-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

LARGE TIME BEHAVIOR FOR COMPRESSIBLE EULER
Title EQUATIONS WITH DAMPING AND VACUUM
(Mathematical Analysis in Fluid and Gas Dynamics)

Author(s) | Huang, Feimin

Citation O00O0O0DbO0D0OOd (2002), 1247: 57-66

Issue Date | 2002-01

URL http://hdl.handle.net/2433/41736

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39176962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

gooo0ooOooooo 12470 20020 57-66

LARGE TIME BEHAVIOR FOR COMPRESSIBLE
EULER EQUATIONS WITH DAMPING AND VACUUM

FEIMIN HUANG

Department of Mathematics, Graduate
School of Sciences, Osaka University, Japan

ABSTRACT. We introduce some new results of [17,19-20] on the asymptotic behavior
of compressible isentropic flow through porous medium with vacuum. The model
system is the compressible Euler equation with frictional damping. As t — oo, the
density is conjectured to obey to the well-known porous medium equation and the
momentum is expected to be formulated by Darcy’s law. Here we give a definite
answer to this conjecture without any assumptions on smallness or regularity for the
initial data. We proved that the L> weak entropy solutions to the Cauchy problem
of damped Euler equations converge strongly in LP with decay rates to the self similar
solutions of porous medium equation. Furtherinore, we prove the density function
tends to the Barenblatt’s solution of porous medium equatiou while the momentum
is described by the Darcy’s law provided that the initial mass is finite.

1. Introduction.

We study the asymptotic behavior of compressible Bentmpl( flow through porous
media when vacuum occurs. As t — oc, the density is conjectured to obey to the
well-known porous medium equation and the momentum is expected to be formu-
lated by Darcy’s law. Although, many contributions are made for the small smooth
solutions or piecewise smooth Riemann solutlons away from vacuum since the pi-
oneer work of Nishida [34], some key problems in this topic remain open. Among
them, the large time asymptotic behavior for the solutions with vacuum has been
a long-standing open problem. The main difficulties come from that such problem
involves three mechanism: nonlinear convection, lower order dissipation of damping
and the resonance from vacuum. Since any result on this problem will help us to
understand the interaction of the effects of these three mechanism, the evolution
of vacuum boundary, singularity development and other complicated phenomena
caused by vacuum, it is of mathematical significance and physical importance, in
view of the strong physical background of vacuum. Besides, this study may present
useful information for the design of effective numerical schemes to capture the vac-
uum boundary. Here we shall introduce recent works of Marcarti. Pan and myself
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in [17-20] which will give a complete answer to this problem. In fact, we showed
that the L™ weak entropy solutions with vacuum selected by the physical entropy-
flux pairs, converge strongly in L? with decay rates to the self similarity solutions
of porous medium equation, determined by the end-states of the initial data and
initial mass. New approaches are developed to deal with the nonlinear convection,
nonlinear coupling and the singularity near vacuum based on the conservation of
mass, the structure of the convection and the existence of mechanical energy func-
tion. This approach seems remarkable since we do not need smallness assumptions
on the solutions.

We now formulate our results. Consider the compressible Euler equation with
frictional damping

pt+ (pu)y =0
2 (1.1)
(pu)s + (pu* + P(p))z = —apu.
with the following initial data
p(x.0) = po(x) > 0, m(x,0) = mg(x). (1.2)

Such a system occurs in the mathematical modelling of compressible flow though
porous medium. Here p, u and P denote respectively the density. velocity, and pres-
sure, m = pu is the momentum and the constant a > 0 models friction. Assuming
the flow is polytropic perfect gas. then P(p) = Pyp?. 1 < v < 3. with Py a positive
constant. and ~ the adiabatic gas exponent. Without loss of generality, a and Py
are normalized to be 1 throughout this paper.

(1.1) is hyperbolic with two characteristic speeds Ay = u — /P'(p) and Az =
u++/P'(p). Furthermore. (1.1) is strictly hyperbolic at the point away from vacuum
where two characteristics coincide. Thus, this simple system involves three mecha-
nisms: nonlinear convection, lower order dissipation of damping and the resonance
due to vacuum. The interaction of these mechanisms lead to the big difference
in qualitative behaviors of solutions from those of strictly hyperbolic conservation
laws. For instance, the long time behavior of the solutions to Cauchy problem for
strictly hyperbolic conservation laws were known to be the corresponding Riemann
solutions, while one should expect the nonlinear diffusive phenomena in the large
time behavior of solutions to (1.1) (1.2).

In fact, in the applications. Darcy’s law is used to approximate the momentum
equation in system (1.1). and thus one obtains

{ Pt = P(P);L-;,;, (1-3)
m = —P(p)x-

Where the second equation is the famous Darcy’s law and the first equation is the
well-known porous medium equation. So. it is natural to expect some relationship
between system (1.1) and system (1.3). Actually, we have the following conjecture.
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Conjecture. Ast — oc. the system (1.1) is equivalent to the system (1.3).

In the case away from vacuum, system (1.1) can be transferred to the p-system
with damping by changing to the Lagrangian coordinates; see [smoller]. The con-
jecture has been justified by Hsiao and Liu [10, 11] for small smooth solutions away
from vacuum based on the energy estimates for derivatives. Since then, this prob-
lem attracts considerable attentions; see [9], [12], [13], [27], [32-34], [37] and [39)].
However, all of these results are away from vacuum and/or require small smooth
initial data. For more references on the p-system with damping, we refer to 4],
[14], [15], [24] and [41].

When a vacuum occurs in the solution. the difficulty of the problem is greatly
increased. The main difficulties come from the interaction of nonlinear convection,
lower order dissipation of damping and the resonance due to vacuum. It is known
that the nonlinearity is the reason for shock formation in finite time in a hyper-
bolic system. For hyperbolic conservation laws, the self-similarity is an important
feature in constructing fundamental Riemann solutions and in describing the large
time behaviors of solutions. The damping presents weak dissipation, it prevents
the formation of singularity if the data is small and smooth. However, it breaks the
self-similarity of the system. This is crucial for the large solutions. Another effects
of difficulties is due to the resonance near vacuum which develop a new singularity.
In fact, Liu and Yang [25. 26] observed that the local smooth solutions of (1.1) blow
up in finite time be fore shock formation. This implies the moving of the interface
between the vacuum and the gas. Due to this new singularity. it is very difficult
to obtain the solutions with any degree of regularity. This makes (1.1) difficult to
understand analytically and makes the construction of effective numerical methods
for computing solutions a highly non-trivial problem. Indeed, the only global weak
solutions are constructed in L> space by using the method of compensated com-
pactness; see Ding, Chen and Luo [6] for 1 < v < % and Pan and myself [18] for
1 < < 3. Thus, to study the large time behavior of solution of (1.1)-(1.2) with
vacuum, it is suitable to consider the L>° weak solution.

Definition 1. We call (p.m)(x.t) € L>* an entropy weak solution of (1.1)-(1.2).
if it holds, for any non-negative test function ¢ € D(Ri). that
Jiso(por +moy) dadt + [ po(x)(z,0) d = 0.
Jfisolmoe + (-'-';'; + P(p))¢. — m@] dxdt + [o mo(x)p(x.0) dz =0, (1.4)
fft>0(7)€¢t + et — pulo) dudt + /R Ne(x,0)d(x.0) dr > 0.

Here, the entropy- flux pair (1. q.) s associating with mechanical energy:

{ e = 20+ (1.5)

ge = 3pu + ,Y—z—lp'yu.

As the compensated compactness theory does not give any information on the
regularity of the solutions. the methods for the case away from vacuum are not
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applicable here. Recently, some essential progress are made by Pan and myself.
In [18], the authors followed the rescaling argument due to Serre and Hsiao [40)
and obtained the first justification to the conjecture for vacuum case. It showed
that the density in the L> weak entropy solutions of (1.1) (1.2) converge to the
similarity solution of porous medium equation along the level curve of the diffusive
similarity profiles provided that one of the initial end-states is nonzero. The long
time behavior of the momentum is not known however. This is far from satisfactory.
Here we introduce new technique based on the conservation of mass and mechanical
entropy analysis to prove this conjecture. We showed that the L>° weak entropy
solutions with vacuum converge strongly in L?(R) with decay rates to the similarity
solution of the porous medium equation determined uniquely by the end-states and
the mass distribution of the initial data. '

Let us explain the basic ideas. Two main difficulties are the lack of regularity and
the singularity near vacuum. Our ideas are based on the nature of the system: the
conservation of mass, the structure of the pressure law, the dissipation of damping
and the existence of a convex entropy (the mechanical energy). We want to explore
these features to control the singularity and nonlinearity. Our first observation is
that the mechanical energy will give a uniform estimate for the solutions (p, m).
However, this estimate is not useful in the proof of the long time behavior. We thus
construct the proper functions by expanding the entropy around the self similar
solutions (p.mm) of Porous Media equations. this might give the estimate for the
difference (p— p.m—m). In order to obtain the large time convergence, higher order
estimates are necessary. One may perform the energy estimates for the derivatives
if the solutions are smooth. However. our solutions are rather rough. It is possible
to introduce anti-derivative y(z.t) for (p — p)(x.t). Thus, our entropy estimate
becomes the derivatives estimates for y. Furthermore, the equation of y is wave
equation with source term. Thus. the normal energy method will give some kind
of estimate on y and its derivatives. Coupling these two estimates in a clever way,
the uniform estimates for both y and its derivatives are possible. However, the life
is not so easy. The singularity near vacuum makes our goal much further to reach.
In order to control the singularity near vacuum, we explore the structure of the
convection and found some useful inequality near vacuum. With the help of these
inequality, the careful analysis on our two estimates gives the desired estimates.
Then a weighted entropy estimates will give the decay rates. Our proof is somehow
tricky and technical, this is due to the difficulties of the problem. Our argument
becomes neat and simple when it was applied to the case away from vacuum.

Since (1.1) is hyperbolic. the entropy estimates is much more nature than the
parabolic type energy estimate used in [10]. One may compare our proof with the
proof by Liu and Hsiao {10] for smooth small solutions away from vacuum. In
[10], the estimates were obtained by normal parabolic type energy method for wave
equations. To weaken and decouple the nonlinearity, smallness and the third order
estimates are necessary in order to close the arguments. One may check that such
a method is not applicable for our case. The nonlinear terms in convection can not
be controlled without higher order derivative estimates. Here, we succeed to close
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our argument in first order estimates for large rough solutions. This is one of the
remarkable advantages of our approach.

2. Main theorems.
There are three subcases:
1). p+ >0,p_ > 0;
2). prp- =0, max{p,. p }> 0; A
3). p— = py =0 and [ po(a)de = M > 0.

Let us ﬁrst consider the case 1). Let us denote p tho nonlinear wave of the first
equatlon of (1.3) with boundary conditions

p(Ex) = ps. py > 0.

It is known that there exists a unique similarity solution p(n).n = \/t—:_—l with the

boundary condition p(n) = py. as n — +c.
On the other hand. we define a constant xg by the following equation

¢ : .
/ (po(x) = pa + xo))dx = my — m_. (2.1)
e ‘
It is obvious that p( \'/t‘—l) is the similarity solution of (1.3),. i.e. the following
holds 5 = P(p) o
t = I xx L
{ n=re (2.2
pli=o = pla + xo). -
Let . ‘
m = —P(p),. (2.3)

We shall compare the solution (p.m) of (1.1) with initial condition (1.2) to the
functions g+ p(a.t).m + m (. t). where the functions plr.t).m(r.t) are defined

pla.t) = (my —m_)e (), (2.4
{ m(x.t) =m_e 4+ (my —m_)e /_I 0(&)dE, A)
here 6(x) is a smooth function with compact support such that
/ O(x)dr = 1.
Let. i - U )
v { yla.t) = [Z__p(&.t) — p(& + xo. 1) — pE.1)dE. (2.5)
__ z(a.t) = m(a t) —mla + 2o t) — (. t). '
Define R
{ Yo = [*. po(&) — & + xo) — P& 0)dE. (2.6)
z(at) = my(r) — m(r + o) — m(r.0). '

Then we have the following results
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Theroem 1 (see [19]). Suppose that yo(x) € H!. po(xr) — p(x + x0) — p(,0).
mo(z) —m(z.0) € LEZNL>. then there exists a global weak entropy solution of (1.1)
such that

/ v +yi+ yidx + / / v+ yidxdt < C (2.7)
—oC 0 —OC
/ |lye|? + ye|Pde < C(A+)7%, 2 < p < oc. (2.8)
—oC

where a < % and the constant C > 0 only depends on the initial data. Furthermore.
if p_ = p+. then

oC
/ ly2|? + |yePdr < C(1+1)71, 2<p < x. (2.9)

—oC

Remark 1.

(1) Theorem 1 implies that the weak entropy solution p(x.t) converges strongly in
LP(R) towards the nonlinear diffusive profile p as t — oc when p_,py > 0.
Furthermore. theorem 1 also infers the strong convergence m(x,t) to m. while
the results of [18] only show the weak convergence of m(x,t).

(2) Theorem 1 claims the uniqueness of the asymptotic behavior for the solutions to
(1.1). if the initial data has the same end-states. Hence. the asymptotic behavior
of the solutions to (1.1) are uniquely determined by the end-states of initial data.

Now we consider the case 2). we have the following stability theorem.

Theorem 2 (see [20]). Suppose that yo(r) € H', yu(r.0).y(x,0) € L2NL>=.
then there is a positive constant C independent of time such that. for anyt > 0, it
holds

t
e (- O + e DI + / lya - r)ITHL, dr
0 (2.10)

¢
+/ ||yt(-.'r)||2 dr <C.
0

Remark 2. Theorem 2 implies that the weak entropy solution p(z,t) converges
strongly in L7*1(R) towards the nonlinear diffusive profile p as t — oo when
p_py = 0 and max{p_.p+} > 0. It would be interest to prove the decay rates
for this case.

Now we consider the case 3) which is an important open problem. This case
has particular interest since the asymptotic behavior is expected to be the famous
Barenblatt’s solution of porous media equation. We give a definite answer to this
expectation when 1155 < v < 14+ V2. We first give some properties of Barenblatt’s
solution.

By the results of [1]. the solution of

{ P = Pl (2.11
p(—1.xr) = Mé(x). M > 0. 11)
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should take the form
pla.t) = (t+1)" 7 {(A — Be2),} 5. (2.12)

with € = 2(t + 1)~ 7+, (f)+ = max{0. f}, B = 57—’(7%1) and A determined by
&
2ATH=D B4 / (cos )3T df = M. (2.13)
Jo

p is a weak solution to (2.11) such that

/ ~ pdr =M, (2.14)
and
p=0.if |¢] > +\/A/B. (2.15)

Hence, for any finite time T > 0, j has compact support. This is the properties of
finite speed of propagation for porous media equation. Furthermore, the derivatives
of p is not continuous across the interface between the gas and vacuum. This is
because the porous media equation is parabolic away from vacuum and is not at .
vacuum. For the definition of the weak solution to (2.11). we refer to (1], [2] and
[38].

Kamin proved in [38] that (2.11) admits at most one solution. Here, we addressed
the initial data at t = —1 to avoid the singularity at ¢ = 0. Thus, we have the
following lemmas from (2.11)-(2.15). ‘ ~

Lemma 2.1. If M is finite. then there is one and only one solution p(x,t) to
(2.11). Furthermore. the follows hold.

(1) p(z.t) is continuous on R.

(2) There is a number b = (—3)5 > 0. such that p(z,t) > 0 if |z| < bt7*T and
p(x,t) = 0 if |z| > bt7+T.

(3) p(x,t) is smooth if |x| < bt 7+ .

In terms of the explicit form of 5. it is easy to check the following estimates. ..

Lemma 2.2. For p defined in (2.12) and t > 0. we have

Al S C(1+1)~ 7+, |
'(ﬁ7—1)37| SC(1+IL)_737§ (ﬁ"r‘"l)t| SC(I—Ff)_“/—z-ET, (216)
(P72l S CL+ )71 ()] < C1+ 1)~ 557,




ana ) . L
I~ p2dr < C(141t)" >+

[ pde <CL+ t)"‘zl—{
[ (N2 de <CO+ £)” 55T

St et (2.17)
72 dr < C(1+t) >+

.

oo (P
J2 ()3 de £ CQA+ t)” ST
| e drcen T

Theorem 3 (see [17]). Suppose po(r) € LY(R). and

M = / po(r) d.

o=

Let (p.m) be an L> entropy weak solution of the Cauchy problem (1.1)-( 1.2).
satisfying the following estuinates

0 < p(a.t) < C. |m(x.t)] < Cp(x.1). (2.18)

and let p be the Barenblatt’s solution of (1.3 ) with mass M and m = —P(p)x. Then

AR, < C(L+ )T
{ Al ( ) (2.19)

1Al < G +1)77.

Definey = — [©__(p— p)(r.t) dr. Ifye L*(R). then there é:zrglst positive constants
k1= 111111{61—21)7. 7—;—1} ky = Hlill{z:’:;_—;,lj?_r. 1} and C such that for any £ > 0.

{ (p— P B2 S CA+)MFif L <y <2 -(éﬁ)

l(p = D). D7, < CQA+H)TR*if v > 2. -

Furthermore.

|_

k> olif B8 <y <2
k2>j,TI-.if2_<_"/<1+\/§.

2
I+
b

(2:21)

J

Remark 3. (1) Condition (2.16) is fulfilled of the solutions are in the physical
region initially. The invariant region theory verifies (2.16). _

(2) Since Barenblatt's solution p decays itself. it is necessary to compare the decay
rate of p with that of p—p. (2.21) shows that lp—pllL: decays fast than ||pl| L2 when
1+2_\/5 <~ <2and|p- pllL- decays fast than ||p||L» when 2 <~ <1+ V2. It is
noted that % € (H’-Zﬁl + V/2). Thus Theorem 3 states that any L>. entropy weak
solutions of (1.1) (1.2) satisfying the conditions wn Theorem. 3 must converge to the
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related Barenblatt’s solution of (1.3 ) with the same mass when ~ € (1+2__\/51 +2).
Although there is not uniqueness for the solutions. our results indicated the unique
asymptotic profile determined by the initial mass. ' - '
(3) It would be interest to prove that there exists some constant p such that
lo— pllLe decays fast than ||p|| s when v € (1. 1+2\/5) and v € (1+ /2, ).
(4) The decay rates in Theorem 3 seefn not to be optimal. it would be interest to
find the optimal decay rates. ' '
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