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TWO-PHASE STEFAN PROBLEMS IN NON-CYLINDRICAL DOMAINS

FEERFERER BRBENER RE R¥ (Takeshi Fukao)
Department of Mathematics, Graduate School of Science and Technology,
Chiba University

FERFHEFLW M 5% (Nobuyuki Kenmochi)
Department of Mathematics, Faculty of Education,
Chiba University

R—F v RB¥ETHFI— 4 vF 37 a7 (Irena Pawlow)
Systems Research Institute of the Polish Academy of Sciences

Abstract. In this paper we discuss a two-phase Stefan problem in a non-cylindrical
(time-dependent) domain. This work is motivated by the phase change arising in the
Czochralski crystal growth process. The time-dependence of domain is a mathematical
description of the situation in which the material domain changes its shape with time
by the crystal growth. We consider the so-called enthalpy formulation for it and give
its solvability, assuming that the time-dependence of the material domain is prescribed
and smooth enough in time. Our main idea is to apply the theory of quasi-linear
equations of parabolic type.

1. Introduction

Czochralski pulling method is widely used for the production of a column of single
silicon crystal from the melt. The idea of pulling method due to Czochralski is quite
simple. A crucible, equipped with heating system, contains the melt substance and
a pul-rod with seed crystal, which moves vertically and rotates flexibly, is positioned
above the crucible (see Fig.1). The rod is dipped into the melt, and then lifted slowly
with an appropriate speed v, so that a meniscus surface is formed below the seed
crystal and the melt attached to the crystal solidifies continuously. By controlling some
thermal situations in the process one obtains the growth of a single crystal column with
a desired radius as well as a desired growth pattern of the solid-liquid interface and
temperature pattern in the crystal in order to improve the crystal quality.

In such a model of crystal growth the shape of crystal is determined by three kinetic
equations of three interfaces between crystal-melt, melt-gas and gas-crystal. But, in
this paper we suppose that the crystal radius is controlled to be constant and the
trijunction curve on which three interfaces meet is prescribed, too. This might be
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designed by a good choice of the pulling velocity. As a consequence we may assume
that the movement of the material domain is prescribed.

Rod
Seed

| /'— Gas
| Crystal
| Trijunction

| —— Meniscus
|_— Crucible (Heater)

Fig.1

We use the following notation (see Fig.2): For 0 < T < oo and t € [0, T,
Q(t) : liquid (melt) region,

Q,(t) : solid (crystal) region,

S(t) : solid-liquid interface,

Q(t) == Q(t) UQ,(t) U S(2),

['(t) := oQ(¢),

v = v(t,z): 3-dimensional unit vector normal to I'(t) at = € I'(t),

n = n(t,z): 3-dimensional unit vector normal to S(t) at z € S(t),

Q= U {t} x (),

te(0,T)
= |J {t} xT@),
te(0,T)
S:= U {t} xS@).
. te(0,T)

Next, we denote by vy := vg(t, z) the normal speed of I'(¢) at (t,z) € X. With this
vy the 4-dimensional unit vector outward normal to X at each (t,z) € ¥ is given by

-1 ()
(usP+ 1)

Similarly, with the normal speed vs := vs(t, z) of S(t) at (¢,z) € S, the 4-dimensional
unit vector normal to S, pointing to the liquid region, is given by
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It is easily understood that by the crystal growth the shape of material domain (t)
changes with time and it yields a 3-dimensional convective vector field v := v(t, ) in
Q. The determination of v is also one of the important questions in the mathematical
modeling of the Czochralski crystal growth process. It is reasonable to postulate that
v is nothing but the pulling velocity v, in the crystal and may be a solution of the
incompressible Navier-Stokes (or simply Stokes) equation in the melt (see Crowley
[1], DiBenedetto and O’Leary [3]). Nevertheless, in this paper, we assume that the
convective field v is prescribed, too, satisfying that -

divw=0 inQ(t), 0<t<T, (1.1)

v-v=vg onl(t), 0<t<T. (1.2)

Now, from the usual energy balance lows we derive the following system to deter-
mine the temperature field 6 := 8(t, ) and interface S(t); note that 6(t, z) is the solu-
tion of a Stefan problem with prescribed convection v formulated in the non-cylindrical
domain @,

(0, —c,AG+v-VO=f inQ:= U {t} x Qu(t), (1.3)
te(0,T)
0, —csA0+v-VO=f inQs:= U {t} x Qs(2), (1.4)
te(0,T)
o0 00 ‘
6=0, (cra; - cs%—) =L(v-n—uvg) onS, (1.5)
(SPC) ¢ 48 ‘
Cg—a— + nocﬁ =p On Eg = U {t} X {6Qg(t) \ S(t)}, (16)
v £€(0,T) : .
06 ' ‘
Com— +nocsf =p on T, = [J {t} x {09%(t)\ S®)}, (1.7)
ov te(0,T)
| 6(0,-) =66 onQ(0), S(0) =5, (1.8)

where we suppose that the phase change temperature is 0 for simplicity; ¢, ¢, and L
are positive constants which are the heat conductivities and latent heat, respectively;
f is a given heat source on @, p is a boundary datum prescribed on ¥ and ng is a
positive constant; 8y is the initial temperature on £(0) and Sy is the initial location of
the solid-liquid interface, satisfying that ‘ '

6o >0 on Q((O), 0p <0 on QS(O), 0p=0 on So.- (19)

As is well known, by using the enthalpy we reformulate this problem as a weak
variational form. In this paper we prove its well-posedness.
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2. Weak formulation

The enthalpy u is defined as follows:

0+L if §>0,
[0,L] if8=0,
6 if 6 < 0.

Moreover we define a function 5 : R — R by

CsT if r<0
B(r):=< 0 if 0<r<IL,
ce(r—L) if r>1L.

Then [ is a non-decreasing Lipschitz continuous function on R, and its Lipschitz con-
stant is Lg := max{cy, ¢s}.

By using the enthalpy u our problem (SPC) is reformulated as an initial-boundary
value problem for a degenerate parabolic equation of the following form

u— AP(u)+v-Vu=f inQ,

Bﬁ(U)

(E) +nofB(u) =p 9n ¥,

=10 o 20),

where uy := 6 + Lxq,0) With the characteristic function xgq,@) of €2(0). In fact,
multiply equations (1.3) and (1.4) by any test function n € C*(Q) with n = 0 on Q(T"),
and then integrate them over @, and Q,, respectively, and add these two resultants.
Then, with the help of the Green-Stokes’ formula and (1.1), (1.2), (1.5), (1.6) and (1.7)
as well as the relations d¥ = (|vg|? + 1)2dT'(t)dt and dS = (Jvs|> + 1)2dS(t)dt, we
arrive at the following variational identity

~ [ undede + [ 95) - Fndadt [ P narieyac - [ uty - Gaoat

= /;? fndzdt + /9(0) ugn(0)dz for all n € C*Q), n=0on Q(T) (2.1)

Next, in order to consider a weak formulation of the boundary conditions, for each
t € [0, T], we take a harmonic function g(t, -) such that

{—Adﬂ=0 in Q(t),

6;( ) + nog(t) = p(t) on I'(t),

in fact, g(t) € H(Q2(t)) is a unique solution of the variational problem

/. o, Vo(t) - Védz +mg / o 90T (e) = Ji o PUEAT(E)  for all € € C*@(E))
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Also, we define the class W of test functions as follows:
W:={we H(Q); w=0 on Q(T) (in the trace sense)}.

Then (2.1) can be rewritten in the form
—/Quwtdmdt—l»/QV(ﬁ(u) —g)~dexdt+/2no(ﬁ(u) —g)wdF(t)dt—/;)u(v-Vn)dxdt

=/ fwdzdt +/ uow(0,-)dz for all w € W, (2.2)
Q ©(0) '

and as usual, this is regarded as a weak formulation of (E).

As to the solvability of two-phase Stefan problems without convection in cylindri-
cal domains, the time-dependent subdifferential operator theory was skillfully applied
by Damlamian [2]. The case of non-cylindrical domains was treated by Kenmochi
and Pawlow [7] and only the existence result was there obtained, but the uniqueness
question has been left open. '

Now we formulate our main result. First of all we define the weak solution of our

problem.

Definition 2.1 u is called a weak solution of (SPC) if u € L*(Q), B(u(t)) € H*(A(t))
for a.e. t € [0,T] with

T
[ 180) s ooyt < o0,
u(t,-) € LA(Q(¢)) for all t € [0,T], the function
t— /Q , )u(t,z)ﬁ(x)dx is continuous on [0, T] for each £ € L2 (R?),
t

and u satisfies the variational identity (2.2).

We suppose that the material domain Q(t) depends smoothly on time ¢ in the sense
that there is a C®-diffeomorphism y = X (¢, z) from Q onto Qo, with Qo := (0,T) x£2(0),
satisfying properties '

(1) X(¢,-) := (X1(t, ), Xa(t, z), X3(t, )) maps €2(t) onto Q(0) for all t € [0, T7;
(2) X(0,-) = I (identity) on Q(0). | S
We use the following notation:
QO = Q(O)) FO = aQ(O)a EO = (O’T) X FO, y= (ylayQ, y3) € Q—(;,

and the inverse of y = X (t,z) is denoted by z = Y (t,y) := (Yi(t,y), Y2(t, y), Ya(t,v)).

Under some assumptions on the data v, f, p and uo, we prove: SR
Theorem 2.1 = Assume that f € HY(Q), p € CY(E), uo € L*(2(0)) and B(uo) €
HY((0)). Also, assume that v € C*(Q)® and (1.1)-(1.2) are satisfied. Then there is
one and only one weak solution u of (SPC). ' , ,

We give the sketch of the proof of Theorem 2.1 in the rest of this paper. For the
detail proof see the forthcoming paper Fukao, Kenmochi and Pawlow [5].
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3. Regular approximation for (SPC)

In this section, let us consider an approximate problem (SPC)s;, with parameter
d € (0,1}, for (SPC): :

use — ABs(us) +v-Vus = f; in Q, (3.1)
(SPC); ?w + nofs(us) = ps on I, (3.2)
u5(0) = ups on Q(0), _ (3.3)

where (35, fs5, ps-and u;0 are regular approximations of 3, f, p and uy, respectively, as
follows. : :

(1) Bs is a smooth, increasing and Lipschitz continuous function on R such that
/o d '
0 < Bs(r) | = Eﬁs(r) <Cp forallreR,

for a positive constant C,, and such that
Bs = f uniformly on R as § — 0;
we put ﬂ}(r) =[5 Bs(s)ds as well as B(r) := Jo B(s)ds for all r € R.
(2) fs is a smooth function on Q such that

fs—f in H(Q)asd — 0.
(3) ps is a smooth function on T such that
ps—p inCYX)asd—0.

(4) ugs is a smooth function on ©(0) such that ugs — up in L2($2(0)), Bs(ues) —
B(uo) in H(©(0)) as § — 0 and the compatibility condition

%oi) + nofs(uos) = ps  on Q(0) (3.4)

holds.

We give first an existence—uniquéness result for the approximate problem (SPC);.

Lemma 3.1 (SPC)s has one and only one solution us such that us and all the deriva-
tives Usyt, Usz;, Ubzize ONA Uses,, &,k =1,2,3, are Holder continuous on Q.



41

Proof. By y = X(t,z), we transform (SPC); to a problem (SPC); formulated in the
cylindrical domain Qy: »

( 3509 o -
Usg — . =— | ainz—0s(Ts) | +w1- VBs(ts) + wa - Vs = f5  in Qo, (3.5)
ik=1 0 1 6yk'
(SPC)s ¢ 8(Bs(a.
%—i)l + nofBs(tis) = ps on Lo, | | (3.6)
N '1'15(0) = Ups 1 on Q(O)a | | » | (37)
where @5(t, y) = us(t, Y (t,9)), fo(t,y) = f5(t,Y (t,9)), s(t,¥) = ps(t, Y (£, 9)),
3. 0X; 80X,
a; (tvy = a.. a_. » z1k: 1,213,
k ) ]=Zl 6.'13_—,‘ axj .
, . 5.0 (0X;\ 06X,
wy = (w11, Wiz, wy3) With wyy = i§=:1 By; (63::) 83::’ k=1,2,3,
( 0X; 060X, 0X; \
: 31131 8111 Bml
00X ) | Xy 08X, 0X3
Wy 1= 5 +vB with B = 0z, Oz, Ot
00X, 0X, 0X3

\ 61133 (9.’113 6.’83 /
and "

o0) _ 3 4,20

—_— 7, on Iy,
aVA i,k=1 31%

where U = (1, Iy, 3) is the unit outward normal vector to I'g.

Since X (0,-) = I on €, the matrix a;;(0,y) is the unit on Qy and hence a;(t,y) is
strictly positive definite on  for ¢ € [0,7”] with a certain positive T"(< T'). There-
fore (SPC); is (uniformly) parabolic quasi-linear equation with smooth coefficients on
Qo(T") := (0,T") x Qp, and by (3.4) the compatibility condition for initial and bound-
ary data is satisfied.- Now, apply the general existence-uniqueness theorem due to
LadyZenskaja, Solonnikov and Ural’ceva [8;Chapter 5, section 7] to (SPC)s. Then we
see that (SPC)s has a unique solution @s in the Holder space H2+*1+2/2(Q,(T")) for a
certain exponent o € (0,1). It is also easy to check that us(t,z) := @s(t, X(t,2)) is a
solution of (SPC)s on Q(T") := U0, {t} x Q(t), satisfying the required regularities.
If T' < T, then the solution us can be extended beyond time 7" by repeating the same
argument as above with initial time 7”. Finally we can construct a unique solution us
of (SPC)s on @ in the Holder class. O
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Lemma 3.2 (Uniform estimate) There ezists a positive constant My, independent
of parameter 6 € (0, 1], such that

2
drdt <M, (3.8)

0
t t))|3n —
SUP |us( )IL2(Q(t)) +t2g’g‘] |85 (us(t)|3 (Q(t))dt+ /Q l atﬁs(ua)

te[0,T)

for all 6 € (0,1].

Proof. We use essentially conditions (1.1) and (1.2) in order to get the uniformly
estimates (3.8).

First, multiplying (3.1) by B5(us) and integrating over Q(t) := Use(o,){s} % (s),
we have by (1.1) and (1.2)

/,, . Bs(us(t))dz + /Q . IV 5 (us)|2dzds + no /0 t A(s) |85(us)|2dT(s)ds

_ /Q o JoPa(us)dzds + fot /F(a) PsBs(us)dT(s)ds + /n o Bs(uog)dz  (3.9)
for all t € [0, T).

From (3.9) we obtain a uniform estimate of the form

Sup |u5(t)|L2(Q(t)) +/ |V,35(U5)|2d:l:dt < M1 (310)

t€(0,T)

for a positive constant M, independent of § € (0,1].
Next, just as (3.10), multiplying (3.1) by us, we obtain a uniform estimate of the

form
/Q By ue) Vuafdndt < My (3.11)

for a positive constant M, independent of é € (0, 1].

The required estimate for 88;(us)/8t is obtained from that of the solution % of
(SPC)s. In fact, multiplying (3.5) by 98s(#s)/0t and integrating the resultant over
Qo(t) := (0,t) x Qp, we have '

00s(us) | 80s(i)
o PG00 dyds—t:; / [ (a = ) 5(%) gy

+ /Q o(t)(wl - VBs(1s)) B5(0s)us, s dyds + /Q 0(ﬂ(wz Viis)B5(ts)ts,dyds (3:12)
t [ 9Bs(ts) - 8B5(1s)
/" /“m ads 0BT Joun T 05 W
for all t € [0, T].




43

Here, for the time-dependent convex functional

13 ov Ov o
Os(t;v) == = /it, _—— ——/ 2I‘—/‘
5(t;v) = 5 > Qoak( y)ayiaykder 5 Jre |v|*dTo FO19¢s(t,y)vcl1“o

ik=1

for all v € H()

we observe (cf. Kenmochi [5], Kenmochi and Pawlow [6]) that if v € W2(0, T; L*(€%))N
L*(0,T; H%()) and v(0, -) € H2(), then &5(t, v(t)) is absolutely continuous on [0, T
and ' '

. a2 D2 g, < Ryt o) +r) (319

d 3
() + 3

k=1
" a.e.on (O,T),'

where R, and g are positive constants indépen_dent of § € (0,1]. Néw‘, we 'ta/ke,- b&('ﬁ&)
as a function v in (3.13) to obtain from (3.12) with the help of estimates (3.10) and
(3.11) that o | |

sup |(t,Ba(us(t)))| + [ 5s(a)macl dydt < My (314)
te(0,T7] ‘ Q ‘ ,

for a certain positive constant M independent of § € (0,1]. The estimates (3.10),
(3.11) and (3.14) imply that (3.8) holds for some positive constant Mo independent of
(5 € (O, 1] s O

4. Proof of the theorem,

Existence: ' ' C VR L

Let {us}sc(o,1 be the family of approximate solutions of (SPC)s. By Lemma 3.2
with the standard compactness argument we can find a sequence {4,} with 6, — 0 as
n — +oo and a function u such that "

Up = us, = u weakly in L*(Q),

B, (n) = B(u) in LA(Q) and weakly in H'(Q).

We now show that u is a weak solution of (SPC) To do so, multiply (3.1) by any
test function € C?(Q) with 7(T,-) = 0 and integrate it over Q. Then we have by the
Green-Stokes formula : ST .

_ /Q wnmpdadt — /2 wnusdD(2)dt + /Q Vs, (un) - Vndadt + o /2 Bs.. (un)ndD(t)dt

- /Q un(V'Vﬁ)dwdt+ Aunn(v.- V);df‘(t)dt
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= / fs.ndzdt + / psndl(t)dt + / u05,7(0, - )dz.
Q ) Q(0)

Here, noting condition (1.2) again and passing to the limit in n yield

- /Q undedt + /Q V() - Vidzdt + ng /2 B(u)ndT(t)dt ~ /Q u(v - Vi)dedt

= /Q Frdzdt + /z pndT(t)dt + /ﬂ o %070 )z,
which is the required variational identity. Thus u is a weak solution of (SPC).
Uniqueness: : _
The idea of our uniqueness proof is due to Ladyzenskaja, Solonnikov and Ural’ceva
[8;Chapter 5,section 8], and this is also extensively used in Niezgddka and Pawlow [9],
Rodrigues [11] and Rodrigues and Yi [12] for the uniqueness proof of generalized Stefan

problems and continuous casting problems.
Let u; and u, be two weak solutions. Then -

| o
= [ (o~ wadmmdt ~ [ (Bur) — Bun)) At + [ (B) ~ B(ua) 2Lar (01

+ne /E (B(u) — Bua))dT ()t ~ /Q (=~ w)(v- Vmdzdt =0 (41)
for all n € CY(Q) with n(T,-) = 0.

As usual, consider the function

(¢, ) — ua(t, )
if u(t,z) = uy(t, z),

which is non-negative and bounded on Q. Then, by (4.1)
6 .
= [ s1—wa) 4004V dade + [ (8(u)~Bw2) { o non} dr(t)dt =0 (42)

for all n € C*(Q) with n(T,-) = 0.

We now take a smooth and strictly pbsitive approximation b, of b such that

b<b aeon@Q, e<b <C; ae onQ

b b ae.onQase—0,

whefe C, is a positive constant, and consider the following auxiliary linear parabolic
equation (P), for any given ¢ € D(Q):
| Mot +beAne +v- Vn. =£ inQ,
on.

ov

7(T,-) =0 on Q(T).

(P)e +nen. =0 onZ, (4.3)
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By the general theory of linear parabolic equations this problem has a unique solution
ne € H?t1+2/2(()) and the following estimates are obtained:

: 2 i\ |2 12
ti[‘é,‘:)r] 17 () |220qry) +/0, Ivns(t)|L2(Q(t))dt+/QIbeHAne| dzdt < My, (4.4)

where M, is a positive constant independent of € € (0, 1]. In fact, (4.3) is obtained by
multiplying (4.2) by A7.. By (4.4), there exists a sequence {e,} with &, — 0 and a
function n € L*(Q) with Vn € L?(Q)3 such that

N, — 1 weakly in L*(Q),

V., — Vn weakly in L*(Q)* as n — 0.

Taking 7., as a test function 7 in (4.2) and passing to the limit in n, we see that
- /Q (w1 — up)ldzdt = — /Q (w1 — u3)(be, — b)An., dzdt — 0.

Therefore ' . v
/Q(u1 — up)ldzdt =0 for all £ € D(Q),

which implies that u; = uy a.e. on Q.
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