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Pattern formation in a two-layered Bénard convection
BEK - MM ¥ (Kaoru Fujimura)

Department of Applied Mathematics and Physics
Tottori University, Tottori 680-8552, Japan

The resonant interaction between steady modes with wavenumbers in the ratio 2:1 has been examined
for its pattern formation on a hexagonal lattice. Twelve-dimensional amplitude equations of the cubic
order are derived by means of the center manifold reduction. With the aid of the equivariant bifurcation
theory, steady solutions of the equations due to the primary and the secondary bifurcations are classified
and the orbital stability of them are analyzed. The analyses are extended to two-layered Rayleigh-
Bénard convection with a non-deformable thin interface, which provides the exact resonance between the
critical modes as had been found by Proctor and Jones [10]. In order for the cubic amplitude equations
to be generic, the self-adjointness of the operators in the linearized problem needs to be broken. For
this purpose, we took account of the quadratic density profile as a function of the temperature. All
the primary and the secondary steady patterns obtained are found to be unstable except for the super
hexagonal pattern which is composed of hexagonal pattern and double sized one.

1. Introduction

In the presence of O(2)-symmetry, the resonant interaction between steady modes with
wavenumbers in the ratio 2:1 is governed by

2 = fi(z1,22,1), % = fa(21,20,1), 21,22 € C, p€R? (1)

where the vector field is expressed in terms of O(2)-equivariant polynomials and invariant func-
tions such that

fl (21, 22, IJ') =z1D;1 (ua v, w, N) + Z122001 (u1 v, w, #),
f2(21, 22, N) = 32P2('U', v, w, #) + Z%QQ(U, v,w, p‘) (2)

Here, u = |21]?, v = |2|?, and w = 222, + 22Z, are O(2)-invariants, 21, z2, Z122, and z? are
generators of the O(2)-equivariant vector field, and p1, p2, q1, and g2 are real valued invariant
functions of u, v, and w. See Buzano and Russo {3] for further details.

Taylor expanding p1, ps, q1, and g2 about the origin and truncating the resultant equations
at the cubic order, we obtain

2 =o0121 + PiZ122 + )\11|21'221 + /\21|2«'2|221a

29 = 0223 + B2 + Mia|z1[222 + Aa2|za|222. 3)

Analyses on the steady state solutions of (3) have been done, eg., by Dangelmayr[5], in detail.
Equations (3) have three non-trivial steady state solutions as fixed points. They are steady state
S; given by u = 0 and v = 0, and asymmetric steady states S4 given by u,v > 0, 22 € R, and
cos[2arg(z1) — arg(z2)] = 1. As relative equilibria, a traveling wave bifurcates from Sy. It

has the property that u,v > 0, %[2 arg(z;) — arg(z2)] = 0, and cos[2 arg(z;) — arg(z2)] = £1.

Standing waves bifurcate from the asymmetric steady states whereas modulated waves bifurcate
from the traveling wave due to Hopf bifurcation. Proctor and Jones [10] and Armbruster,
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Guckenheimer and Holmes (1] clarified the existence of structurally stable heteroclinic cycles.
Very recently, new heteroclinic cycles far from the mode interaction point were extensively
investigated by Porter and Knobloch[9]. So far, all the results above exhibit one-dimensional
variation in the planform: the spatial pattern caused by the resonance varies periodically in
one horizontal direction. A question naturally arises whether the solutions mentioned above are
stable in the framework of two-dimensional pattern formation problem. Standard way to answer
the question is to examine the resonance on a square or a hexagonal lattice. We focus ourselves
on the pattern formation on the latter lattice.

2. Eigenfunction expansion and center manifold reduction

In this section, we formally derive the amplitude equations governing the weakly nonlinear
evolution of exactly resonating modes on a hexagonal lattice. We assume our physical system
has an infinite extent in the horizontal zy-plane. Consider a situation where three-dimensional
disturbance ¥(z,y, 2,t) is added to the basic field which is homogeneous and isotropic in the
horizontal plane. Here, the vector 1 may be composed of velocity, temperature, magnetic field,
etc. Let us start with the nonlinear PDE governing v¥(z, y, z,t) having the form

250 = LW+ N, ¥, | @

where S and £ denote linear operators involving spatial derivatives, A denotes quadratic non-
linear terms, and u € R? denote control parameters. These S, £, and A are assumed to have
no explicit dependence on either z, y, or t. Explicit form of S,L,and N wﬂl be glven in §4 for
two-layered Rayleigh-Bénard convection.

2.1. Expansions in Fourier series and li_nea.r eigenfunctions -

The linearized equations of (4) subject to appropriate boundary conditions prov1de a linear
eigenvalue problem. We assume the eigenvalues discrete and simple. Denote the j-th eigenvalue
by 0\ and the eigenfunction: belonging to 0} by ¥U). The elgenvalue problem is given by

Ly = o059 @p,2), 321, e

with appropriate bounda.ry conditions for w(J) Let the elgenvalum a(J) be ordered ina descend-
ing manner such that -

Re o > Re 0(2) > Re a(3> > .

We assume that Re o() = 0 and Re 0) < 0 for j > 2. The corresponding eigenfunction
(1) (z,v, z) belonging to o(!) is assumed to be a linear combination of twelve exponential factors

etiker ‘e:l:ikc(“le+32@y)’ :i::kc(——z_lcy)
et2ikez eizik,_.(:;-z+=2@y)’ e;zikc(_—éx—sg—ﬁy).' (6)

We set ’
Ey = eikcz Ey = eik"(_le'H?@y). (7)

All the factors in (6) are expressed in terms of Ey and E; as ET*E? for m,n € Z. Especially,
izkc(—-z—£y) E:FIE':FI '
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We Fourier decompose %) (z,y, z) as

YO = 3" g0 (2) ET B3 (8)

The Fourier coefficient ¢(J ) (2) satisfies the linear eigenvalue problem
Lonn(W)#3 = 0k Smn i, (9)

subject to appropriate boundary conditions for ¢("' ). where

a Ly = Cl'az_..i(mj%)kc,ay—-»ﬁ?nkc,az—'d/dz,

Smn = S‘ax—n'(mf%)kc,ay-»iﬁgnkc,,az—fd/dz'

The adjoint problem corresponding to (9) is defined by
L)1 = 0% Smn i, (10)

with
<¢$gz2u (Lmn(ﬂ) - U(J) S, n)¢$£3;> = ((Lmn (1) - U%Smn)%fﬁmgk J
where (,) denotes an appropriate inner product.
We assume that all the linear eigenvalues U(J )
(5)

longing to omn are orthogonal and complete. Let us now expand ¥(z,y, 2,t) in Fourier series
and linear elgenfunctlons

are simple and the eigenfunctions ¢mn be-

1/}(:1: Y, z,t) = Z E ZAU) )Y (2) EmE" . '(11)
m=—00 n=—00 j=1 -

The reality condition gives A'(_jzn_‘n = fﬁ% where an overbar denotes the complex conjugate.

Substituting (11) into (4) and taking the inner products with the adjoint functlons ¢5ﬁ2,, we
obtam amphtude equatlons for ASnZ,
(12)

l m—k 'n,-l m—k n—l’

AW = 01(%2} () A@ + Z /\(J»P,Q) A(p) A(q)

where : @
wmmmWUxm>.<mM%qu»

omn(W) = 55 G)y 7 “kbm—kn-l 207) )
<¢mn7 Smn¢mn) ) (¢mn, Smn¢mn

2.2. Center manifold reduction:

The center manifold theorem guarantees that the amphtude of stable modes AY), with
(m,n,j§) = (£1,0,1), (0,+1,1), (¥1,F1,1), (£2,0,1), (0,£2,1), (F2,F2,1) is expressed by

; 1 1 (1 “ ‘
AS}Qz = h(J) (A(llo, (()21,145;1%;1, A(ﬂ)m’ A(()i)z’ )q:2) » (13)

See [4]. The function h{l), satisfies hY) n(0) = dh$) n(0) = 0 where dh¥), is the Jacobian derivative

of h¥),. We may expand hs% in terms of AQO’ Agli)l, A(l)

F1F1) A(ilgo, ,(22, and Al %:FZ and truncate
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(13) at the quadratic order in order to derive the cubic amplitude equations. Therefore h,sf,z, is
expressed as p .
i j 1 1
h(f':lZI = Z ’Ykl)kzl]lgAklszl]lz + 0(3)° (14)
k1,k2,l 2
Substituting (14) into (12) for the amplitudes spanning the stable manifold, we have
A(J'u)

() — k1k2lyl2
L i Y ) : (15)
kikz hiz k1+k2,l1+12

Substitution of (15) into (12) for A(ilz,o, (2:1, Agiﬂ, Ag%,m (22, and Agz),,ﬂ yields twelve-
dimensional amplitude equations for themselves. We now simplify the notations by changing
Aﬁ,) — 21, A(()ll) — 22, A(_lz_l — 23, Ag},) — 24, A((,12) — 25, and A(_I%_z — 2¢. The amplitude
equations truncated at the cubic order are obtained as

21 = 0121 + 012223 + P1Z124 + [nulzllz + K.12(|22|2 + |Z3|2)]z1

+[l111|24|2 + paz(|zs® + |26|%)]21 + V1212576 + E1222324 + M1 (222326 + 222325),

24 = 0924 + 827576 + B22? + [k |21]? + kaa(l22]? + |23|%)] 24

+[po1)za]? + p22(|2s]? + |26]2)) 24 + voz1 2273 + €2(2275 + 2326), (16)

We set 0, = a%) and o2 = aé},o). The linear terms 012) = aﬂ,)zl and o2z4 = 05(1))24 are retained

in (16) although we have already assumed that ag) = ag,) = 0 at the very begining of the above
formal analysis. We will change o1 and o2 as bifurcation parameters, later. The remaining

equations for z3, 23, z5, and zg are readily obtained by cyclic changes of the subscripts attached
to z.

3. Steady solutions and their orbital stability

In this section, we assume that the centre manifold reduction has already been carried out
not only up to the cubic order, but up to an arbitrary order of approximation. We first give the
general form of the amplitude equations in the presence of the hexagonal lattice symmetry. We
then analyze the steady solutions of the amplitude equations and their orbital stability with the
aid of the equivariant bifurcation theory. The results of this section are useful when we analyze
the steady solutions and their orbital stability for (16), systematically.

The amplitude equations 2 = g(z, \), g : C® x RZ — CS for

z = (21(t), 22(t), 23(t), 2a(t), z5(t), z6(t)) € C8, X € R? (17)

are generated by the vector fields

g(Z, A) = (gl(zv A)a 92(z1 ’\)v 93(z1 A), 94(z, A)’ !]5(2', A): gﬁ(z’ ’\)) (18)

In the presence of a symmetry group I', the vector field g(z, ) is said to be equivariant
under an action of I if

9(vz) =v9(z) for all yeI' (19)
holds. For the hexagonal lattice symmetry, I' = Dg+T? where Dg is the dihedral group of the

order of six and T is the two-dimensional torus on a plane. For the definition of the semidirect
product, see Golubitsky, Stewart and Schaeffer(7], for example.



The dihedral group Dg is generated by the inversion through the origin

C: Z2—™2
and Dj3, which is generated by the counter-clockwise rotation Ry, /3 by the angle 2r/3
Rynys : (21, 22,23, 24, 25, 26) — (22, 23, 21, 25, 26, 24),
and the reflection o, in a vertical plane
ov: (21, 22,23, 24, 25, 26) — (21,23, 22, 24, %6, 25)-
Therefore, eleven non-trivial elements of Dg send (21, 22, 23, 24, 25, 26) tO
(23,21, 22, %6, 24, %6), (22,23,21,25,26,24), (Z1,%2,723,24,7%5,%),

(23, 21, 22, 26, 24, 25), (22,23,21,55,26, 24), (21,23,22,Z4,25,25),
(22, 21, 23, 25, 24, 26), (23, 22, 21,26, 25, 24), (23, 29,21, 26, 25, 24),
(21,73, 73,24, %6, %5), (%2,71,73,%5,7%4, %)-
The action of T2 C I' is given by
2is

(3 t) 2 = (e 21, € z(s+t)z2’eit23, e85z, e—2z(s+t)z57e2ztz6)

for s,t € [0,27). See [7] for further details.
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(20)

(21)

(22)

(23)

(24)

The general I'-equivariant vector field that satisfies g(yz, A) = vg(z, A) for all v € I is given

by
9 = 9(91, 92, 93, 94, 95, 96)
with

a1 = 91(21, 22, 23, 24, 25, 26), 92 = 91(22, 23, 21, 25, 26, 24), 93 = 91(23, 21, 22, %6, 24, 25),

94 = 94(21, 22, 23, 24, 25, 26), g5 = ga(22, 23, 21, 25,26,24), 96 = 94(23, 21, 22, 26, 24, 25).

Here
91(2) = Piz1 + PaZ124 + P3ZpZ3 + PyZ12526 + Psz22324 + PoZ223%Z6 + Pr2273%5
+Pyzo23%5% + PozaZazazs + ProZazazazs + Pr1Z1Z52s + PiaZ173%,
94(2) = Q124 + Q222 + Q32526 + Quz172%3 + Q52325 + Q6% %
+Qr217223% + Qsz12273%5 + QoZaZ3,
and P; and Q; are functions of the invariant polynomials f(z) which satisfies

f(yz) = f(z) for all yerI

(25)

(26)

(27)

(28)

Taylor expanding the P; and Q; with respect to the elements of the I'-invariant polynomials,
i.e., the Hilbert basis, and A about the origin and retaining the leading order terms enable us
to see that the cubically truncated amplitude equations generated by (25) agrees with (16),
formally. This guarantees that no other terms are possible to be added in (16) at the cubic

order approximation.

We now classify the steady-state solutions of the amplitude equatlons z = g(z,A). We need

to recall some fundamentals which are borrowed from [7].
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Table 2. Branching equations truncated at the cubic order. dim Fix(X) <2.

Label Nomenclature Branching equations

2 Simple Roll o2 + pzlzz =0

3 Simple Hexagon 02 + 82z + (u21 +2u22)x2 = 0

4 Super Roll o1+ By + snz? + pny? =0,
o2y + Pox? + knz?y + p21y® =0

5 Simple Rectangle o2z + 62y2 + (2122 + 2p22y2)z = 0,
02 + 82z + p22x? + (p21 + p22)y® =0

6 Super Hexagon a1 + By + &1z + (k11 + 2m12)22 + (p11 + 2p12 + 11)y?
+(2m +&)zy =0,
a2y + Baa? + 8232 + (k21 + 2K20 + 262)x%y -
+(p21 + 2p22)y3 + 1023 =0

7 Triangle 02z + 82(2? — y?) + (p21 + 2p22)x + (w21 + 2p22)zy?® =0,
02 — 262z + (p21 + 2p22)x2 + (p21 + 2p22)y2 =0

Ifzisa pofnt of CS, the elements of I" which leave z fixed form a subgroup of I" called the
isotropy subgroup or stabilizer X, defined by '

Y,={oc€el: oz==z} (29)
The fixed point subspace of a subgroup X' C I is given by
Fix(X)={2€C%: oz=0 for all o€ X}. - (30)

Points on the same orbit of I, i.e., I'z = {yz : v € I', z € C®}, have conjugate isotropy
subgroups, o

Pz =747 (31)
We thus classify the isotropy subgroups up to conjugacy classes.

Table 1 lists the fixed points of g(z,A) = 0 and the isotropy subgroups of I" acting on CS
together with their fixed point subspaces. In the table,

Sl (0’ 0) : (Zla 22, 23,24, 25, 26) i (Zl, zze—w, Z3ei0, 24, Z5e_2io, z6e2i9)’

Z2(7I', 0) : (Z], 224,23, 244 25, Zﬁ) — (_zla —Z22, 23, 24, 25, zﬁ))
25(0,7) : (21, 22, 23, 24, 25, 26) — (21, —22, —23, 24, 25, %) (32)

There are two primary branches, i.e., type 2 and 3 solutions. The simple roll and simple
hexagonal pattern possess the wavenumber 2k.. Since we assume the generic situation without
degeneracy, neither the rolls with k. nor the hexagons with k. may exist. Four secondary
branches satisfying dim Fix(X) =2 may exist; they are type 4, 5, 6, and 7 solutions. As is
seen from the Table 1, super-rolls are composed of rolls with wavenumber k. and rolls with 2k..
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Likewise, super-hexagons are composed of hexagons with wavenumber k. and hexagons with
2k.. , _ s
The cubic truncation of the branching equations are listed in Table 2 for dim Fix(X) < 2.
For type 7 solution, we set z = z + iy with z,y € R.

Let us now evaluate the orbital stability of the fixed points of Table 1. We compute the
eigenvalues of the Jacobian matrices in terms of the general form of the amplitude equations
generated by the I™-equivariant vector field, z = g(z, \), where z € C% and ¢ : C% x R — C8.

Since the vector field g is I'-equivariant; we have g(yz,A) = ~vg(z,) for all 4 € F The
Jacobian matrix dg about the ﬁxed pomt z = zg thus needs to satlsfy

dg(v20, )y = ydg (2o, /\) . - (33)
Ifye X, Crl,we replace ~ ‘with o €X,,, and we have | |
. dg(zo, Ao = adg(zo, ). A ‘ , (34)

By z;,y; and g;,-gj, we denote the real and the imaginary parts of z; and g; for 1 < j <6:
zj =z +iyj; gj = gj + igj. - (3)

The Jacobian matrix dg(zo, ) is thus 12 x 12 and real. The commutativity relation (34) enables
us to compute the eigenvalues of dg(zg, A) directly for relatively low dimensional Fix(X).

Let v(6) be a smooth curve in I" and v(0) = 1. Since g(2o) = 0, the I'-equivariance 1mphes
that -

| om0 - (9)
Differentiating (36) with respect to 0 and ‘evaluating at 8 = 0 yield h ‘ '

do(zo) oo 20 =0. @)

Equation (37) shows that % lo=o0 - 2o is an eigenvector of dg(zp) belonging to the zero eigenvalue.
Details of the computation of the eigenvalues are omitted but the results for solutions with
dim Fix(X) < 2 are summarized on Table 3. It is obvious from Table 3 that the Hopf bifurcation
may occur on type 4, 5, 6, and 7 solution branches. On type 2 and 3 solution branches, only
steady bifurcations arise.
Table 4 shows the signs of the eigenvalues at the cubic order approximation and elgenvectors
belonging to the eigenvalues for type 2 and 3 solutions. On the type 2 solution branch, type

T 3 4 6

g:ii = 0 and 251 = 0, type 56801ution bifurcatesa at ggz + BZZ —0.

Supercriticality of the type 2 solution is guaranteed if = rs < 0 holds. If 69 2 -0 holds, linear
4

T2
combinations of the four eigenvectors may create type 12, 13, 16, 17, 18, or 19 solut1ons in

principle. e
04y 09} s
Superecriticality of ‘the type 3 solutlon is guaranteed if 624 + 2% < 0 holds.. On the
‘ 4 5

type 3 solution branch, type 7 solutlon bifurcates at g4 = 0, type.H solution bifurcates at

5 Ya
0 0
6—5‘; - a—g‘z = 0, type 6 and 8 solutions may blfurcate at

ggl = 0, and type 11, 12, 14, or 17
1
a91

= 0.
oy
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Note that the orbital stability determined in this paper is with respect to disturbances
supported only by the hexagonal lattice and not by a different lattice like the square or the
rectangular.

4. Application to two-layered Rayleigh-Bénard convection

4.1. Governing equations and numerical methods

In this section, we apply the above analyses to the Rayleigh-Bénard convection composed of
two horizontal fluid layers. They are sandwiched between a top and a bottom horizontal plates
and a horizontal ‘splitter plate’ which is non-deformable, conducting, and thin. The bottom
plate is heated and the top plate is cooled at different but uniform temperatures. Because of
the splitter plate, there is no mechanical coupling between the upper and the lower fluid layers.
The convection of this type was found by Proctor and Jones to have the possibility that the
exact 2:1 resonance takes place between the critical modes. They analyzed the bifurcation in
one-dimensional 2:1 resonance, in detail, based on the cubically truncated equations (3). In the
one-dimensional pattern formation problem, the cubic amplitude equations describing the 2:1
resonance (3) are generic. However, since the linear operators of the problem, S and L, are
self-adjoint, the cubic amplitude equations (16) are not generic for two-dimensional pattern for-
mation problem: the coefficients J; and dz of the quadratic nonlinear terms vanish[11]. In order
to make the cubic equations generic, we need to violate the self-adjointness of the operators. In
this section, we do so by assuming the quadratic density profiles as functions of the temperature.

We take the horizontal co-ordinates z* and y*, and the vertical co-ordinate z* which is
opposite to the direction of the gravity. In what follows, all the asterisked quantities are di-
mensional. The bottom and the top plates are located at z* = 0 and d(1 + D~1!), respectively,
and the splitter plate is located at z* = d. The temperatures on the bottom and the top plates
are maintained at T* = T and T}, respectively. The temperature on the splitter plate is at
™ =Tp.

We attach suffixes 1 and 2 to indicate variables and physical properties in the lower layer
and the upper layer, respectively. The governing equations for the velocities ] 2, the pressures
P2, and the temperatures 77, are given by

D . . )
81) Dt:’ = —V pl — P(()l)g[l _ agl)(Tl — Tm) . agl)(Tl - T;*n)Z]ez + ﬂlA*'l-)‘I,
D . . ) a
(()2)D_tf =-V'p; — p(()2)g[1 - .:1?)(]‘2 -Tn) — a§2)(T2 _ m)2]ez + 2 AT,
D1} e DTo .
.Dt"l‘ = K1A 17, D—tf = KA T;,
V"-'D‘I:O, V*'ﬂ-]‘ézo_ (38)

Here, g is the acceleration due to the gravity, u;2 are the viscous coefficients, ;2 are the
thermal diffusivities, and pgl) and p(()z) are the densities of the fluids at T} = T, and Ty = Tpp,,
respectively. In (38), we assumed that the Bussinesq approximation holds for the upper and the
lower fluids so that the densities only in the buoyancy terms are functions of the temperature.
In the buoyancy terms, agg and a% are thermal expansion coefficients. If agl) = agz) =0, the
linear operators are self-adjoint.

Let us now non-dimensionalize (38) by setting

d2 K1 K
—nk — l-o —
t* = K,_lt, v = E’U], ’l—); = 7’02, T =d

’



z
= —dp{"g / 1 - a(Ty — To)A - 2) — aP(T — Tn)2(1 — 2)%]dz + V=

Tl - ';1. = (Tb - Tm)[(l - Z) + 91($ay,2;t)], Z € [Oa 1]1
Ty — T = (Trn — T})D[(1 — 2) + 02(x, 9, 2;t)], z€[1,1+ D7)

d2

We define non-dimensional parameters by

¥, (1 3 2, (2 3
ay (T — Tin)d ay (T — T3)d v v
Rlpogl(b ) ’ R2 pogl:g t) s P].:_l) P2=_2,
H1K1 D pugko K1 K2
K1 agl)( —Tm) _ agz)(Tm —-T,)D

Clzla C2=—;7 K1=17 K2=D4, €1 = (1) , €2 = (2)

— (T, - T)D(1 - 2) — &2 (Trn — T,)2D*(1 — 2)*]dz + pgz) 2™
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(39)

(40)

Following Proctor and Jones, we assume C; = 1. We further set T = 1 — 2. The disturbance

equations in non-dimensional form are written as

D7 _ .
Pl—l thl = ._PI—IV'IH + R1K16,e, + R1 K1€1(2T6; + Of)ez + A7,
Dy .
Pz‘l D"';z = —P2—1V7T2 + RoKs6se, + RoKoe2(2T62 + Og)ez + ATy,
D6 Do
_D ! — w1 = Ael, th — wo A92,

Here, 171,2 = (ul,z, V1,2, 'w1’2)T.
We impose the boundary conditions

Ti=v=0 at 2=0,1,1+ D7,

6, =0,=0 at z=0,1+ D71

The boundary conditions at z = 1 for the temperature are imposed by

daTy ary
* ___ rx 1 _ 2
n=1, Mg = g
which yield
4. (1) 0
91=R2M92 Gos, ﬂ_Gd_z at z=1.

Eliminating the pressure terms, we obtain the disturbance equations as

0 Ov; auj o . ___6__.__V‘.
(= — P; )(__ — =)= e (@ - V), ay_('v] Juj,
OAw; 7
Pi_l—ﬁ“] — A%w; — R;K;A20; — 2e,-R,~KjA2(Tl 6;)

p- 5?2
l[a a ('UJ V) ] a a (’U] V)UJ A2(UJ V)wJ]+eJRJK A20 )

- (41)

(42)

(43)

(44)
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00; ~
5~ Q65 —w; = —(7- V)b,
V.7 =0, (45)
2 32
where Ay = 22 + = is the horizontal Laplacian.

- Introduce the normal mode
(u_,-, v, Wy, Oj)T = (ﬂj, ’!7_7', 'lf)j, éJ) eat+i(a1:+/3y). (46)
The linear eigenvalue problem thus consists of
Pj"la(iavj — ifu;) — S(iav; — ifu;) =0,
iau; + ifvj + Dw; = 0,
P 'oSw; — S*wj + R;K;7*6; + 2¢;R; K;7*T8; = 0,
00]' - 801 - wj =0 ' (47)

under
uj=vj=wj=Dw;=0; =0 at z2=0, 1+ D7},

Uj =0 =w; = ij = 0, 01 = 002, D01 = GD02 at z=1. (48)

Here, D denotes i
dz

We solved the linear eigenvalue problem (47) and (48) and corresponding adjoint problem
by means of the expansions in Chebyshev polynomials. The boundary conditions at z = 1
are imposed by the tau method. An application of the collocation method yields algebraic
eigenvalue problems. The QZ package of IMSL is used to solve the problems, numerically. First,
we confirmed the accuracy of the resonance conditions which are given in Table 1 of Proctor and
Jones; i.e., Ry = 1401.8, r = Ry/R; = 1.0607, k. = /a2 + #? = 2.9150, and D = 2.0977 for the
linear density profile with agl) = a§2) = 0. In Fig.1, we show the linear neutral curves for two
Prandtl number sets, (P;, P2) = (7,7) and (143.759, 7) with various values of €; and e3. We have
fixed the value of the depth ratio as D = 2.0977 which is the same as the one reported in Proctor
and Jones. The linear neutral stability curves exhibit the exact 2:1 resonance. Two mihima ‘on
the curves having wavenumbers in the ratio 2:1 give exactly the same critical Rayleigh numbers.
The exact resonance for various €; and €, values is not surprising since the resonance has already
existed for €; = e = 0.

All the eigenfunctions and the adjoint functions are normalized such that (1/7,(;7,2,, S'e,b‘,(,’g,' = 1.
After computing o¥), and )\fcll’p,flk,n_, in (12), we evaluated all the coefficients involved in (16)
riumerically both for P, = P’2’= 7 and P; = 143.759 and P, = 7 and tabulated the results in
Table 5 and 6, respectively. In the evaluation, we assumed that the depth ratio D takes the
value 2.0977. From our numerical data, we found that k. ~ 2.9150 gives the 2:1 resonance for
all the cases shown in the tables. In order to obtain the results, we truncated the expansions
in Chebyshev polynomials at the 30-th degree and the expansion in the linear eigenfunctions at
the 20-th.

Since the linear operators involved in our problem for ¢; = €2 = 0 are self-adjoint, the
numerical values of §; and d2 vanish in Tables 5 and 6. We may see how they recover non-
vanishing values when €; and ez deviates from (0,0). Slight increase of the value of €3 causes
significant effect on the non-self-adjointness.
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4.2. Bifurcation diagrams

Based upon the numerical data of Table 5 for € = €2 = 0.1 and Table 6 for ¢; = 0 and
e2 = 0.1, let us examine the bifurcation characteristics of the steady solutions of (16) The
resonance considered is a two-parameter bifurcation problem. In our amplitude equations, two
linear growth rates, o and oy are formally retained although they are assumed to vanish at the
linear criticality. In general, they depend on physical parameters such as Ry, Ry/Ry, Py, P, D,
etc. In the present paper, we regard o1 and o9 as the bifurcation parameters, for simplicity. Let
us set _ : .

01 = €COS, 09 = €sin,

where ¢ lies in [0, 277] The modulus e is set to be 1074, ThlS value is so small that the steady
solutions obtalned may be considered to be local.

In Figs.2 and 3, only the primary and the secondary solution branches are depicted. The bi-
furcation points are shown by the closed circles on the steady solution branches whose dim Fix(Z)<
2. For the stability of each solution branch, see Tables 7 and 8. The stability assignments of the
tables are such that “+” denotes a positive eigenvalues, “—” denotes a negative eigenvalue, “x *”
denotes a pair of conjugate complex eigenvalues whose real parts are positive, “==" denotes
a pair of conjugate complex eigenvalues whose real parts are negatlve, and “0” denotes a zero
eigenvalue forced by the symmetry.

Each entry in Tables 7 and 8 respectively corresponds to the eigenvalues listed in Table 3.
Since the information about the multiplicity of a degenerate eigenvalue is involved in Table.3, we
ignored them in Tables 7 and 8. As the primary solutions, both type 2 and 3 solutions bifurcate
from the trivial solution at ¢ = 0,7, and 27. The type 2 solution exists in 0 < ¢ < 7 while the
type 3 solutions exist in 0 < ¢ < 7 and m < ¢ < 27r. Since we are looking at the local steady
solutions with small norm, another type 3 solution branch with large norm does not appear in the
figures although they do exist for 0 < ¢ < 2w. The existence ranges of these prlmary solutions
are entirely consistent with the existence ranges ‘of rolls and hexagons in pattern formation
problems without resonance (see Fig.1a in Buzano and :Golubitsky, for instance). Because of
the 2:1 resonant interaction, the third branch of the type 3'solutions: cannot be stable in both
figures. The stability of the thlrd branch is given by. “——0— +—” everywhere as far as. (01, 02) is

3

involve one of non—vamshmg I, T2, and z3 where

in the neighborhood of the origin. The positive eigenvalu

991

o,

shows that the eigenvectors belonging to

Ty, T2, T3 € R. :

Let us now discuss about the stability of the primary solutlons and the secondary b1furcat1ons

from them in Fig.2. Type 2 solution is unstable as is listed in Table 7. On the type 2 solution

branch, three bifurcation points exist. At the bifurcation points, at least one eigenvalue needs
; .

. . . 0
to change the sign of its real part. For example, the sign of- 91

0
at which the stability assignment changes from 2a to 2b with tzlliia increase of . By “(7cd)”,
let us denote a bifurcation point at which the stability assignment changes from 7c to 7d, for
example, for later convenience. At bifurcation point (2ab), type 4 solution having a property
2arg(21) —arg(zq) = (2n+1)m, (n = 0,+1, - ) bifurcates. It vanishes at ¢ = 37/2 on the trivial

solution. This corresponds to “S_” of [5] or “M_” of [1] and [10]. At point (2cd), -(?— changes

changes at ¢ ~ 5 x 107°x

its sign and another type 4 solution with 2arg(z;) — arg(z4) = 2nr bifurcates. The latter type
4 solution branch vanishes at ¢ = 7/2 on the trivial solution. It corresponds to “S.” or “M,”.

At bifurcation point (2bc), 993

Dzo vanishes. This eigenvalue is degenerate with multiplicity four
2
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as has been listed in Table 4. At most four solution branches are thus expected to bifurcate; at
this moment, three bifurcating branches are identified, i.e., two type 12 solutions and one type
13 solution.

On the type 3 solution branch, twelve branches bifurcate in total. As is seen from Tables

T

7 and 3, Og1 changes its sign at (3ab) and (3de) while 991
0z, on

(3ef). These eigenvalues are degenerate with multiplicity three. At most three branches are
thus expected to bifurcate at each bifurcation points. Two type 6 solutions and type 12 solution
bifurcate at (3ab) and (3de) whereas type 8, type 11, and type 12 solutions bifurcate at (3bc)
and (3ef). The type 6 solutions are two-dimensional extension of type 4 solutions.

We have identified the primary and the secondary branches and examined the orbital stability
of the type 4 and 6 solutions whose dim Fix(X)= 2. Although we do not involve the detailed
information about the signs of the eigenvalues for secondary solutions with dim Fix(X)> 3, we
need to note that they are orbitally unstable. In summary, only the short segment 6i’ is orbitally
stable.

Figure 3 shows similar bifurcation diagram for P, = 143.759, P, = 7, €¢; = 0, and €2 = 0.1.
For the stability of the primary and the secondary solution branches with dim Fix(X)< 2, see
Table 8. Again, a small segment on the type 6 solution is found to be unstable. All the other
primary and the secondary branches shown in the figure are found to be unstable.

changes its sign at (3bc) and
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Table 1. The orbit representatives and the isotropy subgroups of the fized points
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under Dg+T?

Label Orbit Representative X, Generators of X, Fix(X;) dim Fix(X;)
1 (0,0,0,0,0,0 De+T? Ray/3,6,¢0, S1(8,0), S1(0,6)
/

2 (010;071,0’0) st +Z§ ¢, Cy, Z2(m,0), st 0,6) R{(0,0,0,I,0,0)} 1
zeR

3 (0,0,0,z,z,x) D6+Z§ Rox /3, €, €, Z2(w, 0), Z2(0, =) R{(0,0,0,1,1,1)} 1.
z€ER

4 (x,0,0,y,0,0) S'+72  ¢,cv,51(0,9) R{(1,0,0,0,0,0),(0,0,0,1,0,0)} 2
z,yER

5 (0,0,0,z,y,y) Zé ¢, Cy, Z2(m,0), Z2(0, ) Rr{(0,0,0,1,0,0),(0,0,0,0,1,1)} 2
z=yER

6 (z»z,z,y,y,y) D¢ R"4.’1r/31 C,Cy R{(I)I,110:0’0))(0)():0117111)} 2
z,yER

7 (0,0,0,2,z,2) D3+Z2  Rax/3,Cv, Z2(7,0), Z2(0, 7) C{(0,0,0,1,1,1)} 2
2eC

8 (2,0,0,z,y,) z3 ¢, Cy,Z2(0,7) R{(1,0,0,0,0,0),(0,0,0,1,0,0), 3
z,z=y€eR (0,0,0,0,1,1)}

9 (0,0,0,z,y,2) z3 ¢, Z2(m,0),Z2(0, ™) R{(0,0,0,1,0,0),(0,0,0,0,1,0), 3
z=y=2€R (0,0,0,0,0,1)}

10 (0,0,0,z,y,y) Z3 Cv, Z2(m, 0), Z2(0, 7) R{(0,0,0,1,0,0),(0,0,0,i,0,0), 3
z€C,yeR (0101070v1’1)} )

11 (x1$1m1y)y7y) D3 R21r/37 Cy C{(l?1’1,01010)’(010’071a1’1)} 4
z,yeC

12 (.’Bl »22,22,Y1,Y2 yy2) Z% C,Cy R{(l,0,0,0,0,0),(0,1,1,0,0,0), 4
z1=T2,H1 =y26R (0,0,0,1,0,0),(0,0,0,0,1,1)}

13 (2 10,0,91,92 vy3) Zg c, 22 (01 7") R{(1)010;010)0)1(0,0101110)0)) 4
T, 1=y2=y3€ER (0,0,0,0,1,0),(0,0,0,0,0,1)}

14 (2,0,0,11 )yyy) Zg Cv, Z2(0, ") C{(l’0)0’05070)’(070?071?0’0)7 6
a:=y,z€C (010101011,1)} .

15 (0,0,0,z,y,2) z2 Z2(m,0),Z2(0,w) c{(0,0,0,1,0,0),(0,0,0,0,1,0), 6
z=y=2€C (0,0,0,0,0,1)}

16 (z1,22,T3,%1,¥2,¥3) Z; c R® 6
z1=T2=23,)1=y2=y3€ER

17 (z1,72,22,91,92,¥2) Z2 cv C{(1,0,0,0,0,0),(0,1,1,0,0,0), 8
T1=T2,Y1=Y2 eC (0,0,0,1,0,0),(0,0,0,0,1,1)}

18 (w,0,0,z,9,2) Zo Z2(0,7) C{(1,0,0,0,0,0),(0,0,0,1,0,0), 8
w,x=y=2€C (0,0,0,0,1,0),(0,0,0,0,0,1)}

19 (zl »Z2,X3,Y1,Y2 7y3) {1} 1 ce 12

T1=T2=T3,y1 =Yy2=y3€C




Table 3. Figenvalues of the Jacobian matrices for the primary and the secondary solutions.

Label Eigenvalues Multiplicity
897 895
1 Zzr Bae 6,6
897 8g' 8g%
2 o0, 34,54, Za 1,1,1,1
a9t Bgr Ogr 8g%
E% + Bz¢> Bzs 3;% 2,2
a9
T 4
897 897 .09
3 b;:. +2 Ty 3 4 1,1
"~ B9y  9g%
0, T4 - z5 2,2
897 gt
z1’ on 3,3
a9t | g}
4 0, 5h 44 1,1
8gr agr Bg' agr agr agr Bgr agr
Bzs ~ Bzs’ Bas + Bze’ Dus ~ Das’ Das T Bas 2,2.2,2
. agr Bg'
AP ADAD $a0 =tr 4, AN =det 4, A= 5 52 1,1
z) x4
897 8gi 04 . ,0si O9f _ ef ‘
5 ﬁt' Wt’ v4'+25—§" Ts _3;% 1,1,1,1
89> dgi
0, 72, 32 2,2,2
: o dg% 9095 )
AP A A =t 4, AN =det 4, A= | J2t 500, 1,1
' ‘ Bzy Oes T B2 '
dg} 89} 8gt 59‘
6 0 5% "B tBn "B 2,2
: . * 897 897 g7 9%
‘ +2 +2
A D a0 s n 4= (EH EH)
oz +2§:_:': - Oxzg +25¥:
b | o8¢ e +28y‘
XOMONO + 40 < B, XONO —ae, = | 00 BT ) 4y
1 V2 Ve vSs
. 997 _ 897 Bg¢7 _ 9.
A/(6) \(6); \1(6) +A'2'(6? =tr G, AN @ =getc,c= | 52 ot ont ogt | 22
T] T2 Te 1z,
. 89T 8g7 . 8gE 8¢t ' ’
T 0 o~ T t s Bus 22
897 897
ADATAD £ AM = tr A, AN =det 4, A= g;l %:i 33
z) 1
A 897  dg% (I
+2 +2
'\'1(7)1'\;»(7);'\'1(7) + A’;’) =tr B, A,1(7)’\'2(7) =det B, B= ( Bgt +28:? a:f + 28g!is 1,1
T4 z5 V4 Vs
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Table 4. Eigenvalues, signs of the eigenvalues at the cubic order approximation,

‘and eigenvectors of the Jacobian matrices for the primary solutions.

Label Eigenvalues Signs of Eigenvalues Eigenvectors

2 0 (0,0,0,0,0,0,0,0,0,1,0,0)T
8 r
=t sgn [o1 — ozp11/p2 + frg] (1,0,0,0,0,0,0,0,0,0,0,0)T
g :
5%}' sgn [‘71 - 02#11/#21 - ﬂlz] (010)01010301170:0v0)010)T '
= sgn (1] (0,0,0,1,0,0,0,0,0,0,0,0)
8gr | Ogf ‘ . . T T
3o + 32 sgn (o2 ~ ozp2z/p21 + Ga1] (0,0,0,0,1,1,0,0,0,0,0,0)7, (0,0,0,0,0,0,0,0,0,0,1,-1)
5ok — 3% sgn [on — oapzn/pa — Go] (0,0,0,0,1,-1,0,0,0,0,0,0)7, (0,0,0,0,0,0,0,0,0,0,1,1)T
a:; sgn (‘71 - 02#12/#21] (0,l,O,O,O,O,O,O,O,O,O,O)T, (0’0,1’0)0’0’0,0’0,0’0’0)7',

(0,0,0,0,0,0,0,1,0,0,0,0)T, (0,0,0,0,0,0,0,0,1,0,0,0)T

EEA g% ) o T

3 A 4254 sgn[~(202 + 627)) (0,0,0,1,1,1,0,0,0,0,0,0)
3gu sgn[—62z] (0,0,0,0,0,0,0,0,0,1,1,1)T
0 (0,0,0,0,0,0,0,0,0,1,-1,0)T, (0,0,0,0,0,0,0,0,0,0,-1,1)
g_‘::' - g%‘;" Sgn[az + (2”'21 + u22)22] (0,0,0,-1,O,I,O,O,O,O,O,O)T, (0,0,0,-1,1,0,0,0,0,0,0,0)7'
ai: sgnloy + A1z + (u11 + 2m2 + 11)2?]  (1,0,0,0,0,0,0,0,0,0,0,0)7, (0,1,0,0,0,0,0,0,0,0,0,0)7,

(0,0,1,0,0,0,0,0,0,0,0,0)T

Bgi

sgnjo1 — 1z + (u11 + 2p12 — v1)7?)

<
P

(070)0)0101011)01010)070)T H (0)01010)0)070’170)0)070)T)
(0,0,0,0,0,0,0,0,1,0,0,0)T

’

Table 5.. Coefficients of (16) for P, =P, =7, G = D“Rgb/Rll, and D = 2.0977.
The éritical wavenumbers for all the cases may be well approrimated by 2.915.
. P . | i

e1fez  0.0/0.0  01/0.1  0.2/0.2

0.3/0.3  0.4/04  0.5/0.5
1.5835  1.7973  2.0368
1088.7  1012.8 946.6

Ry /Ry 1.0607 1.2180 1.3914
R 1401.8 = 1279.5 1176.6

b/ 0.50946 0.53540 0.55531

6 0.0 - 1.9082 3.4347

K11 -325.50 -321.93 -316.60
K12 -456.28 -454.81 -449.96

£11 0.36106 0.25892 0.18239
p12  -0.037628 -0.071596  -0.098955

12 -1.0323 -0.88120 -0.77393
&1 0.65685 1.4755 2.2238
m 5.2134 3.8575 2.9835
B2 -45.994 -44.728 -43.581
&2 0.0 0.073079 0.13487
K21 25.755 22.779 20.027
K22 56.318 52.918 50.167

K21 -0.56231 -0.43583 -0.34656
H22 -0.69764 -0.53816 -0.42567
v2 -761.24 -717.87 -683.52
&2 11.075 11.255 11.271

0.58181 . 0.60477  0.63582
4.7715 6.0458 7.1835
-312.64 -305.09 -303.55
-445.48  -436.82 -433.41
0.12669 0.078423  0.043310
-0.11534  -0.12961  -0.14012
-0.69090 -0.62795  -0.57056
2.8963 = 3.6405 4.3342
2.3632 2.0204 1.7320
-42.351 -41.315 -40.006
0.18834  0.23816  0.27820
17.180 14.987 12.636
47.372 44.955 42.596
-0.27948  -0.22371  -0.18640
-0.34125 -0.27150  -0.22446
-645.30  -610.08 -570.57
11.486 11.609 11.645
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ble 6. Coefficients of (16) for P, =1, G=1, D = 2.0977, and P, = Ry /R, X D*
The critical wavenumbers for all the cases may be well approzimat by 2.915.

e1/ez  00/00 00/0.1 00/02 00/0.3 00/04 0.0/05
Ry/Ry 10607 111234 11692 12321 1.3021 13804
R, 1401.8 14008 1399.7 13986 13972 13958

p  -1.5978 -1.5598 -1.5164 -1.4661 -1.4064 -1.3370
& 0.0 0.31158 0.64348 1.0199  1.4455 1.9311
K11 -319.66 -315.87 -311.79 -307.36 -302.54 -297.27
k12 -771.86 -791.31 -809.36 -824.62 -838.78 -844.40
p11 -26.736  -29.365 -32.340 -35.707 -39.531 -43.929
p1z -143.74 -160.03 -178.36 -199.44 -223.55 -251.95
v -211.99 -237.02 -265.09 -207.54 -334.76 -379.45
& -19277  -205.77 -217.74 -229.10 -239.03 -246.97
m -507.01 -566.82 -631.31 -703.72 -7 84.94 -879.81
B2 152.01 166.49 182.28 199.63 218.81  240.17
62 0.0 1.6948 3.5814 5.6928  8.0661 10.767
K21 351.80 502.46 678.13 88441 1129.0 1420.8
K22 72843 8763.7 10562 12787 15553  19058.
pz1  -252.58 -261.98 -272.64 -284.59 -297.86 -312.95
p22  -309.28 -319.17  -330.24 -342.38 -355.55 -370.12
ve 47825 58205 70887 86592 106410 131410
&  5738.9 6953.5 8454.0 10329 12698 15705

1800

1600

1400

1

1200

T

1000

800

Fig.1. Linear neutral stability curves. D = 2.0977.



Table 7. Stability of type 2—6 solution branches.
P, =P, =7,G = D*Ry/R,, and D = 2.0977.

Line Segment  Stablility Line Segment  Stability

2a O++-+-—-+ 6a 0+ %% —+—+
2b 0+——+—-+ 6b 0+ %% —+++
2c 0O+——+—- [ 0 — %% —+ % %
2d 0—-——+-- 6d 0 — % % —f ==
3a -+0+++ 6e 0— %% ——==
3b —+0+—+ 6a’ O+ —+++++
3c -+0+ -~ 6b’ O+++++++
3d +—-0——— 6¢’ 0 — % % % % % %
3e + -0 —4- 6d’ 0 — % % == % %
3f +—-0—-++ 6e’ 0— %% ————
4a 0+ ++ —+ * * 6f’ 0 — %% ———+4
4b O+ + 4+ —— % * 6g’ 0——4—-——+
4c 0—++—— %% 6f 0—==—+—+
4d 0——+——*x 6g 0—-==—+—-—
4e 0——+——== 6h 0+ ==—+==
af 0————+== 6i 0+ ==—+*x*
4g 0—— -4+ == 6j 0+ ==4+ *=x
4h 04+ —-—++== 6h’ 0——+—-=--—
4i 0+ + —++== 6i’ 0————=—

6k’ 0+ ==%% ==

61 04 ==++ **

6m’ 0+==++—+

6n’ 0O+—-—+++—+

3e
///"’ ‘\\\\
6a—-e 6a'—g’
8§ —
3a 2 o db. 4o, dd ge 30 34 “*74f, 4g, 4h, 4i
++ 0.5 -+ 1 - 15 += 2
oln

Fig.2. Bifurcation diagram for Table 5, €; = €2 = 0.1.



Table 8. Stability of type 2— 6 solution branches.
P,=7,G=1,D=2.0977, and P, = Ry/R; x D* x P;.

Line Segment  Stablility Line Segment - Stability
2a 0++-—+—+ 6a 0+ 4+ -+ ++
2b 0—+-+—+ 6b 0—++4+—-—+++
2c 0O-+—+-—- 6¢c 0 —==—+++
2d 0--—-+-- 6a’ 0O+++++++
3a -4+0+++ 6b’ O+++—+++
3b - +0++— 6c’ 0—++—+++
3¢ -+0+—— 6d’ 0—==—+++
3d +-0—— 6d 0—==—-—+—
3e +-0—-—+ 6e 0+==—+4——
3f +-0—++ 6f O+++—-+—
4a O+++——=*= 6e’ 0————~———
4b O—4+4+——=*=* 6f’ 0————4—
4c Q—4———%x | . 6g O+==—4—
4d 0—4———== . 6h’ O+++—-+—
4e 0———+4++==
4f 04— —++==
1 0+ —++t+==
8
13 ~ 12
2 >
11 !
.3 z 3e >
’ 6a’~-d’ = 3¢ 6e’~h’ /, 3f
8 8
6a—c 6d—f
4cad l2d/” 3d - 4g
4b | A
4a 4e
. “— ) !
0 A 0.5 -+ T 15 +=
: oln :

Fig.3. Bifurcation diagram for Table 6, ¢; = 0, e2 = 0.1.



