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(MAIN IDEAS OF THE APPROACH)

D.Yafaev :
Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042,
Rennes, France (e-mail : yafaev@univ-rennesl.fr)

Abstract

We find an explicit expression for the kernel of the scattering matrix for the
Schrédinger operator containing at high energies all terms of power order. It turns
out that the same expression gives a complete description of the diagonal singular-
ities of the kernel in the angular variables. The formula obtained is in some sense
universal since it applies both to short- and long-range electric as well as magnetic
potentials.

1. INTRODUCTION

1. High energy asymptotics of the scattering matrix S()\) : Ly(s¢™1) — Ly(s%7!) for the
Schrodinger operator H = —A+V in the space H = Ly(R?), d > 2, with a real short-range
potential (bounded and satisfying the condition V(z) = O(|z|™), p > 1, as |z| — o) is
given by the Born approximation. To describe it, let us introduce the operator I'g(A),

ToN) f)(w) = 27 V2K4-D2f(ky), k= AY? € Ry = (0,00), w € §%7, (1.1)

of the restriction (up to the numerical factor) of the Fourier transform f of a function £ to
the sphere of radius k. Set Ro(z) = (—A —2)~!, R(z) = (H — z)~!. By the Sobolev trace
theorem and the limiting absorption principle the operators To(A)(z)™" : H — Ly(S%71)
and (z)""R(X + i0)(z)~" : H — H are correctly defined as bounded operators for any
r > 1/2 and their norms are estimated by A~'/4 and A~/2, respectively. Therefore it is
easy to deduce (see, e.g., [14, 24]) from the usual stationary representation

S(\) = I — 2miTo(A)(V = VR(A + i0)V)T5(N) (1.2)
for the scattering matrix (SM) and the resolvent identity that

SO\ = I — 2 fj(—n"ro(x)V(Ro(A +0)V)PTE(N) + on(N), (1.3)

n=0

where ||on (V)] = O(A~N+2)/2) a5 A — co. Moreover, the operators on belong to suitable
Schatten - von Neumann classes G4(n) and a(N) — 0 as N — oo.
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Nevertheless the Born expansion (1.3) has at least three drawbacks. First, the struc-
ture of the n'® term is extremely complicated already for relatively small n. Second, (1.3)
definitely fails for long-range potentials, and, finally, it fails as A — oo for a perturbation
of the operator —A by first order differential operators even with short-range coefficients
(magnetic potentials). '

2. In the particular case when A = 0 and V belongs to the Schwartz class a conve-
nient form of the high-energy expansion of the kernel of SM (called often the scattering
amplitude) was obtained in [3] (see also the earlier paper [7]). The method of [3] relies on
a preliminary study of the scattering solutions of the Schrodinger equation defined, for
example, by the formula

Y(€) = uo(€) — R(EI* F 0)Vuo(€), wo(z,£) = exp(i(z,8)), &= El¢| € RY.

It is shown in [3] that (at least on all compact sets of z) the function . (z,£) has the
asymptotic expansion ¥4 (z,£) = e*by(z, &) where

N
bx(z,£) = b{(z,6) = 3 (2il€]) b (,£), bo(z,6) =1, N — oo. (1.4)
n=0

The function by (z, &) is determined by the transport equation (see subs. 2.3 below), and
the coefficients b{)(z,£) = bF)(x,£) are quite explicit. Therefore it is easy to deduce
from (1.2) that, for any N, the kernel of SM admits the asymptotic expansion

s(w,w'; A) = §(w,w') — mi(2m) k22

N
x 3 (2ik)™" /R LMY ()60 (z,0')dz + O(K3N), (L.5)

n=0

where 6(-) is of course the Dirac-function on the unit sphere. We emphasize that the
functions b{)(z,w’) are growing as |z| — oo in the direction of ' and the rate of growth
increases as n increases. Thus, expansion (1.5) loses the sense (for sufficiently large N) if
V(z) decreases only as some power of |z|™!.

The generalization of the results of [3] to the case of short-range potentials V satis-
fying the condition 3V (x) = O(|z|=#*~1*!) for some p, > 1 was suggested in [21] where
the asymptotics of the scattering amplitude was also deduced from that of the scatter-
ing solutions. We note finally the paper [4] where the leading term of the high-energy
asymptotics of the scattering amplitude was found for short-range magnetic potentials.

3. In the present paper we suggest a new method which allows us to find an explicit
function so(w,w’; A) which describes with arbitrary accuracy the kernel s(w,w’; \) of the
SM S(A) at high energies (as A — 00) both for short- and long-range electric and mag-
netic potentials. It turns out that the same function sp(w,w’; \) gives also all diagonal
singularities of the kernel s(w,w’; A) in the angular variables w,w’ € $%~1. We emphasize
that our approach allows us to avoid a study of solutions of the Schrédinger equation.

We consider the Schrédinger operator

H = (iV + A(z))* + V(z) (1.6)
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in the space H with electric V(z) and magnetic A(z) = (A1(),...,A4(x)) potentials
satisfying the assumptions

0°V(@)] < Ca(1+ |y, ””>O’} (1.7)

|0%A(z)] < Cu(l+|z|) P71, p, >0,

for all multi-indices a. We suppose that potentials are real, that is V(z) = V(z) and
Aj(z) = Aj(z), j=1,...,d. Set p=min{p,, p,}, and

Vo(z) = V(z) + |A(x)]?, Vi(z) = Vo(z) + idiv A(z).
Then
H = —-A+2i{A(z), V) + Vi(z).
We emphasize that the cases p > 1 (short-range potentials) and p € (0,1] (long-range
potentials) are treated in almost the same way.

Let us formulate our main result. The answer is given in terms of approximate solutions
of the Schrodinger equation

— A(z, £) + 2i(A(z), V)¥(z, ) + Vi(2)y(z, §) = €[*%(z, £). (1.8)

To be more precise, we denote by us(z,§) = uiN) (z, &) explicit functions (see Section 2,
for their construction) ' '
us(z,€) = e by (z,€) (19)

such that
(=A + 2i{A(z), V) + Vi(z) — |€]P)us(z, &) = €9y (z,8) =: gx(z,£) (1.10)

and ri(z,§) = r:(tN)(a:,f) tends to zero faster than |z|™” as |z| — oo and |£|7? as [§| — oo
where p = p(N) — oo and ¢ = g(N) — oo as N — oo off any conical neighborhood of
the direction # = T£. Note that the phase ©4(z,&) = (x,€) if A(z) = 0 and V(z) is a
short-range function and ©4(z, &) satisfies the eikonal equation in the general case. The
function by (z,£) is obtained as a solution of the corresponding transport equation.

As is well known (see [1]), off the diagonal w = ', the kernel s(w,w’;A) is a C*-
function of w,w’ € S%1 where it tends to zero faster than any power of A~ as A — oo.
Thus, it suffices to describe the structure of s(w,w’; A) in a neighborhood of the diagonal
w = w'. Let wy € %! be an arbitrary point, II,, be the plane orthogonal to wy and
Q4 (wo, 6) C $%! be determined by the condition +(w,wp) > § > 0. Set

T=woz+y, Y€ I, (1.11)
and
so(w,w; A) = s§ ) (w,w'; A) = Frikd~2(2m) ¢

x(f (TR Geu-) s k') = -y, kB ) ) dy

2 [ (AGy),wo)ur(y, Fwu- (v, ke)dy) (1.12)
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for w,w’ € Q4 = Qu(wo,8). Then, for any p, q and sufficiently large N = N(p, q), the

kernel
M (w,w's ) = s(w,w’; ) = s§(w, w'; A) (1.13)

belongs to the class C?(€2 x 2) where Q = Q, U2_, and its CP-norm is O(A™9) as A — oo.
Thus, all singularities of s(w,w’; A) both for high energies and in smoothness are described
by the explicit formula (1.12). Let So()) be integral operator with kernel so(w,w’; ). In
view of representation (1.9), formula (1.12) shows that we actually consider the singular
part Sp(A) of the SM as a Fourier integral or, more precisely, a pseudo-differential operator
(PDO) acting on the unit sphere and determined by its amplitude.

By our construction of functions (1.9), uy(z,€) = u_(z,—€) if A(z) = 0. Therefore
in the case A = 0 the singular part so(w,w’; A) satisfies the same symmetry relation (the
time reversal invariance)

s(w,w’; ) = s(—', —w; A)
as kernel of the SM itself. Kernel (1.12) is also gauge invariant. This means that, for
a smooth function ¢(z), the integrand in (1.12) is not changed if the functions uy are
replaced by e™*u; and the magnetic potential A is replaced by A — V. We emphasize
however that throughout the paper we do not use any particular gauge.

Formula (1.12) gives the singular part of the scattering amplitude off any neighborhood
of the hyperplane II,,,. Since wp € §¢! is arbitrary, this determines the singular part of
s(w,w’; A) for all w,w’ € §%71. We note that the leading diagonal singularity of s(w,w’, )
was found in [23] for p, € (1/2,1] and A = 0.

4. Our approach to the proof of formula (1.12) relies (even in the short-range case)
on the expression of the SM via modified wave operators

W@U{H@AJ:s—Jggéme“%ﬂ (1.14)

where PDO Jy are constructed in terms of the functions u4(z,£). Following [9], we kill
neighborhoods of “bad” directions £ = F§ by appropriate cut-off functions (4(z,£). Let

Ty = HJy — JuH, (1.15)

be the “effective” perturbation. The SM S()) corresponding to wave operators (1.14)
admits (see [10, 23, 24, 19]) the representation

S(A) = S1(A) + S2(N), (1.16)
where
and
Sa(A) = 2miTo(N)TER(A + i0)T_T75(). (1.18)

Both these expressions are correctly defined which will be discussed in Sections 5 and 4,
respectively.

With the help of the so called propagation estimates {17, 12, 11] we show in Section 4
that the operator S;()\) has smooth kernel rapidly decaying as A — oo. Therefore we call
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S3(\) the regular part of the SM. The singular part S;()) is given by explicit expression
(1.17) not depending on the resolvent of the operator H. However it contains the cut-
off functions (+. In Section 5 we get rid of these auxiliary functions and, neglecting
C™-kernels decaying faster than any power of A~!, transform the kernel of S;()) to the
invariant expression (1.12).

2. THE EIKONAL AND TRANSPORT EQUATIONS

In this section we give a standard construction of approximate but explicit solutions of the
Schrédinger equation. This construction relies on a solution of the corresponding eikonal
and transport equations by iterations.

1. Let us plug expression (1.9) into the Schrodinger equation (1.8). Then

(A +2i({A(z), V) + Vi(z) — [€[*)(e*D)
= ¢®(|VO|’b — i(AO)b — 2i(VO, Vb) — Ab
—2(A,VO)b + 2i{A, Vb) + Vib — [¢[*b), V =V.. (2.1)

We require that the phase ©(z,£) and the amplitude b(z,£) be approx1mate solutions of
the eikonal and transport equations, that is

|V@|2 - 2<A1 Ve) + Vo — |§I2 = qO(x’ 5)’ ‘ (22)

and
— 2i(VO, Vb) + 2i(A, Vb) — Ab + (—iAO +idivA + qo)b =r(z,£).  (2.3)

It follows from (2.1) that, for such fuctions © and b, equality (1.10) is satisfied with the
same function r(z,£) as in (2.3). When considering (2 2), (2.3), we always remove either
a conical neighborhood of the direction & = —€ (for the sign “+”) or x = ¢ (for the sign
“—7). We choose O(z,£) = ©4(z,€) in such a way that qo(z,§) = )(:c,ﬁ) defined by
(2.2) is a short-range function of z, and it tends to 0 as |{| — oo. Then we construct
b(z,£) = bi(z,£) so that r(z,£) = ri(z,£) decays as |z| — oo as an arbitrary given
power of |z|™1. It turns out that r(z,£) has a similar decay also in the variable |£]™!

If V is short-range and A = 0, then we can set ©4(z,§) = (z,§) and consider the
transport equation (2.3) only. However, the eikonal equation (2.2) is necessary for any
non-trivial magnetic potential or (and) long-range electric potential V. The transport
equation is always unavoidable because, as we shall see below, the function A©+ decays
at infinity as |z|~'~” only and hence, for example, the choice by = 1 in (1.9) is not
sufficient.

We seek O4(z,&) in the form
04(z,§) = (z,€) + P+(z,8), (2.4)

where (V®.)(z, £) tends to zero as |z| — oo off any conical neighborhood of the direction
% = F£. We construct a solution of equation (2.2) by iterations. Actually, we set

No R
®4(z,8) = 8L (z,6) = Y (2l¢) ¢ (z,€) (2.5)

n=0
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and plug expressions (2.4) and (2.5) into equation (2.2). Comparing coefficients at the

same powers of (2|¢])™", n = —1,0,..., No — 1, we obtain the equations
(€, Vo) = (£,4), (£, Vé1) +|Vaol? — 2(A, Vo) + Vo = 0, (2.6)
(€. Vns1) + Y (Vom, Véum) — 2(4,V4,) =0, n>1, (2.7)
m=0

so that the “error term” equals

W6 = > QIDT™(Vén, Vém) — 22/€]) (A, Vo).

n+m2> Ny
All equations (2.6), (2.7) have the form

(€, V4(z,6)) + f(z,6) =0 (2.8)

and can be explicitly solved. Let the domain I'+(¢, R) C R? x R? be distinguished by the
condition: (x,£) € I'+(¢, R) if either |z] < R or £(z,£) > —1 + € for some € > 0. Of
course, all constants below depend on € and R. The following assertion is almost obvious
(see [23], for details).

Lemma 2.1 Suppose that

10208 £(, )| < Caple] 211 + [z]) =1 (2.9)
for z € Ti(e, R) and some p > 1. Then the function
$9@ 8 =+ [" faxtd bt (210)
satisfies equation (2.8) and the estimates
1820 (2, €)| < Caplél (1 + [2])'~#71,  z € Tu(e, R). (2.11)
If estimates (2.9) are fulfilled for some p € (0,1) only, then the function
#9(5,6) = % [ (fl@+t6,8) ~ flxif, &)t (2.12)

satisfies both equation (2.8) and estimates (2.11).

Proceeding by induction, we can solve by formulas (2.10) or (2.12) all equations (2.6)
and (2.7). The case where V and A are both short-range is discussed specially in subs. 3.
Here we focus on the long-range case. Let us formulate the corresponding result.

Proposition 2.2 Let assumption (1.7) hold for some p € (0,1). Then estimates
102065 (2, €)| < CaplePI(1 + Jal)* 7o), n=1,2,...,

and
Ia:aéiq(()ﬂ:)(x’ £)| < Ca,aIEI‘N"'ﬂ'(l + I:L.I)—Nop—]al'

are fulfilled on the set T+(e,R) for all multi-indices a and B. The function ¢§ (z,€)
satisfies the same estimate as ¢\ (z, £).
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Corollary 2.3 The function (2.5) satisfies the estimates

1020 ®1(z,8)| < Caglél (1 +al)*71,  zeTs(e,R). (2.13)

Below the number N, in (2.4) is subject to the only restriction Nop > 2.

Of course, in particular cases the procedure above can be simplified. For example, if
A =0 and V is long-range but p, > 1/2, then

2®)(z,£) = (27917 (2, €) = £27 / TV k) - V'(itﬁ))dt

2. An approximate solution of the transport equation (2.3) can be constructed by a
procedure similar to the one given above. Using (2.4), we rewrite this equation as

— 2%(€,Vb) + 2i(A — V&, Vb) — Ab + (—iA® + idiv A + qo)b = . (2.14)

We look for the function by (z, £) in the form (1.4) with bounded in £ coefficients b{*)(z, ).
Plugging this expression into (2.14), we obtain the following recurrent equations

(€, Vbny1) = 2i{A=V®, Vb,)— Abp+(—iAD+idiv A+qo)bs, n=0,1,...,N-1. (2.15)

Then - A
r(z,€) = (z,€) = (2il€) TV, Von+a)
All these equations have the form (cf. (2.8))

(€, Vbunr(2,€)) + fa(z,6) =0,

where a short-range function f, depends on by,...,b,. Therefore they can be solved by
one of the formulas (2.10). Thus, using again Lemma 2.1, we obtain

Proposition 2.4 Let assumption (1.7) hold, let py = min{1, p} and let (z,£) € T'+(¢, R).
Then functions b¥), n > 1, satisfy the estimates

1020865 (€, €)| < Caygl€| (1 + |z]) 7ML,
The right-hand sidé of equation (2.3) satisﬁes
18208 (2, €)| < Co,gl€] ™AL + [z) 7 WDl (2.16)
Corollary 2.5 The function (1.4) satisfies the estimates
1020b:(z,§)] < Caalel (1 + a7 (217)

Combining Propositions 2.2 and 2.4, we get the final result.

Theorem 2.6 For'the functions 04 (z,£) and b (z, f) constructed in Propositions 2.2
and 2.4, respectively, and for the functzons ug(z,§) = oy )(x €) defined by (1.9), equal-
zty (1 10) holds with the remainder r{ )(:1: €) satisfying estimates (2.16) in the region
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We emphasize that in contrast to the parameter Ny which is fixed, we need N — oo.

3. Of course, the functions b{})(z,£) contain different powers of |¢|~!. However, in
the short-range case b&) depend on z and f only. Suppose first that A =0. Then ® =0
and equation (2.15) reduces to

(€, Vbayy) = —Aby, + Vb,
Thus, we obtain the following assertion.

Proposition 2.7 Let A = 0 and let V satisfy assumption (1.7) with p, > 1. Let
us(z,€) = @by (z,£) where by is the sum (1.4) and the functions bl (z, ) are defined

by recurrent formulas béi) =1 and
(@8 = F [ (A6 £ t,6) + V(z £ )b (o % ¢,6)) .

Then for (z,£) € T'i(e, R) and p, = min{2, p, }

10208652 (, €)| < Caplél ™ (1 + |z])= 2Dl (2.18)
and the remainder (1.10) satisfies the estimates
1020£rE" (2, £)] < Caglé] ™7 (1 + Jaf) 2= DN+D-el, (219)

Let us write down explicit expressions for the first two functions by,:

9,8 =% [ Vizttda,

89,8 = - [ UAV)(@ £ td)ds + %( [ v+ th)ar)”
If a magnetic potential is non-trivial, then
2.(2,8) = 620, = F [ (€ Al td)at (2:20)

and
a§?) = |VO4[? — 2(4, V&) + Vs,

Hence it follows from (2.15) that the coefficients b)(z,£) are determined by formulas
b =1 and

b ) =F [ £ £ b, (221)
where
F®) = 2i(A — Vo, Vb)) — ApD
+(|V®L2 — 2(4, VO4) + V) —iADL )b, (2.22)

Let us formulate the result obtained.

Proposition 2.8 Let A andV satisfy assumption (1.7) with p > 1, and let p; = min{2, p}.

Define ©(z,€) by formulas (2.4) and (2.20). Let the functions b(X) be constructed by re-
current formulas (2.21), (2.22) and let by be the sum (1.4). Then estimates (2.18) on b)
and (2.19) on the remainder (1.10) hold.
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3. WAVE OPERATORS AND THE SCATTERING MATRIX

1. Let us recall briefly some basic facts about PDO (see, e.g., [6] or [20]). Let
(4f)() = (@m) " [ ¢ Da(z, &) (©),

where f = Ff is the Fourier transform of f from, say, the Schwartz space S(R?) and the
symbol @ € C®(R? x R?). Sometimes it is more convenient to consider more general PDO
determined by their amplitudes. We define such operators in terms of the corresponding
sesquilinear forms

(af,9)=@m [ [ [ e=€a(z,¢,€)f(€)aE)dedz da, (3.1

where the amplitude a(z,&,¢) is also a C*°-function of all its variables.

It is standard to assume that a and a belong to Hérmander classes. Set (z) = (1 +
|z|?)Y/2, (¢) = (1 + |€|*)Y/2. By definition, the symbol a (or the corresponding operator
A) belongs to the class S™™(p, §), p > 0, § < 1, if for all multi-indices o and

|(8§6§a)(z,§)| < Cy p(x)mlelotiBls (gym=15l,

The operators A from these classes send the Schwartz space S(R?) into itself. For the
amplitudes a we do not have to keep track of the dependence on £ and &'. Thus, a €
S™(p, 6) if for all multi-indices a, 3, #', any compact set K C R? and ¢,£' € K

|(920£ 95 a)(,€,€')| < Cappr( K)(¢>n—|a|p+(w|+w'|)a,

Under this assumption the form (3.1) is well-defined as an oscillating integral for f ,§ €
Cs°(R?). We omit in notation p and § if p=1 and § =0.

Actually, we need a more special class of PDO with oscillating symbols

a(z,€) = e*@Na(z,£), (32)

where ® € 877 p € (0,1), and a € S™™. We denote by C™™(®) the class of symbols

or operators obeying the conditions above. The definition of the class C*(®) in the case
of oscillating amplitudes is quite similar. Since C™™(®) C §™™(p,1 — p), the standard
PDO calculus works in the classes C™™(®) if p > 1/2. In the general case the oscillating
factors exp(i®(z, £)) or exp(i®(z,&,E’)) should be explicitly taken into account.

The proof of the following assertion can be found either in [13] or [25]. We often
use the notation (r) and (&) for the operators of multiplication by these functions in the
coordinate and momentum representations, respectively. ‘

Proposition 3.1 Let a € C»™(®), n < 0 and m < 0. Then the operator A(z)™ is
bounded in the space Ly(R?).

This result extends naturally to PDO defined by (3.1).
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We need also a class Z; of symbols such that a(z,£) =0 if F (z,€) < ¢ for some
€ > 0. Moreover, we assume that a(z,§) = 0 if |z] < € or |¢| < £ for symbols from this
class. Then we set

SE™(p,6) = 8"™(p,6) NZy, CE™(P)=C™™(®)NE;.

2. Let Hy = —A and the operator H defined by (1.6) act in the space H = Ly(R?).
Denote by Eg and E their spectral projections. Note that, as shown in [8, 22] where the
proof of [18] was extended to magnetic potentials, the operator H does not have positive
eigenvalues. In the long-range case the wave operators (1.14) exist only for a special choice
of identifications J;. We construct J; as PDO.

Let 0 € C®(-7v,7), v > 1, be such that o(r) = 1 if 7 € [-1,1 — 2¢] for some
€ € (0,1/2) and o(7) = 0if 7 € [1 —¢,1]. Let n € C®(R?) be such that 5(z) = 0 in
a neighborhood of zero and n(z) = 1 for large |z|. We denote by ¥ a C®(R, )-function
which equals to zero in a neighborhood of 0 and ¥(A) = 1 for, say, A > )y (for some
Xo > 0). Set (1(z,£) = o(Fn(z)(£, £))3(1¢[)-

Let u4(z,£) be the function (it depends on No and N) defined in the previous section
(see Theorem 2.6). Following [9], we construct J3 by the formula

(@) = @m) " [ us(e,6)Ca(z, €)f(€)de. (3:3)

Thus, J4 is a PDO with symbol (3.2) where ® = &, and ai(z,£) = by(z,£) s (x, €). We
emphasize however that in contrast to [9] the symbol a4 (z, £) of the operator J is quite
an explicit function. This is essential for construction of the asymptotic expansion of the
SM. Due to the cut-off functions (4 (x,£) and estimates (2.17) on by(z, ,€), we have that
ay € 8%, The function <I>i(z €) is of course singular on the set Z = F£ but satisfies the
estimates of the class S?~”° on the support of (. Abusing somewhat terminology, we
write Jy € C*°(®+). By Proposition 3.1, the operator Jy is bounded.

It is shown in [9, 23, 19] that the wave operators (1.14) exist which implies the inter-
twining property Wi (H, Ho; J+)Ho = HW4(H, Hp; J1). Moreover, they are isometric.on
the subspace Ey(Ag, 00)H and are complete, that is

Ra.n (Wi(H, Ho; Ji)Eo(Ao, 00)) = E(Ao, OO)H

In the short-range case : .
s—,lim (Ji - 9(Hp))e *Hot = 0,

so that the wave operators W (H Hy; J+) coincide with the usual wave operators W..(H, Hp)

(times ¥(Hp)). The scattering operator is defined by the standard relation
S =S(H, Ho; J4+,J_) = W} (H, Ho; J,)W_(H, Hyp; J_).
It commutes with the operator Hy and is unitary on the space Ep()g, c0)H.
3. Let us calculate the perturbation (1.15). According to (1.10), we have that
9£(2,€) == (—A + 2i(A(2), V) + Vi(z) — [E]*) (us (=, 6)¢s (2, €))

= g+(z,£)Cx(x, ) — 2(Vux(z, ), Via(z,£))
_u:k(xa 6)(AC:E)(1:’ f) + 21:“:!:(:”’ £)<A(x)’ VC:t(x1 5)) (34)
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Now it follows from (3.3) that

(Te)) = @0 [ 0x(w.E)F(€)dt
= @m0 (1@, + €(z,6)) f(€)dg

= (TP ) (@) + T f)(z), (3.5)

(s)

) = exp(i®.)r{), t) = exp(i®1)7s” and

where tg
D =riCe, T = —2ibu(€ + V@4 — A, V(s) — 2(Vby, V(s) — biAls.

Due to the cut-off functions (4, V(4 and A(s, the next result follows directly from
Propositions 2.2 and 2.4.

Proposition 3.2 Let assumption (1.7) hold and let py = min{1, p}. Then
t0 e cTIAWHDN(g,) and £ € M (By).

4. Let M = Ly(s%1), let the operator I'o(A) : S(R?) — M be defined by formula (1.1)
and let (Uf)(A) = To(A\)f. Then U : H — H = Ly(R4;M) extends by continuity to a
unitary operator and U HyU* acts in the space H as multiplication by the independent
variable A. Since SHy = H,S, the operator USU™* acts in the space H as multiplication
by the operator-function S(A) : 9t — 9t known as the SM.

We need a stationary formula (see [10, 23, 24, 19]) for the SM S()) in the case where
identifications Jy and J_ for t — +o0o0 and t — —oo are different. Since auxiliary wave
operators

s— lim e*HotJrJ e tHot =
t—too

we have the following result.

Proposition 3.3 Let assumption (1.7) hold. Then the SM admits the representation
(1.16) where S1(A\) and S3(\) are given by formulas (1.17) and (1.18), respectively.

Let us discuss here the precise meaning of the expression A°()\) := To(A)AL%(\) where
A is an operator acting on functions defined on R¢. Put

6e(E = X) = en (€2 — N? +¢2) 7,

and let v; € C°(R4) be an arbitrary function such that v;(k) = 1. Taking into account
(1.1), we define (see, e.g., [24]) the sesquilinear form (A°(\)w;, w2) for w; € C=(s¢!) by
the relation

(A (Nwr, wg) = 2k~ Lim(AF*6.([€]* — N, F*6: (€] — N)eha), (3.6)

where k = \'/2, X X

¥;(§) = wi(©) k), 7=1,2,
provided the limit in the right-hand side exists. The form (A°(A\)wi,ws) is well defined if
the limit (3.6) exists for all w; € C~(s*!). This is, of course, true if G = FAF* is an
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integral operator with kernel G(§,£’) which is continuous near the surface |¢| = |¢/| = k.
In this case A’()) is also an integral operator on $%~! with kernel

g(w,w’; N) = 271k 2G (kw, kuw'). (3.7)

Furthermore, by the Sobolev trace theorem, limit (3.6) exists and hence the operator
A’()) is well-defined (and is bounded in the space L,(s%!)) if

A= (z)"Blz)~" (3.8)

for a bounded operator B in Ly(R?) and 7 > 1/2. This means that the operators A’()\)
are also well-defined for PDO A of order n < —1.

We note that the stationary representation of the SM is determined exactly by the
limits as the one in the right-hand side of (3.6).

To estimate in the next section the regular part S;(\) of the SM, we need the following
obvious remark.

Lemma 3.4 Suppose that (3.8) is satisfied for r > d/2. Set uy(z,w, ) = exp(i\V/?(w, ).
Then the operator A’()\) has continuous kernel

g(w,w’; A) = 2714 2(27)~4(B(z) Tuo(w’, A), () "uo(w, A)).

Moreover, this function belongs to the class CP(S*™! x §%7!) for p < r — d/2 and its
CP-norm is bounded by Ck4-2+p,

To treat the singular part S;(A), we apply definition (3.6) to the PDO A = JiT_
determined by its amplitude a(z, £, £’'). In this case, by Proposition 3.2, a is of order —1,
and hence the operators A’()) are defined only under special assumptions on a. According
to (3.4), (3.5), up to an integral operator with smooth kernel, A has the amplitude which,
due to the functions V({_(z,¢’) and A(_(z,&’), equals zero if (Z,£’) is close to 1 or —1
(in a neighborhood of the conormal bundle of each sphere |¢/| = k). In this case, as
shown in [25], the operators A’(\) are correctly defined by formula (3.6) in a space of
functions on §~! (the case of PDO determined by their symbols was considered earlier in
[15]). Moreover, they are also PDO, and an explicit expression for their amplitudes was
given in [25]. However, our construction of the singular part of the scattering matrix in
Section 5 is, at least formally, independent of the results of [25]. It is important that this
construction allows us to get rid of the cut-off functions (3 and to obtain an arbitrary
close approximation to the SM.

4. THE REGULAR PART

In this section we show that the regular part (1.18) of the SM is negligible.

1. Recall that the functions uy = u(iN) were constructed in Theorem 2.6 and that the

corresponding operators Jy = Ji) and Ty = T,(:N) were defined by equations (3.3) and
(3.5), respectively. Our main analytical result here is the following
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Proposition 4.1 For any p and q there exists N such that for Ty = iN) the operators

Bpgn(A) = ()P TER(A +10)T-(§)*(z)?
are bounded uniformly in A > Ao > 0.

This result will be checked in the following subsections. Let us first of all show that it
implies regularity of the operator Sz(\).

Theorem 4.2 For any p and q there exists N such that for Ty = TiN), the operator
(1.18) has kernel sy(w,w’; X) which belongs to the class CP(s?~! x s%!) and the CP-norm
of this kernel is O(A\™?) as A — oo.

Remark that To(\)(€)~% = (1 4+ A\)%/2Ty()\) and hence
S2(X) = 2mi(1 4+ X) T°To(A){x) ™ By 0,5 (A){2) P T5(N).

Let po > d/2+p and o > g — 1 + (d + p)/2. We suppose here that N = N(po, go) is
the same as in Proposition 4.1, so that the operators By, g n(A) are bounded uniformly
in A > ). Then, as shown in Lemma 3.4, the kernel of the operator Sz() belongs to the
class CP(s%! x s%1), and its CP-norm is bounded by Ck?-2*P~2% which is estimated by
Ck~%. This concludes the proof of Theorem 4.2.

In the following subsections we shall give an idea of the proof of Proposition 4.1.
2. We need some results on the boundedness of combinations of PDO T with symbols

t € C™(®) (see subs. 1 of Section 3) where ® € S!~7° with functions of the generator of
dilations

1 d
A= 5 Z((IIJ'D]' + Djxj).
j=1

We denote by Py = E,(R+) the spectral projection of the operator A.

First we formulate a strengthening of a result of {11].

Proposition 4.3 Lett € C2™(®) for one of the signs and some n,m. Then there exists
k such that the operator (A)~*T is bounded.

Of course, this result is of interest only if at least one of the indices n or m is positive.

The following assertion is also motivated by the results of [11].

Proposition 4.4 Lett € S3™(p,6) for some n, m and p >0, 6 < 1. Then the operator
(AYFPLT(£)9(x)P is bounded for arbitrary p, q and k.

The following resolvent estimates were deduced in [17, 12, 11] from the famous Mourre
estimate [16]. To obtain estimates at high energies, we use additionally the dilation
transformation.

Proposition 4.5 Let assumption (1.7) hold. Then for Rez > 0, Imz > 0 the operator-

functions
(A)PR(2)(A)P, p>1/2, (4.1)

(A)"HPP_R(2)(A) 7', ()P R(2)P.(A)71*P (4.2)
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for each p;, > 1/2, p, < p; and
(A)PP_R(2)P, (A)P (4.3)

for arbitrary p are continuous in norm with respect to z. Moreover, the norms of the
operators (4.1) — (4.3) at z = A + 10 are bounded by CA™! as A — oo.

3. Now we are able to check Proposition 4.1. Let us first show that the operators
(2)P()UTL”) RO+ 0T (€)(z)?

are uniformly bounded provided N is large enough. Note that the operators (z)°T{" (£)9(z)?
are bounded by Propositions 3.1 and 3.2 if (N +1)p; > 0 +p—1and N > g. Thus, it
suffices to use that

l{z) " R(A +i0)(z) 7| = O(A~Y2), o >1/2,

which follows, for example, from the result of Proposition 4.5 about operator (4.1).

Let us further consider the singular part Ti") of T:. Recall that, according to Propo-
sition 3.2, Ti’) € Cx"'(®4). We need to prove the uniform boundedness of four operators

()P (€)U T P_R(X + i0)P, T (£)9(z)?, (4.4)

(@)P(E)UTS) PLR(A + i0)P_T (€)% (z)? (4.5)
and

(@P(E)UTY) PLR(A + i0)PL T (6)4(z)P. (4.6)

The operator (4.4) can be factorized into a product of three operators
(@PEUT) (M), (A)P-ROA+i0)PL(A)* and (A) T (€)9(z).

The first and the third factors are bounded for sufficiently large k by Proposition 4.3
while the second operator has the form (4.3), and hence it is bounded by CA~! by Propo-
sition 4.5.

"The operator (4.5) can be factorized into a product of three operators
(2)P(€)UTL) P4 (A), (A)""R(A+i0)(A) ™ and (A)"P_T)(€)4(a)".

The first and the third factors are bounded for each o by Proposition 4.4 while the
second operator has the form (4.1), and hence it is bounded for any ¢ > 1/2 by CA~! by
Proposition 4.5.

Finally, we factorize the operator (4.6) (for the sign “ + ”, for example) into a prod-
uct of three operators (z)P(€)4(T<”)*P,(A)°, (A)="R() + i0)P,(A)~1**~¢ ¢ > 0, and
(A)1=o+eT) (£)a(z)P. The first factor is bounded for any o by Proposition 4.4. The sec-
ond operator has the form (4.2), and hence it is bounded for any ¢ > 1/2 by CA~! by
Proposition 4.5. The last factor is bounded by Proposition 4.3 if ¢ is sufficiently large.

The cross-terms containing T{" and T**) can be considered quite similarly. We need to
prove the uniform boundedness of two operators (z)P(€)4(T")*R() + i0)P, T (£)9(z)?,



where 7 = “4+” or 7 = “ — 7. First, using Proposition 3.2, for any ! we can choose N
such that the operator (z)?P(¢ )q(TJ(:))*(A)’ is bounded and hence it suffices to consider the
operators (A) " R(A + i0)P,T(€)4(z)P. If = “— 7, then these operators are uniformly
bounded for any ! > 1/2 according to Proposition 4.4 and the estimate of Proposition 4.5
on the operator (4.1). If 7 = “ 4 ” then according to Proposition 4.3 the operator
(A)~*FT) (£)9(z)? is bounded for sufficiently large k. So it remains to use that the operator
(AYT'R() + i0)P,(A)* has the form (4.2), and hence it is bounded by CA™! for [ > k + 1
by Proposition 4.5,

This concludes our sketch of the proof of Proposition 4.1 and hence of Theorem 4.2.

5. THE SINGULAR PART

1. Let us discuss the precise meaning of the formula (1.12). Recall that wy € §%! is an
arbitrary point, II = II,,, is the hyperplane orthogonal to wp and 4 = Q4 (wo, ) C sd-t
is determined by the condition #(w,we) > § > 0. The coordinates (z,y) in R? are defined
by equation (1.11). Set

he(z,€) = €22 E0by (2, €), (5.1)

so that
us(z,€) = €V hy(z, €).

Then (1.12) can be rewritten as
so(w,;2) = (2m) ™! [ K0 ag(y,w, s N)dy, (5.2)
where w,w’ € Q4 and

aO(ya w, w,; )‘) = i2_lkd_2 (k<w + wla wO)h’+(y, kw)h’- (y’ kw’)

iy, k! YO (5, o) — iy (5, B (Buh ) (3, k') = 2(A(y), o) (3, R (g, k') (5:3)

Formula (5.2) shows that Sp()\) is, actually, regarded as a PDO with amplitude
ag(y,w,w’; A). It is convenient to define the operator Sp(A) via its sesquilinear form.
Indeed, suppose, for example, that w € Q = Q. and denote by ¥ and ¢ the orthogonal
projections of £ and of a point w € Q on the hyperplane IT which we identify with R%-L
We also identify below points w € Q2 and ¢ € £ and functions

w(w) = w(() (5.4)
on 2 and X. Set
a0(y,¢, ¢ ) = (1= ¢V = [¢'17) a0y, w,w'; A).

Then it follows from (5.2) that for arbitrary w; € C§°(2), j = 1,2,

(So(Ww,we) = @m)7#1 [ [ [ e*0€=054(y, ¢,¢s N (¢ YTa(OVdcdCdy. (5.5)
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Since 89 € S%p,1 — p), the right-hand side of the last equation is well-defined as an
oscillating integral which gives the precise sense to its left-hand side. Of course, we can
make the change of variables y — k~!y in (5.5) transforming PDO Sp()) to the standard
form, but this operation is not really necessary. It follows from (5.1) that amplitude (5.3)
contains an oscillating factor exp(iZ) where

E(yaw’w,; k) = Q—(ya kwl) - <I>+(y7 kw)» (56)
and hence the operator Sp()) is bounded according to Proposition 3.1.

2. Tt follows from Theorem 4.2 that the operator (1.17) contains all power terms
of the high-energy expansion of the SM as well as of its diagonal singularity. However,
the obvious drawback of the expression (1.17) is that it depends on the cut-off functions
C+. Our final goal is to show that, up to negligible terms, it can be transformed to the
invariant expression (1.12).

We proceed from relation (3.6) where A = J}T_. Recall that J; and T_ are PDO
defined by formulas (3.3) and (3.4), (3.5), respectively. Therefore for all f,, f € S

(T fodefa) = @) [ ([, [, a(e,6, VA€V RO )dz,  (57)

where

a(z,§,¢) = ji(z,)t-(2,¢) (5.8)
and j,, t_ are the symbols of the operators J;, T_, respectively. According to Proposi-
tions 2.2, 2.4 and 3.2, the amplitude a(z, £,£’) belongs to the Hormander class S~!(p,1—
p). To obtain a convenient representation for (5.7), we have to change the order of in-
tegrations over = and £,£’ in (5.7) and then calculate the integral over z. Below we do
not go into details of standard manipulations with oscillating integrals. Note only that,
strictly speaking, we have to introduce into (5.7) a function ¢(ez) such that ¢ € CP(R?),
©(0) = 1, and pass to the limit ¢ — 0 at the very end of our calculations. Denote

GE€) = [, "€ Va(z,6,)ds 69

and let G be integral operator with kernel G(£,£’). Then, at least formally, G =
@2m)iFJLT-F*. We set { = (_, then (4(z,£) = ((z,—€). It follows from (3.3), (3.5)
and (5.8), (5.9) that

Ge€) = [, url@,E)(z, ~€)g-(z,€)dz. (5.10)

Standard arguments show that, off the diagonal, G(£,¢’) is a smooth function, and
it rapidly tends to zero as || — oo and |§'| — oo. Applying (3.6) to functions w; and
wp with disjoint supports, it is easy to show that off the diagonal w = w’ the kernel
s1(w,w’, A) of the operator S;()) satisfies the relation (cf. (3.7))

s1(w,w’;A) = =ik G (kw, ko'), w #£ W' (56.11)

Combining these results with Theorem 4.2, we obtain
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Theorem 5.1 Let assumption (1.7) hold, and let w € Q, W' € Q' for some open sets
Q,Q C s%7! such that dist (Q, Q') > 0. Then for any p and q the kernel s(w,w’, \) of the
SM belongs to the space CP(Q2 x Q') and its CP-norm is bounded by CA™9 as A — oo.

3. Our study of the function (5.10) in a neighborhood of the diagonal £ = &' relies on
integration by parts. Let us plug (3.4) into (5.10) and denote by G,(¢,¢'), j = 1,2,3,4,
the integrals corresponding to the four functions in the right-hand side of (3.4):

) = [ @8 ~€)e-(.£)(x, €)d,

Gal6€) = =2 [ (@ 8@, )(Vu-(2,€), V(z,))da,
)
)

- [ 5@ 8, ~Ou- (2, €)A¢ (=, €)dw,
= 2 [ uy( 0w, —Ou-(=,€){Al@), V((z,€) da.

Let us consider first the function G; where ¢q_ = €?®®-r_. By virtue of Theorem 2.6,
the function b, (z,€)((z, —£) satisfies estimates (2.17) for all z,£ € R? and the function
r_(z, €')¢(z, &) satisfies estimates (2.16) for all z, ¢’ € R%. Hence the integrand in G, (¢, &)
is estimated by C|¢|™N(1 + |z|)~1=#*(N+1) where N can be chosen arbitrary large. Using
also the estimates on derivatives of these functions and estimates (2.13) on the phase
functions @4, we see that G;(£,£’) is a smooth function of £, & rapidly decreasing as
el = I/l — co. o

Let w and w’ belong to some conical neighborhood of a point w; € §?~! where, for ex-
ample, (w1,wp) > 0. Then ((z, —€)(V{)(z, &) = (V¢)(z,€) so that the function {(z, —§)
in the integrals G;(£,£'), 7 = 2,3,4, can be omitted. All these integrals will be trans-
formed by integration by parts. Integrating in G3(§,&’) by parts, we find that

Ga(§,€) + Gs(6,€) =
+ [ - V&0 - @ O(Vu) @), W E)de.  (5.12)

Due to the function V{(z,&’), the integrals (5.12) as well as G4(&,£’) are actually taken
over the half-space z > 0 only. Therefore integrating once more by parts and taking into
account the equality (y,&’) = 1, we obtain that

G2(£: EI) + G3(§, 5,) =
+ [ (EED0w)EE) - v O BRIE D) )da

+ [ (@D 0:u)w,€) - u-,€)Bun)v,8))dy (5.13)

Gu(6,€) = 2 | div (A@)ur(E8u-(5,¢))((x,€)do
-2 [ (AW, wohur @, Du-(,E)dy.  (519)

It is now convenient to formulate an intermediary result.



Proposition 5.2 The function (5.10) is the sum
G=G1+G2+G3+ G4

Here G,(€,€') is a smooth function of €,€' rapidly decreasing as || = |€'| — oo. The
functions G2 + G3 and G4 satisfy equalities (5.13) and (5.14), respectively.

4. In the following we need to calculate the operators A®()) for two special classes of
integral operators G = FAJF* acting on functions of £ € R%. For the operators from the
first class the passage to the limit (3.6) is quite direct (cf. (3.7)).

Proposition 5.3 Let an operator G be defined by its kernel
G(E,€) = [ v Daly,€,€)ay,

where a € SP(p,6) for some p and p > 0, § < 1. Then the operator A’()\) ezists for all
A > 0 and is the integral operator on the unit sphere with kernel

g(w,w'; ) = 2—lkd—2/n eV Va(y kw, kw')dy, w,w’ € Q.

Kernels of the operators from the second class are defined in terms of integrals over a
half-space.

Proposition 5.4 Let an operator G have kernel
G(e€) = (P - IE'P) [ =€ 9a(z,£,€)ds, (5.15)

where a € 8P(p, §) for some p and p > 0, § < 1. Assume moreover that

a(r,£,§)=0 if ((+&,z) > clf+&|z| (5.16)

for some co € (0,1). Then A*(X) =0 for all A > 0.
The proof relies on condition (5.16). Let A; = F*G,F where

Gi(,€) = [ e=EOa(z,£,¢)ds.
z20
Then the operator A}()) is well-defined (cf. [15, 25]) due to (5.16). Taking into account
the factor |£[2 — |¢'|? in (5.15), it is easy to show that A’()) = 0.

5. Now we are in a position to derive formula (1.12) for the singular part of the SM.
To that end, we have to calculate the limit in the right-hand side of (3.6) for A = J;T_
and show that the expression obtained coincides, up to negligible terms, with the form
—(2m1)~}(So(A)wy, ws). Let us proceed from Proposition 5.2.

According to (3.7) the contribution of G, to S;()) is given by the expression —mik?~2
x G1(kw, kw') which is a smooth function of w, ' and rapidly decays as k — oo. Hence
this term can be neglected.
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Let us further consider the integrals (5.13) and (5.14) over II. By virtue of Proposi-
tion 5.3, the contribution of each integral to the kernel of S;(\) equals its value at { = kw,
¢ = k' times (compare with (5.11)) the numerical factor —mik®=?(2m)~¢. The sum of
this expressions coincides with (1.12).

It remains to show that the sum of the integrals over the half-space z > 0 in (5.13)
and (5.14) is negligible. It follows from relation (1.10) that

U+(ZJ,§) (Au-)(x,{') - u—(x7fl)(Au+)($’§) — 2idiv (A(a:)u+(z,§)u_ (x’gl))
= (442, Ou_(z,8) — 0-(2,6)us (@, 9)) + (€ = €'P)us (z,E)u- (2, ).

To consider the integral
/ 2o ¢i0- @)=+ (1 (7, E)b_(z,€) — r-(z,£)b+(%,6) ) (2, € )de, (5.17)

we use again that, by Proposition 2.4 and Corollary 2.5, the functions 7_ (z,&)¢(z, & )
and b_(z,£)¢(z,€') satisfy estimates (2.16) and (2.17), respectlvely, for all z,£' € RY.
The same result for the functions b (z,£) and r4(z,§) holds true in the half-space z > 0
which does not contain the “bad” direction Z = —&. By Corollary 2.3, the function
®_(z,£) — @4 (z,&) satisfies estimates (2.13) for all z > 0 off a conical neighborhood of
the direction & = £ where ((z,£') = 0. Therefore the integral (5.17) is a smooth function
of £,& rapidly decreasing as |£| = |¢/| — oo. Hence, similarly to the functlon G,(&,¢),
this integral does not contribute to So()).

Let us, finally, consider the kernel
Go(6,€) = (P — ¢') [ &€ Ohi(w,Eh-(z,£)(=,€)dz,

where the functions A (z,£) are defined by formula (5.1). Due to the factor ¢ (a: €'), the
function Go(€,¢’) satisfies the conditions of Proposition 5.4 and hence (F*GoF )y ()\) =0
for all A > 0.

Now we can formulate our main result on the asymptotics of the kernel s(w,w’; A) of
the SM.

Theorem 5.5 Let assumption (1.7) hold, let p,q be arbitrary numbers and N = N(p, q)
be sufficiently large. Let functions 6( °)(a: ) and b( )(x €) be constructed in Proposi-
tions 2.2 and 2.4, respectively, and let u )(a: €) be defined by formula (1.9). Define, for

w,w € Qu, the kernel s(N)(w w'; \) by formula (1.12). Then the remainder (1.13) belongs
to the class CP(Q2 x Q) and the C’”-norm of this kernel is O(A™%) as A — oo.

This result gives simultaneously the high-energy and smoothness expansion of the
kernel of the SM. As was already mentioned, we actually formulate the result in terms
of the corresponding amplitude ay(y,w,w’; A) related to the kernel of the SM by formula
(5.2). Indeed, it follows from (5.1), (5.3) and (5.6) that

N
ao(y, w,w’; A) = £27 k4 exp(i(y, w, w's k) D (2ik) "on(y,w,w’),

n=0
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No
E(y’waw,; k) = Z(2k)—n9n(y7w)w,)) gn(y,w’w') = ¢$1—)(y, w,) - ¢$.+)(y, w)

n=0

and the functions ¢{*) are constructed in Proposition 2.2. Note that 6, € S'~? and
0, € S'~" for n > 1. The coefficients o, (y, w,w') are expressed in terms of functions P
and @) constructed in Proposition 2.4. It is easy to see that o, € S™! forn > 0. In
particular, Sp(A) € C°(Z).
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