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Mean-square stability of numerical schemes
for stochastic differential systems

EEEL (BREFEFERERKRT)
YOosHIHIRO SAITO (Gifu Shotoku Gakuen University)
=HRK (FEBKRFE)
TAKETOMO MITSUI (Nagoya University)

Abstract

Stochastic differential equations (SDEs) represent physical phenomena dominated
by stochastic processes. As for deterministic ordinary differential equations (ODEs),
various numerical schemes are proposed for SDEs. We have proposed the mean-square
stability of numerical schemes for a scalar SDE, that is, the numerical stability with
respect to the mean-square norm. However we studied it for only scalar SDEs because
of difficulty and complexity in SDE systems. In the present note we will consider a
2-dimensional linear system with one multiplicative noise and try to analyze them.

1 Introduction

We have proposed the numerical mean-square stability (MS-stability) for a scalar stochastic
differential equation (SDE) with one multiplicative noise [7]. However we studied it for only
scalar SDEs. Komori and Mitsui [4, 5] analyzed numerical MS-stability for a 2-dimensional
SDE with special case, that is, simultaneously diagonalizable case. In this note we will try
to analyze numerical MS-stability of the Euler-Maruyama scheme for general 2-dimensional
SDE systems.

Consider the SDE of Ito-type given by

dX(t) = f(t, X)dt + g(t, X)dW(t) 1)

with £(0,t) = g(0,t) = 0 so that the steady state X(t) = 0 is the equilibrium solution. The
Euler-Maruyama scheme for the discrete approximate solution {X,} is

X1 = Xp + f(tn, Xo)h + g(ta, Xo) AW,

where h and AW,, stand for the step-size and the increment of the Wiener process, respec-
tively. Then we can give the definition of the MS-stability.

Definition 1 Steady solution X (t) = 0 is asymptotically stable in mean-square if
Ve >0, 36 > 0 E(|X@)|?) <e forall t>0 and|Xo| <6
and

Bo;  ImE(IX@IP) =0 forall [|Xoll <
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Here the norm ||z|| is the Euclidean norm of a vector z € R?.

We will consider three types of linear SDE systems, and try to analyze them. In the next
section we describe the results of MS-stability for three types of the SDE system. Section
3 shows the results of numerical MS-stability of the Euler-Maruyama scheme corresponding
to results in Section 2. In Section 4 we will show the numerical experiments confirming our
stability analysis in Section 3. Finally we will describe our conclusion and future aspects.

2 MS-stability

We will restrict the SDE (1) to an Ito-type 2-dimensional linear SDE system with one
multiplicative noise, which has the form

{dX(t) = DX(t)dt + BX(t)dW(t),
1.

X(©) = @)

Here the real constant matrices D and B are given by

a0 | B
o=y n] B[R a2

Komori and Mitsui [4, 5] analyzed MS-stability for SDE system (2) with 8, = 0 and
B2 = 0 (simultaneously diagonalizable case). We will consider more general SDE system,
namely 8, # 0 and B, # 0. First we will introduce the conventional and the logarithmic
norms of matrices for stability analysis of the SDE system (2).

Definition 2 Corresponding to the vector norms I, 12 and I® in R™, we define the subor-
dinate matriz norms of square n X n matrizc A = (a;;) by

Al = max; {2 lail},  IAllo = max {7, lasl}

|Allz = {mazimum eigenvalue of ATA}"?.

Definition 3 Logarithmic matriz norm u[A] (see [1, 6]) is defined by
ulA] = Bm (11 +hA] ~ 1)/h
where I is the unit matriz and h € R.

For the matrix norms || - ||;, || - |lc and || - ||2, the following identities are well known to
evaluate the logarithmic norms.

p[A] = max; {ajj + 2 ini Ia,-,-l} y Hoo|A] = max; {aa‘ + 2 |a,-,-|} :
p2[A] = maximum eigenvalue of (A + AT)/2.
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Let P(t) = E(X (t)X (t)T) be the 2 x 2 matrix-valued second moment of the solution of
(2). Then P(t) obeys the initial value problem of the following matrix ordinary differential
equation (ODE)

‘L_I: — DP+ PDT+BPBT (t>0), (3)

with P(0) = X, X{. Due to the symmetry of the matrix P we have its governing ODEs of
3-dimension

dy
&= MY 4)

where

Y(t) = V'), Y1), Y3(), Y'(t)=EX'(®)
Y3(t) = E(X?(t))’, Y3(t) = E(X'()X*()).

We can readily obtain the following lemma owing to the logarithmic matrix norm .

Lemma 1 The linear test system with the unit initial value is asymptotically MS-stable
w.r.t. logarithmic norm p iff

u(M) <0

We will study MS-stability for the following three types of the test system. Drift matrix D
in (2) is fixed with real numbers A\; < A2 < 0 and diffusion matrices B are either

«

: 0 |0 B Ja B
Typel.[0 a]’ TypeII.[ﬁ ], or TypeIII.['6 a]'
Here real numbers o and 8 are non-negative.

Theorem 1 In Type I the matriz in (4) is given by

2\; + a? 0 0
M: 0 2)\2—1—012 0
0 0 )\1+)\2+a2

Henceforth the stability criterion w.r.t. pp, poo and py yields
max{2)\; + o?,2) + o’} < 0. (5)
We employed the following identity to derive (5).

2\ 24 20 + a?
M+ A +a?= 1+°‘2 2t (6)

Type II has the following
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Theorem 2 The coefficient matriz in Type II is given by
2\ B2 0
M=| B 2 0 ,
0 0 M+X+p?

which implies the stability criterion w.r.t. o and u, as
max{2); + 8%,2); + 5%} < 0.

Again we employed (6).
Note that the condition represented by u is a sufficient condition for the convergence
to the zero solution. We will show this through the following example.

Example 1 The combination with

o[ 8] e -[2]

0 -1 20
yields
-200 4 O
M= 4 -2 0 ,
0 0 -97

whose logarithmic norms are
Poo(M)=2>0 but py(M)=-101+ V9817 < 0.

Finally we will study Type III as the composition of Types I and II. We conclude with the
theorem.

Theorem 3 Type III has the coefficient matriz given by

2A1 + 02 ﬁ2 2aﬁ
M= B 2p+a? 23 ,
af aff M +A+a?+p?

which brings the stability condition w.r.t. u. as
max{2X; + (laf + |B])%, 22 + (laf + |6])*} < 0

Note that the stability criterion for Type III is given only in .
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3 MS-stability of Euler-Maruyama scheme

We now ask what conditions must be imposed in order that the numerical solution {X,} of
(2) generated by a numerical scheme satisfies

Y, =E|X,]*—0 as n — 0o. (7)

When we a1t_>p1y a numerical scheme to (2) and calculate the components of the second
moment of X,,, we obtain a one-step difference equation of the form

Yot = MY, (8)
where
= (FLY2Y9), ¥ =EX,

n)“ni n

=E(X2?)?, Y2=E(X!X2).
We shall call M the stability matriz of the scheme. Note that ¥, — 0 as n — oo if
Ml < 1. (9)

Definition 4 The numerical scheme is said to be MS-stable w.r.t. ||-|| if it has M satisfying
M|l < 1.

We will calculate the stability matrices M and MS-stability conditions w.r.t. || - || of the
Euler-Maruyama scheme for Type I, II and III. Let r(z) be 1+ z in the following theorems.

Theorem 4 For Type I we obtain

[ (k) +ath 0 0
M= 0 r2(A2h) + a’h 0 ,
0 0 r(Ah)r(X2h) + a®h
which yields the stability condition w.r.t. || - ||2, || - |l and || - ||1 as
max{(1 + A\h)?2 + a?h, (1 + A2h)? + o?h} < 1. (10)

The inequality

2 2 2
rOuR)r(\gh) + a2h < M AT é)\zh) +202h w

is utilized to derive the above result. When we observe the left-hand side in the MS-stability
condition (10), we conclude to check the numerical MS-stability whether the pair (h, k) =
(Ah,a? / )) satisfying |R(h, k)| < 1 for every \; and A,. Namely we should check (hy,k;) =
(Mh, %/ ), (ha,k3) = (M2h,a?/X;) € Rem. Here Rpm is the MS-stability region of the
Euler-Maruyama scheme in scalar case. We will show the region in Fig. 1.

Next we will focus on Type II. We will calculate the M and stability condition as same
as Type L.
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Theorem 5 Type II has the stability matriz given by

r?(Mh)  Bh 0
M= B%h  1r%(A2h) 0 , (12)
0 0 r(Mh)r(Ah) + Bh
which brings the stability condition w.r.t. || - ||o and || - || as

max{(1 + \h)? + |B2h|, (1 + X2h)? + |B2R|} < 1.

We result in stability function of the Euler-Maruyama scheme (scalar case), namely R(, k)
again applicable by h = Ah, k = 8?2/ like as Type I.
Finally we try to analyze Type III.

Theorem 6 For Type IIT we have

r2(A\1h) + a?h B%h 2a8h
M= B*h r2(A2h) + a?h 2a8h ,
afh afh r(Ah)r(Azh) + (a® + B*)h
which implies the stability condition w.r.t. |- || as

max{(1 + M) + (Ja| + |8])%h, (1 + A2h)? + (o] + |8])%R} < 1.

Like as Type I and II, we conclude that stability function of the Euler-Maruyama scheme
(scalar case) R(h, k) again applicable with h = Ah, k = (Ja| + |8])?/A.

4 Numerical experiments

In this section we will show the confirmation for our MS-stability of the Euler-Maruyama

scheme through numerical experiments. We will describe four examples corresponding to
Type I, II, and III (2 examples) as follows.

Example 2 (Type I)

-200 O 10 O
dX = [ 0 —100 ] Xdt+ [ 0 10 ] Xdw (t) (13)
h = 0.005, (h,k) = (—1,—-0.5),(—0.5,-1) : stable
h =0.01, (h,k) = (—2,—0.5),(—1,~1) : unstable
h =0.02, (h,k) = (—4,-0.5),(—2,—1) : unstable
h =0.05, (h,k) = (—10, —0.5), (=5, —1) : unstable
Example 3 (Type II)
-200 O 0 10
dX = [ 5 100 ] Xdt + [ 10 0 ] Xdw(t)

h = 0.005, (h,k) = (—1,—0.5),(=0.5,—1) : stable
h =0.01, (h,k) = (—2,—0.5),(—1,—1) : unstable
h =0.02, (h,k) = (—4,—0.5),(—2,~1) : unstable
h = 0.05, (h,k) = (=10, -0.5), (=5, —1) : unstable
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Example 4 (Type III)

-200 O
0 -100

10 5

dX:[ 5 10

] Xdt + [ ] Xdw (t)

h = 0.005, (h,k) = (—1,—-0.625),(—0.5,—1.25) : stable
h =0.01, (h, k) = (-2,-0.625), (—1,—1.25) : unstable

Example 5 (Type III)

—-200 O
0 -100

5 10

dX:[ 10 5

] Xdt + [ ]XdW(t)
h =0.005, (h,k) = (—1,—0.625), (— —0.5,—1.25) : stable
h =0.01, (h, k) = (=2, -0.625), (-1, —1.25) : unstable

We took the initial value X (0) = (1,1) and 10,000 samples. We will show the results of
Example 2 to Fig. 2, Example 3 to Fig. 3, Example 4 to Fig. 4 and Example 5 to Fig. 5.

5 Conclusions and Future aspects

We extended numerical MS-stability for a scalar SDE with one multiplicative noise to it for
a 2-dimensional SDE system with one multiplicative noise. We will analyze MS-stability for
general pair of the matrices D and B, and more dimensional case. And we will investigate
the relation of the MS-stability conditions in matrix norms, for example, between || - || and

- 1l
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Figure 1: MS-stability region of Euler-Maruyama scheme
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Figure 2: Example 1 (upper left:h = 0.005, upper right:h = 0.01, lower left:h = 0.02, lower
right:h = 0.05)
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Figure 3: Example 2 (upper left:h = 0.005, upper right:h = 0.01, lower left:h = 0.02, lower
right:h = 0.05)
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Figure 4: Example 3 (left:h = 0.005, right:h = 0.01)
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Figure 5: Example 4 (left:h = 0.005, right:h = 0.01)



