m$.

The main result is the following.

Theorem 1 Let M be a compact, orientable 3-manifold. Then there exist a link $L = k_1 \cup \ldots \cup k_m$ in M with $m \leq 3$, such that M_L contains separating, closed, incompressible surfaces of arbitrarily high genus. Furthermore, there exist a slope r_i on T_i , $i = 1, \ldots, m$, such that $M_L(r_1, \ldots, r_m)$ does also contain separating, closed, inmcompressible surfaces of arbitrarily high genus.

2 The proof of Theorem 1

We first prove the following proposition.

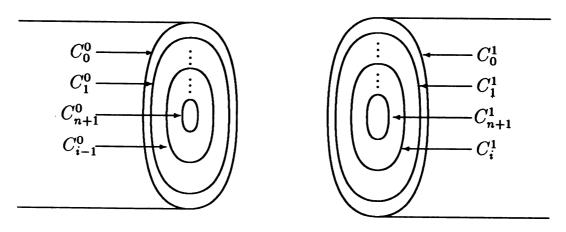
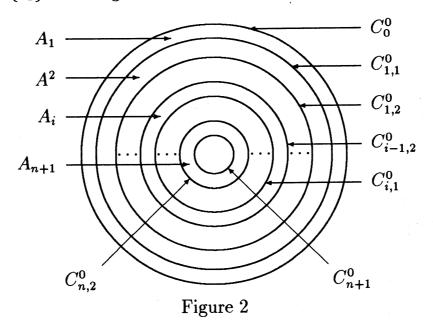


Figure 1

Proposition 1 Let F be an orientable, closed surface of genus at least two. Then there exist a link $L = k_1 \cup k_2$ in $F \times [0,1]$ such that $(F \times [0,1])_L$ contains separating, closed, incompressible surfaces of arbitrarily high genus. Furthermore, there is a slope r_i on T_i , i = 1, 2, such that $(F \times [0,1])_L(r_1, r_2)$ does also contain separating, closed, incompressible surfaces of arbitrarily high genus.

Proof Let c be a non-separating, simple closed curve on F, and N(c) be a regular neighbourhood of c on F. Then N(c) is an annulus. We denote by c^0 and c^1 the two boundary components of N(c). Suppose that n is an integer at least two, and $x_0 = 0 < x_1 = 1/8 < \ldots < x_n = 7/8 < x_{n+1} = 1$. Then in $F \times [0,1]$, the surface $F \times \{x_i\}$ intersects the annulus $c^j \times [0,1]$ in the simple closed curve $c^j \times \{x_i\}$, where $j = 0, 1, i = 0, 1, \ldots, n+1$. We denote by c^j_i the simple closed curve $c^j \times \{x_i\}$.

It is easy to see that there are n-1 pairwise disjoint annuli A'_1, \ldots, A'_{n-1} properly embedded in $N(c) \times [0,1]$ such that $\partial A'_i = c^0_{i+1} \cup c^1_i$, $i=1,2,\ldots,n-1$ (as in Figure 1). Now let $F_n = (\bigcup_{i=1}^n F \times \{x_i\} - int(N(c) \times [0,1])) \cup \bigcup_{l=1}^{n-1} A'_l$. Then $\partial F_n = c^0_1 \cup c^1_n$. Let $F_n \times [b_1, b_2]$ be a regular neighbourhood of F_n in $F \times [0,1]$. Then $F_n \times [b_1, b_2]$ intersects $c^j \times [0,1]$ in n annuli A^j_1, \ldots, A^j_n , where the core of A^j_i is c^j_i , $j=0,1,i=1,\ldots,n$. Note that $A^0_1 \subset \partial (F_n \times [b_1,b_2])$, $A^1_n \subset \partial (F_n \times [b_1,b_2])$, and for $1 \leq i \leq n$, $1 \leq i \leq$



By construction, $\partial(F_n \times [b_1, b_2])$, denoted by S_n , is separating in $F \times I$, and $g(S_n) = 2n(g(F) - 1) + 1$.

Now let k_1^n be the knot in $F_n \times [b_1, b_2]$ obtained by pushing c_1^0 slightly into $int(F_n \times [b_1, b_2])$, and k_2^n be the knot obtained by pushing c_n^1 slightly into $int(F_n \times [b_1, b_2])$. Let $L_n = k_1^n \cup k_2^n$. Since $x_1 = 1/8$, $x_n = 7/8$ foy any integer

 $n, k_1^{n_1} = k_1^{n_2}$ and $k_2^{n_1} = k_2^{n_2}$ even if $n_1 \neq n_2$. Thus we denote by k_1 the knot k_1^n, k_2 the knot k_2^n , and L the link L_n as in Figure 3.

Claim 1 S_n is incompressible in $(F_n \times [b_1, b_2])_L$.

Proof By construction, for any integer $n \geq 2$, c_1^0 , together with the longitude slope on $T_1 = \partial N(k_1)$, say r', bounds an annulus A^1 , and c_n^1 , together with the longitude slope on $T_2 = \partial N(k_2)$, say r'', bounds an annulus A^2 .

Now suppose that S_n is compressible in $(F_n \times [b_1, b_2])_L$. Let D be a compressing disk of S_n such that the number of components of $D \cap (A^1 \cup A^2)$, say $|D \cap (A^1 \cup A^2)|$, is minimal among all such disks. Note that $|D \cap (A^1 \cup A^2)| \neq 0$. Otherwise, one of $F_n \times \{b_1\}$ and $F_n \times \{b_2\}$ is compressible in $F_n \times [b_1, b_2]$.

If one component of $D \cap (A^1 \cup A^2)$ is a simple closed curve, then either $F \times [0,1]$ is boundary reducible, or there is a compressing disk D_0 of S_n such that $|D_0 \cap (A^1 \cup A^2)| < |D \cap (A^1 \cap A^2)|$. Thus we may assume that each component of $D \cap (A^1 \cup A^2)$ is an arc, the two end points of which lie in one of c_1^0 and c_n^1 . Without loss of generality, we assume that $D \cap A^1 \neq \phi$. Let a_1 be an arc in $D \cap A^1$ which, together with an arc a_2 on c_1^0 , bounds a disk D' in A^1 such that intD' is disjoint from D. We denote by a_3 and a_4 the two components of $\partial D - \partial a_2$. Then each of $c_1(=a_2 \cup a_3)$ and $c_2(=a_2 \cup a_4)$ bounds a disk D_i in $(F_n \times [b_1, b_2])_L$. Since ∂D is essential in S, one of c_1 and c_2 , say c_1 , is essential. But $|D_1 \cap (A^1 \cup A^2)| < |D \cap (A^1 \cup A^2)|$, a contradiction. \square (Claim 1)

We denote by M the manifold $F \times [0,1] - int(F_n \times [b_1,b_2])$.

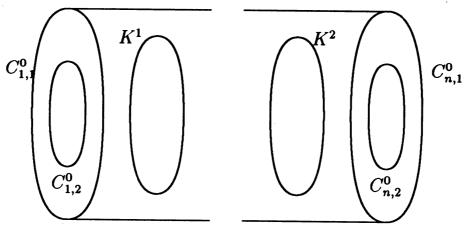


Figure 3

Claim 2 S_n is incompressible in M.

Proof By construction, M intersects $c^0 \times [0,1]$ in n+1 annuli A_1, \ldots, A_{n+1} , where A_1 is bounded by c_0^0 and $c_{1,1}^0$, A_{n+1} is bounded by c_{n+1}^0 and $c_{n,2}^0$, and for $2 \le i \le n$, A_i is bounded by $c_{i-1,2}^0$ and $c_{i,1}^0$ as in Figure 2. Similarly, M intersects $c^1 \times [0,1]$ in n+1 annuli, one of which, denoted by A_{n+2} , is bounded by c_{n+1}^1 and $c_{n,2}^1$ as in Figure 4.

Suppose that S_n is compressible in M. Let D be a compressing disk of S_n in M such that $|D \cap (\bigcup_{i=1}^{n+2} A_i)|$ is minimal among all such disks. Note that $|D \cap (\bigcup_{i=1}^{n+2} A_i)| \neq 0$. Otherwise, for some $i, F \times \{x_i\}$ is compressible in $F \times [0,1]$. By assumption, $D \cap (\bigcup_{i=1}^{n+2} A_i)$ contains no circle component. By the proof of Claim 1, if $a \in D \cap A_i$ then the two end points of a lie in distinct components of ∂A_i . That means that $D \cap (A_1 \cup A_{n+1} \cup A_{n+2}) = \phi$. Let a_1 be a component of $D \cap (\bigcup_{i=2}^n)A_i$ which, together with an arc a_2 on ∂D , bounds a disk D' in D such that intD' is disjoint from $\bigcup_{i=2}^n A_i$. Without loss of generality, we assume that $a_1 \subset A_l$. Then one of the two end points of a_1 lies in $c_{l-1,2}^0$, and the other lies in $c_{l,1}^0$. Since $c_{l-1,2}^0 \subset F_n \times \{b_2\}$ and $c_{l,1}^0 \subset F_n \times \{b_1\}$, $a_2 \cap (c_{l,1}^0 \cup c_{n,2}^0) \neq \phi$. But $D \cap (A_1 \cup A_{n+2}) = \phi$, a contradiction.

By Claim 1 and Claim 2, S_n is incompressible in $(F \times [0,1])_L$.

Note that c_i^0 , together with the longitude slope r' on T_1 , bounds an annulus, say A_i' , and c_j^1 , together with the longitude slope r'' on T_2 , bounds an annulus, say A_j' , where i = 0, 1, j = n, n + 1.

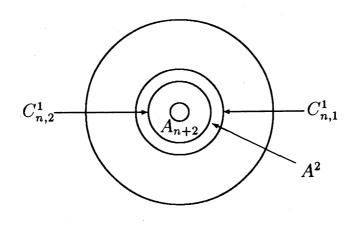


Figure 4

Claim 3 $(F \times [0,1])_L$ is irreducible. **Proof** Suppose that $(F \times [0,1])_L$ is reducible. Let P be a reducing 2-sphere in $(F \times [0,1])_L$ such that $|P \cap (A'_0 \cup A'_{n+1})|$ is minimal among all such 2-spheres. Since $F \times [0,1]$ is reducible,

 $|P\cap (A_0'\cup A_{n+1}')|\neq 0$. Without loss of generality, we assume that $P\cap A_0'\neq \phi$. There are two possibilities:

Case 1 One component of $P \cap A'_0$ bounds a disk D'_1 in A'_0 .

Now $\partial D_1'$ separates P into two disks D_2' and D_3' . Let $P_1 = D_1' \cup D_2'$, $P_2 = D_1 \cup D_3'$. Then one of P_1 and P_2 , say P_1 , is a reducible 2-sphere. But $|P_1 \cap (A_0' \cup A_{n+1}')| < |P \cap (A_0' \cup A_{n+1}')|$, a contradiction.

Case 2 Each component of $P \cap A'_0$ is essential on A'_0 .

That means that c_0^0 bounds a disk in $F \times [0,1]$, a contradiction. \square (Claim 3)

Now let r_1 be a slope on T_1 such that $\Delta(r', r_1) \geq 2$, and r_2 be a slope on T_2 such that $\Delta(r'', r_2) \geq 2$. Then F_n , $F \times \{0\}$ and $F \times \{1\}$ are incompressible in $(F \times [0,1])_L(r_1,r_2)$ (see [CGLS][S][Wu]). \square

The proof of Theorem 1

Let M be a compact, orientable 3-manifold.

Case 1 M contains a closed, incompressible surface F of genus at least two.

Let $F \times [0,1]$ be a regular neighbourhood of F in M. By Proposition 1, there is a link $L = k_1 \cup k_2$ in $F \times [0,1]$ such that S_n constructed in Proposition 1 is incompressible in $(F \times [0,1])$, and there is a slope r_i on T_i , i = 1, 2, such that S_n is incompressible in $(F \times [0,1])_L(r_1,r_2)$. Since $F \times \{0\}$ and $F \times \{1\}$ are incompressible in M and $(F \times [0,1])_L(r_1,r_2)$, S_n is incompressible in M_L and $M_L(r_1,r_2)$.

Case 2 M contains no closed, incompressible surface of genus at least 2. We need only to prove that there is a knot k in M such that M_k contains a closed, incompressible surface of genus at least two.

Let $H_1 \cup_S H_2$ be a Heegaard splitting of M with $g(S) \geq 1$, and a be a properly embedded arc in H_1 such that $H_1 - intN(a)$ is boundary irreducible. Then $H = H_2 \cup N(a)$ is a compression body of genus at least 2. Let c be a simple closed curve on ∂H such that $\partial H - c$ is incompressible, and k be the knot in H obtained by pushing c slightly into intH.

Now we prove that ∂H is incompressible in M' = H - intN(k).

Suppose that ∂H is compressible in M'. Now let D be a compressing disk of ∂H such that $|\partial D \cap c|$ is minimal among all such disks. Since $\partial H - c$ is incompressible, $|\partial D \cap c| \neq 0$. Since c, together with the longitude slope on $\partial N(k)$, bounds an annulus, by the proof of Claim 1, there is a compressing disk D' of ∂H , such that $|\partial D' \cap c| < |\partial D \cap c|$, a contradiction.

Since $H_1 - int N(a)$ is boundary irreducible, ∂H is incompressible in M_k .

Acknowledgement. This paper was finished when the first author was visiting RIMS at Kyoto University, he would like to thank Professor H. Murakami for his invitation, and thank Professor T. Kobayashi for some helpful conversations.

References

[CGLS] M. Culler, C. Gordon, J. Luecke, and P. Shalen, Dehn surgery on knots, Ann. of Math., 125(1987), 237-300.

[J] W. Jaco, Lectures on 3-manifold Topology.

[Qiu] Incompressible surfaces in handlebodies and closed 3-manifolds of Heegaard genus two, Proc. Amer. Math. Soc., 128(2000), 3091-3097.

[S] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology, 29(1990), 481-500.

[Wu] Y-Q Wu, Incompressibility of surfaces in surgered 3-manifolds, Topology, 31(1992), 271-279.