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Remarks on a New Existence
Theorem for Generalized Vector
Equilibrium Problems
and its Applications

 El Mostafa Kalmoun! Hassan Riahi

Cadi Ayyad University
Faculty of Science Semlalia
Department of Mathematics

B.P. 2390, Marrakech-40000, Morocco

Tamaki Tanaka

Graduate School of Science and Technology
Niigata University
Niigata 950-2181, Japan

We consider a generalized vector equilibrium problem, which is the fol-
lowing set-valued vector version of Ky Fan’s minimax inequality:

Find T € C such as to satisfy p(z,y) £ K(z) forallye C, (GVEP)

where

e X and E are topological vector spaces,

e ( is a nonempty closed convex subset of X,
o ©:C x C — 2F is a set-valued map, and

e K is a set-valued map from C to E.

. *The research of the first author is supported by the Matsumae International Founda-
tion during his stay at Niigata University.
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Using a particular case of the extended version of Fan-KKM theorem [6,
Theorem 2.1}, we can formulate the following general existence theorem for
(GV EP) in topological vector spaces.

First, we need to recall the following definitions. Let ¢ : C x C — 2F
and L : C — 2P be two other set-valued maps, and denote by F(C) the set
of all finite subsets of C.

Definition 1. We say that ¢ is diagonally quasi convez in its first argument
relatively to L, in short L-diagonally quasi convez in z, if for any A in F(C)
and any y in co(A), we have ¥(A,y) € L(y).

Definition 2. We say that ¢ is K-transfer semicontinuous in y if for any
(z,y) € C x X with p(z,y) C K(y), there exist an element ' € C and an
open V C X containing y such that p(z',v) C K(v) forallve V.

Theorem 1. ([7, Theorem 2.1]) Suppose that
(A0) $(=,y) € L(y) = ¢(=,y) € K(y) Vz,y € C;

(A1) v is L-diagonally quasi-conver in z;
(A2) ¢ is K-transfer semicontinuous in y;

(A3) there is a nonempty compact subset B in X such that for each A €
F(C) there is a compact convex By C X containing A such that, for
every y € B4 \ B, there ezists ¢ € By N C with

y €intx {vE X :¢Y(z,v) C L(v)}.

Then there ezists § € B such that o(z,¥) € K(y) forallz € C.

Theorem 1 generalizes [2, Theorem 2.1}, which is proved by means of a
Fan-Browder fixed point theorem - an immediate consequence of the Fan-
KKM theorem. As we will mention in the ’Assumptions analysis’ subsection,
our hypotheses are more general than those used in [2]. Besides, the scalar
version of this result extends [10, Theorem 4] (we take C4 = co(AU R) N X
where R is the convex compact which contains C in [10, Theorem 4, (4iii)]).
Other particular cases are [1, Theorem 2], [12, Theorem 2.1], [13, Theorem
2.11}, {11, Theorem 1], [8, Corollary 2.4], [9, Lemma 2.1] and [3, Theorem
2]. The origin of this kind of results goes back to Ky Fan [5]. His classical
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minimax inequality can be deduced from our result by setting E = R, K(z) =
R} and ¢(z,y) = ¥(z,y) = f(z,y) — supf(z,z) for all z,y € C.
zeC

Let us turn to Theorem 1 and analyze its requirements by presenting
different situations where assumptions (A0)-(A3) hold true. Let (P(y)),cc a
family of proper convex closed cones on E with int P(y) # @ for all y € C.

e Pseudomonotonicity

Remark 1. (A0) holds provided one of the following statements is
satisfied. '

(a) p =9 and K = L.

(b)) X = C, K(y) = —L(y) = —int P(y), ¥(z,y) = ¢(y,z) for all
z,y € C, and ¢ 1s Pz-pseudqmonotone, that 1s,

p(z,y) € int P(z) = ¢(y,z) € —int P(z) Vz,y € C.
e Convexity. |
Remark 2. (A1) holds provided that, for everyy € C, one has either

(a) ¥(y,y) € L(y), and
(b) the set {x € C : ¢(z,y) C L(y)} is convez,

(i) L(y) = —int P(y) and P(y) is w-pointed !,
(i) $(y,y) C P(y), and

(111) v is left P,-quasiconvez, that is, for all z,,x4,y € C and all ) €
[0,1], one has either

Y(z1,9) CY(Az1 + (1 — N)z2,y) + Ply)

or

P(z2,y) C P(Az1 + (1 — A)z2,y) + P(y).

'v e Continuity

1A cone P is w-pointed if P N —int P = 0.
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Remark 3. (A2) holds provided that one of the following statements
is satisfied.

(a) ¢ is (transfer) u.s.c in y with compact values and if K has an
open graph.
(b) ¢ is (transfer) u.s.ciny and K(z) = O for allz € C, where O is

an open subset of E.

(c) For each z € C, the set {y € X : p(z,y) € K(y)} is closed in C.

e Coercivity.

Remark 4. (A3) holds if one of the following statements 1s satisfied.

(a) C is compact.

(b) There is =g € C such that P(zo,.) is K-compact.

(¢c) There is a nonempty compact subset B in C such that for each
y € C \ B there ezists ¢ € BN C such that ¥(z,y) C L(y)-

(d) There is a nonempty compact subset B of C and a compact convez
subset B' € C such that for each y € C\ B there ezists z € B'NC
with

y € int{v € X : ¢(z,v) C L(v)}.

Besides, when the classical assumption (c) of Remark 3 1s satisfied,
(A8) holds provided that

(e) there is a nonempty compact subset B in X such that for each
A € F(C) there is a compact convez By C X containing A such
that, for every y € C \ B, there ezists £ € B4 N C with o(z,y) C

K(y).

Applications

a) Generalized vector variational like-inequalities

Let us consider a set-valued operator T from C into L(X,E), and a
bifunction n from C to itself. We write for Il C L(X, E) and z € C, (II,z) =
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{{(m,z) : # € II}, where (m,z) denotes the evaluation of the linear mapping
7 at = which is supposed to be continuous on L(X, E) x X2.

The generalized vector variational inequality problem (GVV LIP) takes
the following form:

Find 7 € C such that ,(T%,n(y,z)) € —int P(T) Vy € C.
Thus (GVV LIP) is a particular case of (GVEP) if we take

o(z,y) = {(t,n(y,z)) : t € Tz}
For the reader’s convenience, we recall the following definitions.

Definition 3. 1) T is said to be n-pseudomonotone if, for all z,y € C,

(Tz,n(y,z)) £ —int P(z) = (Ty,n(y,z)) £ —int P(z).

2) T is said to be V-hemicontinuous if for any z,y € C and t €]0,1] T(tz+
(1—-t)y) = T(y) ast — 0, (i.e. for any z, € T(tz + (1 — t)y) there exists
z € Ty such that for any a € C, (z;,a) = (2,a) ast — 0, ).

It has to be observed that when T is single-valued, we recover the hemi-
continuity used in [4]. if p(z,y) = z — y for all z,y € C, n is dropped from
the definition of pseudomonotonicity.

The linearization lemma plays a significant role in variational inequalities.
Chen [4] extended this lemma to the single-valued vector case. For our need in
this subsection, we state it in the set-valued case by using standard Minty’s
argument. Consider the following problem, which may be seen as a dual

problem of (GVVLIP),
Find 7 € C such that (Ty,n(y,z)) € —int P(z) Vy € C. (GVVLIP*)

Lemma 1. Suppose that n(-,z) is affine and n(z,z) = 0 for each z €
C. If T is n-pseudomonotone and V-hemicontinuous then (GVVLIP) and
(GVV LIP%) are equivalent.

As an application of Theorem 1, we are now in position to formulate the
following existence result for (GVV LIP). '

2 A typical situation when X is a reflexive Banach and E is a Banach
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Theorem 2. Suppose that

(i) the mapping int P(-) has an open graph in C x L(X, E);

(ii) for each z € C, n(-,z) is affine, n(z,-) is continuous and n(z,z) = 0;
(11i) T is compact valued, n-pseudomonotone and V-hemicontinuous;

(iv) there is a nonempty compact subset B in C such that for each A €
F(C) there is a compact convez B4y C C containing A such that, for
every y € B4 \ B, there ezists ¢ € B4 N C with

y € intg {v € C : (Tv,n(z,v)) C —int P(v)}.

Then (GVV LIP) has at least one solution, which is in B.

Proof. Set ‘P(z’y) = (Tzaq(z’y))a ¢(m,y) = (Ty,ﬂ(z,y» and K(z) =
—int P(z) for all z,y € C. We can show that the assumptions of Theorem 1

are satisfied; see the proof of Theorem 4.1 in [7]. Therefore, from Theorem
1, there exists T € B such that

(Ty,n(y,z)) £ —int P(z) Vy € C.

Hence (GVV LIPx) has a solution in B, which completes the proof of the
theorem according to Lemma 1. "

b) Vector complementarity problems

A natural extension of the classical nonlinear complementarity problem,
(CP) for short, is considered as follows. Let T be a single-valued operator
from C, which is supposed to be a convex closed cone, to L(X,E). The
vector complementarity problem considered in this subsequent, (VCP) for
short, is to find Z € C such that

(T(%),%) ¢ int P(Z), and (T(T),y) ¢ —int P(T) for all y € C.

This problem collapses to (CP) when E =R and P(z) =R, for all z € C.

By means of vector variational inequalities, we can formulate the following
existence theorem for (VCP). '

Theorem 3. Suppose that
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(i) the set-valued map int P(-) has an open graph in C x L(X,E);
(i) T is pseudomonotone and hemicontinuous;

(iv) there is a nonempty compact subset B in C such that for each A €
F(C) there is a compact conver By C C containing A such that, for
every y € B4 \ B, there exists x € B4 N C with

~y€intc{ve C:(Tv,z—v) € —int P(v)}.

Then (VCP) has at least one solution, which is in B.

Proof. 1t is clear that all the assumptions of Theorem 2 are satisfied with
n(z,y) =z — y for all T,y € C. Therefore there exists Z € B such that

(Tz,z — 5)) ¢ —int P(z) Vz € C. (1)

Since C is a convex cone, then setting in (1), z = 0 and z2=y+7T for an
arbitrary y € C, we get respectively

(Tz,7)) ¢ int P(%) and (TZ,y)) ¢ —int P(%).

Hence we conclude that 7 is also a solution to (VC P) ]

c) Vector optimization

Here, to convey an idea about the use of vector variational-like inequalities
in vector optimization which involves smooth vector mappings, we prove the
existence of solutions to weak vector optimization problems, (WVOP) for
short, by cons1der1ng the concept of invexity. Let us state the problem as
follows ‘

Find Z € C such that ¢(y) — $(z) ¢ —int Pforally € C, (WVOP)
where ¢ : C — E is a given vector-valued function and P is a giveh convex

cone in E.

Let n: O xC - X be a given functlon, and denote by V¢> the Fréchet
derivative of ¢ once the latter is assumed to be Fréchet differentiable.
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Theorem 4. Suppose that P is a convez cone in E with int P # 0, and let
é: C — E be a Fréchet differentiable mapping. Assume that

(1) (Vcb(zgn(y,w)) ¢ —int P implies (V(y),n(y,z)) ¢ —int P for all
z,y € C;

(i) ¢ is P-invez with respect to 1, that is,
#(y) — #(2) — (Vé(z),n(y,z)) € P Vz,y € C.

(111) V¢ is hemicontinuous;
(w) for each z € C, 1(.,z) is affine, 1(z,.) is continuous and n(z,z) =0;

(v) there is a compact subset B in C such that for every finite subset A inC
there is a compact convez C4 C X containing A such as to satisfy, for
everyy € C\B, there ezists z € C4NC with (Vé(z),n(z,y)) € —int P.

Then (WVOP) has at least one solution.

Proof. First, by virtue of Theorem 2 with T := V¢, we get

(V¢(5),'7(y,5)> ¢ —intP Vy € C.

Then the P-invexity of ¢ allows us to conclude. [
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