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Introduction to GJ-integral Method

IEBEPRFRAF - THFH KIEE_ (Kohji Ohtsuka)
Department of Computer Science,
Hiroshima Kokusai Gakuin University,

1 Summary

The principal object of this paper is to give the summary of GJ-integral method proposed
first in the paper of 3D fracture problem (1], which is a generalization of J-integral. In 2D
fracture problem, the path-independent integral

Je(d,é1) = ./c {E(ei;)(€1,7) — oijn;(€r - Vu;)} dl (1)

is introduced to represent the variation of the potential energies with respect to crack ex-
tension, where C is a closed curve surrounding the crack tip, described in contra-clockwise,
7 the unit outward normal of C, dl the line element of C, o;; the stress tensor, €ij the
strain tensor, # the displacement vector and E(e;;) = 10jei;.

The formula (1) has three parameters #, C and €;. The first # expresses the solution
of elastic problem, the crack tip (singular point) is inside C and €; the direction of moving
crack tip.

Focusing attention on three parameters, GJ-integral is reconstructed in [3] for general
variational problems as follows:

Let us consider a domain 2 in N-dimensional space IR and the following variational
problem.

Problem P(f,V(Q2)): Let m > 1 be the integer and E be a given function in C2(RY x
IR™ x RN™). For a given f € L?(2)™, find an element u € V;(2) such that

E(u; £,2) < E(v; £,9Q) for all v € V(). (2)
Here

E(v; £,Q) = /n {B(z,0,V0) — f -0} dz, v eV(Q),

and V() is the closed subspace of Sobolev space H!(2)™ of order 1. By differentiation
of n — E(u + nv; f,N), we therefore obtain the equation

/{Ag,-(a:,u,Vu)ij,-+B,-(x,u,Vu)v}dx=/f-vda:, for all v €V (Q),
Q v Q



where Aij(zapyq) = aqijE(x’p)q) for q = (qij)7 t=1,---,m andj = 1,---,N and

B‘i(mapi(I) = 6p,.E(III,p, q) for p= (pi)’ t=1,---,m
The classical prototype of variational problem is Poisson’s equation in R" with Dirich-
let condition

—Au=f inQ, u = 0 on 91,

which is implied from the case m = 1, E(z,p,q) = Llq|, ¢ = (g;)j=1,..N, V (R) = H} (Q).
For linear elasticity, m = N,

E(z,z,p) = Ozg(m,p)eu(p), 0ij(z,p) == cijri(x)eij(p), eij(p) = (pij +pi) /2 (3)

where the soomth function c,,kz(a:) is called Hooke’s tensor satisfying the symmetry con-
ditions Cijkl = Cjikl = Cklij-

We assume that the existence u of P(f,V(2)) is obtained umquely, called weak solu-
tion. The question of classical existence is transformed into the question of regularity of
weak solutions under appropriately smooth boundary conditions, that is modification to
strong solution. So a singular point p of u is characterized by u|yp)na € H 2Up)na)™
for an arbitrary open neighborhood U(p) of p.

1.1 How to reconstruct the generalization of J-integral.

First, mtroduce a domain w C R¥ to catch singular points of u 1ns1de w. Next, bring the
vector field X derived from moving singular points.
Now we define GJ-integral J,,(u, X) by

Ju(u, X) = P,(u, X) + Ru(u, X), (4)

P,(u,X) = /a o {E(m,u,vu)(ff-ﬁ)—T(u)-(X‘-vu)} ds,
RowX) = = [ {(X-Vo)Bu Y0 +-(X-u))
+/ o {A,-j(:z:, u, Vu)(D; Xy)(Dyus) — E(z,u, Vu)(div)?)} dz,
Ti(u) = Aij(z,u,Vu)nj, T = (T})i=1,-m-

The integral P, (u, X) is derived from the original J-integral. However, P, (u, X) does
not satisfy the important property of the original J-integral, that is, GJ-integral take zero
when there is no singular point inside w. So the volume integral R, (u,X) is added to
satisfy the following
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Jo(u,X) =0 forall X if ulunn € H2(wNQ)™.

We should notice that R, (u, X) is well-defined for u € H'(Q)™. For Poisson’s equation,
we have
P,(u,X) = / {1|Vu|2()2‘ -7) — @(5{‘ . Vu)} ds,
(wn) 2 on

R,(u,X) = - /wﬂﬂ {f(X -Vu) — (Vu - VX )Dgu + %IVuPdivX} dz.

We call the following the fundamental formula in GJ-integral method.
If the movement of singular points are expressed by the use of a family {®;}o<¢<r of
mappings, then the derivative of potential energies are expressed as

d
SEu(); £,9()

= —Ra(w; Xe)+ [ {Xo-V(f-w)+ (- wdiv Ko}z, (9)
t=0 Q
where Q(t) = ®,(£)), u(t) the solution of P(f, V;(Q(t))), Xs = d®:/dt|so. Here P(f, Vi(Q(t)))
denotes the variational problem finding the minimizer u(t) of

£ £, (1) = /n L EEu T~ f 0, veV@E)

over the closed subspace V;(2 (t)) of H (2 (¢))™.

To prove the fundamental formula, we need the hypotheses for {®;}o<:<T and P(f, V;(£2(t))),
whose necessary conditions are given in next section. Perhaps, we can prove the fun-
damental formula mathematically for general perturbation of singular points in general
variational problems containing nonlinear case (first proof is given in [3] and also see [7, 8]
for resent proof).

1.2 What kind of singular points can we catch by GJ-integral?

The fundamental formula indicate that GJ-integral can catch the perturbation of the
boundary in following manner.

Consider the case non-existence of singular point, that is, u € H2(2)™. Then it is hold
that Jo(u, Xs) = 0, which implies

GEWL,00) = Paw o)+ [ fu(X-7)ds ©)

t=0

Here it should be notice that Pp(u; Xs) is the integral over Q. If 8% is smooth, then
there is an open neighborhood U(82) of 92 such that the projection P(z) of z € U(3N)
onto the surface 952 is unigely determined. Now consider perturbation of the boundary

D¢(z) = z + th(P(2))ii(P(z))x(2),



223

where h is a smooth function defined on 0Q and x € C§°(U(9N2)) the cut-off function such
that x = 1 near 92. In this case, we have

Po(u, X) = /an {E(z,u,Vu) — T(u) - (Opu)} hds, Onu = du/dn.

For Poisson’s equation with Dirichlet condition,

- /m% (%)%@. )

Consider the perturbation & = z + tX, X € C? (R"), then (6) holds for Poisson’s
equation with Dirichlet condition, if 2 is convex. However, (7) is not true, if 9 is non-
smooth.

Now, we consider the singular points arising from mixed boundary conditions. Assume
Dirichlet condition is given on I'p C 952, and Neumann condition on I'y = 8Q — T'p for
Poisson’s equation. Then the interface ¥ = T'pN Ty become the set of singular points.
Let us consider the tangential smooth perturbation ®;, that is, ®; is C2-diffeomorphism
from RY onto RY, ®; (3Q) = 09, and

£ £ult); £,9(0)

Vi(Q(8) = {ve H'(Q); v=0 onTp(t) = ® (Ip)}

We also obtain the fundamental formula in this perturbation. In 2D case, if TpN Ty is
the set of two points {v,,7s}, we then have

2

=3 5en)*ha(m) (®)

d
FEO|_ =3

where hy(7y;) is the speed of 4, from Neumann part to Dirichlet part, that is, if the
direction of the vector d®, (vy;) /dt is Neaumann part to Dirichlet part, then |[d®; () /dt|
otherwise — |d®; () /dt|. Here c(v;) is the coefficient of singular term at v;. Next we
consider the normal perturbation ®; of Q2 but the interface is fixed, ®; (r) = z near ~.
Then from the fundamental formula, we can derive

—d— u(t); T = 2hpds — 2
ZE((); £,(r)) { /r IRCTEOL /F RCZD h,.ds} ©)

t=0

— fuhygpds
I'n

where h, = Xg - i and Ou/0s stands for the tangential derivative of u along Q. The
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general perturbation in mixed boundary condition will mix the perturbation of boundary
and interface. So we have interesting question: “Can we separate the quantities (8) and
(9) from the fundamental formula (5) in general perturbation?”. The partial answer is
given in [5].

1.3 Shape derivative of solutions and Green’s kernel

Let ¢ be an arbitrary function in C$°(f2) and w(t) be the solution of P(¢p, H}((t))), we
then have

E(u(t) + ew(t); f + ep, Q) — E(u(?t); £,9(t))
= —e/ @ - u(t)dz + O(e?)
Q(t)
E(u+ew; f+ep,N)—E(G; f,N) = —e/ @ - udz + O(€?).
Q
Combining the formulas just above, we can derive
fo o @O —uds = =W +ew(t): £ + e, 98) ~ £ £,00)]
+€e [E(u + ew; f + €9, Q) — E(u; £, Q)] + O(ED).

Dividing the both side of the relation just above by ¢ and letting ¢ — 0, we have by (5)

d _ - -
2| e ult)ds = € [Ra(u+ew, Xe) — Ra(u, Xs)]
RN
+O0(¢)
From this we arrive the following.
%/ ¢ - u(t)dz = §,Rq(u, w(,,;)-fq,) for all p € Cg°(Q2), (10)
RN

where w,, is the solution of P(p, H}(f2)) and
8uRu(u, wy; X) = lim e YRy (u + ewy, X) — R, (u, X)}. (11)

The formula (10) gives the derivative of u(t) with respect to the perturbation of the
boundary in distribution sense.
Let & be Dirac delta-function and G(y, z), z,y € S the Green’s function, that is,

-AG(y,z)=6(y—z) VY €N, G(y,z) =0Vy € IN for a fixed z € Q.
Putting formally ¢(z) = §(z — zo), Zo € 2, we then have

9 uat) = buRa(u, Gla,20); Xa). (12)
t=0



We must check the validity on (12) by the singularity of G at x¢ € Q.
In this simple case, u € H2(Q) which leads

duPa(u, wy; )Z) + 0y Ro(u, wy; X.) =0
where
6uPu(u,wp; X) = lim e P, (u+ ewp, X) — P,(u, X)}. (13)
€ .
From this and (10), we then obtain

d

for all p;(x) which converges to (x — zo) as j — co. The sequence wy, converges G(z.zo)
as j — oo and the right hand side of (14) has the limit because of zo & 9€Q.

1u(x0,t) = —6,Po(u, G(z, z0); X3). (15)
dt t=0
Next we derive Hadamard’s variational formula from
%/ ¢ - u(t)dr = —d,Pq(u, w¢;f¢) for all ¢ € C§°(R2). (16)
RN

Let G¢(y, z) be the Green’s function defined on Q(t) x €(t), then
u(e,t) = [ Guly, 2)f (W)dy.
() .
Substituting this relation into (16) and using the relation

wy(2) = /ﬂ Gy, 2)oy)dy,

we then have

d [
;ﬁ/mzv @(x)dx/n(t) Gi(y, z) f(y)dy

= [ @ - /Q Gy — /Q Gle, )p(ah(z)dss.

Then we arrive at Hadamard’s variational formula by Fubini’s theorem
d 7] 0
— = — — ds;. ~ 1
F0wn) = [ 56,95 -Gl (s, (17)

The results (5) and (10) will be valid in general case. If the solution of P(f,V())
belong to H?(2)™, then (6) and (15) will also valid [2]. To derive Hadamard’s variational
formula, we need the smoothness of the boundary and the solution. However we can
avoid such smoothness by Schwartz’s theorem of kernels, and (10) will derive Hadamard’s
variational formula in general case by Fubini’s theorem of distribution [9].
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1.4 Numerical calculation by finite element method

Here we assume that € is polygonal or polyhedral domain. Let us denote by T} a tri-
angulation of Q, where h denotes the maximum of diameter of triangle (tetrahedron)
K € T,. By P} () we denote the finite element space of degree 1, that is, P} (Q) =
{v: v|k € P!, K € T;,}. The finite element approximation uy, of the solution u of P(f, V(2
is obtained by the system of equations

/ {Aij (z,un, Vun) 9ji p + Bi (z,un, Vup) vy} dz = / f-vpdz, forall vy €V;(Q),
Q Q

where V;, () = V (Q) N P} (2)™ (here we consider Dirichlet boundary condition or mixed
boundary condition). By Céa’s lemma, we have

u—u <C inf Jlu—uv].
lu-vilha<C, inf  u=oil

with a constant C > 0 independent of h. For Poisson’s equation with Dirichlet condition,
if © is convex, then we have the estimation

llu — unll, o < Ch®, with a =1 and a constant C > 0 independent of h.

However, for non-convex domain, it will be that o < 1.

Now we consider the perturbation ®; (z) = z + tX, then the fundamental formula (5)
will implies approximation of %8 (u(?); f, Q)l t—0 DY —Rq(un; X). The order of approxi-
mation is derived from the estimation

Ro(u; X) - Ra(un; X)| < € (Ilullyo + I5ll,0) llu — unly0

with a constant C > 0 independent of h. This finite element approximation is also
applicable in fracture problems for finding energy release rate and stress intensity factors.

2 Necessary conditions for fundamental formula

We write here some necessary conditions for fundamental formula (5). It is to be wished
that they will be weakened. These conditions are given in [7].
We assume the fulfilment of the following hypotheses.

(H1) The map & : IR¥ — RY is one-to-one, ®;() = Q(t), and P; has the positive
Jacobian, ®g(z) = z for all z € RN.

(H2) t — & € C%([0,T], W2°(RN)N). Here C2([0,T]), W2°(IRV)") stands for the
space of two times continuously differentiable functions with respect tot, 0 <t < T,
with the values in W2°(RN)V,



By (H1) and (H2), the map v(y) — ®}v(z) := v(®;(z)) is one-to-one from W1H2(Q(t))™,

Q(t), € Q, onto W2(2)™ and satisfies the estimate
Cwlaw < I18vlle < Cllvllaw — for allv € HY(Q()™ (18)

with a constant C independent of ¢, v. Next assumption concerns the perturbation of
boundary conditions given by V;(€2(t)), namely,

(H3) The map &} : HY(Q(t))™ — H'(Q)™ is one-to-one from V;(f2 (t)) onto V().

In Introduction, we give the examples of ®; for boundary perturbation and ®; for the
perturbation of Tp NTy. For the crack extension, they can be found for instance in [1].
Now we state the conditions (19)-(23) for E (z,v, Vv).

v E(z,v, Vv) dz is Gateaux differentiable on V;(Q2(t)). (19)
Q(r)

There is a constant My > 0 such that

16E(z,v1, Vv1) — 6E(z,v2, Voa)loey < Mollvr — vallyaq) (20)
for all vy, v2 € V(7).

There exists a constant M; > 0 such that
V2 4ij(@, 2,p), [VaBil@, z,p)] < M (|22 +Ipl?) "/ (21)
1/2
|4ij(z, 2,0) — Aij(z,¢,q)] < My(lz— ¢ +p—qf?) /

for i, j and for all z € RV, 2,{ € R™, p,q € R™V.
There is a constant M5 > 0 such that

VpVpE(z, 2z, p)n < Ma|nlln|

for all z € RN, £ e R™, 5,7 € R™.
There is a constant ap > 0 independent of ¢ such that

/ﬂ o BE+w)ul ~sEE)ulds > ol ag (23)
for all v, w € V;((t)).

Under the hypotheses (H1) - (H2) and (19)-(23), the fundamental formula holds, see
[7] for the proof. Of course, the conditions (19)-(23) are valid in linear problem.
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