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The Cowling—Price theorem for semisimple Lie groups
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Department of Mathematics Gradunate School of Science,
Hiroshima University

JEXK - ¥F LA ER (Masaaki Eguchi)
Faculty of Integrated Arts and Sciences, Hiroshima University
kR KB EAE (Keisaku Kumahara)
The University of the Air

BiEXK% /g @ (Shin Koizumi)

Faculty of Economy, Management and Information sciences

1. Introduction

The mathematical uncertainty principle, roughly speaking, states that
a nonzero function and its Fourier transform cannot both be sharply
localized. First of all, in the case of Euclidean space, G. H. Hardy
showed that if a measurable function f on R satisfies |f(z)| < Ce~%** and
|/ (y)| £ Ce*’ and ab > 1/4, then f = 0 (a.e.). Here we use the Fourier
transform defined by f(y) = (1/v27) [ f(z)eV~1*¥dz. M. G. Cowling
and J. F. Price [?] generalized Hardy’s theorem as follows. Suppose that
1 £ p,q < oo and one of them is finite. If a measurable function f on R
satisfies || exp{az?}f(2)||Lr(r) < o0 and || exp{by*} f (W)l Lar) < o0 and
ab > 1/4, then f = 0 (a.e.). The case where p=gq = 0o and ab > 1/4is
covered by Hardy’s theorem. S. C. Bagchi and S. K. Ray [?] showed that
if ab > 1/4, then Hardy’s theorem on R is equivalent to the Cowling-Price
theorem.

Some generalizations of Hardy’s theorem and the Cowling—Price theo-
rem to various homegeneous spaces were obtained (e.g. (?], ?], [?], [?] and
[?]). In these papers, the theorems were proved by using the estimates of
matrix elements of representations and the Phragmén-Lindel6f theorem.



The purpose of this paper is to prove an analogue of the Cowling—Price
theorem for semisimple Lie groups. On the other hand, J. Sengupta [11]
proved the Cowling-Price theorem on Riemannian symmetric spaces, by
using the argument that the Fourier transform is decomposed into the
composition of the Radon transform and the Euclidean Fourier transform.
We consider the Helgason—Fourier transform as the Fourier transform on
homogeneous vector bundles over Riemannian symmetric spaces. By us-
ing a similar argument to [11], we get the Cowling—Price theorem for the
vector bundles. Form this result and the estimate of the Plancherel mea-
sures, we obtain the Cowling-Price theorem for semisimple Lie groups.

2. Notaion and preminaries .

- The standard symbols Z, R and C shall be used for the sets of the
integers, the real numbers and the complex numbers, respectively. For
z € C, Rz and Sz denote its real and complex part, respectively. If U
is a manifold, then we denote by C(U) the set of continuous complex
valued functions on U and by C§°(U) the set of compactly supported
smooth functions on U. If S C U and f is a function on U, then f s
denotes the restriction of f to S. If V is a vector space over R, Vg, V*
and V¢ denote its complexification, its real dual and its complex dual,
respectively. For a Lie group L, L denotes the set of equivalence classes
of irreducible unitary representations of L. As usual, we use lower case
German letters to denote the corresponding Lie algebras. ‘

If H is a complex separable Hilbert space, B(H) denotes the Banach
space comprised of all bounded operators on A with opérator norm Il loo-
For T € B(H) and 1 < p < oo, we indicate the p-th norm by ||T|,, that
is, [|T|l, = (tr(T*T)P/?)/, T* being the adjoint operator of T. For a
complex separable Hilbert space # and a o-finite measure space (X , 1),
we denote by LP(X,B(#)) the noncommutative LP-space relative to the
gage (L*(X, B(H)), L*(X, B(#))). | o

~Let G be a connected semisimple Lie group with finite 'vcentre, K
a maximal compact subgroup of G and G/K the associated Rieman-
nian symmetric spacé of noncompact type. Let G = KAN be an Iwa-
sawa decomposition. Each g € G can be uniquely decomposed as g =
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k(g) exp(H(g))n(g). We denote by 6 the Cartan involution fixing the el-
ements in K. Let g = £+ p be the Cartan decomposition of g defined by
0. Denote by d the real rank of G. Let A be the set of restricted roots,
A* the set of all positive restricted roots and p the half the sum of the
elements in At. Denote by a, the positive Weyl chamber in a and set
A; = expa;. Then G = KCl(A4)K is a Cartan decomposition, where
Cl(A,) denotes the closure of A, in A. Let dk be the Haar measure on
K normalized as [ Kdk=1. We normalize the Lebesgue measure dH on
a by multiplying (2w)~%/2. We write for dg the Haar measure on G given
by dg = D(exp H)dk,dkydH, where D(exp H) = [],ca+ |sinh o H)|™)
and m(c) denotes the multiplicity of a. Let M be the centralizer of A
in K. Then P = MAN is a minimal parabolic subgroup of G. The
Killing form of g induces an inner product (-,-) on a and a*. We write
|H| = (H, H)"/2. Let W be the restricted Weyl group. When g = kexp X
for k € K and X € p, weset a(g) = | X|. For v € a*, there exists a unique
element H, € a such that v(H) = (H,H,) for all H € a. For H € a and
r € Rsg, weset B(H,r)={X €a||X - H|<r}.

For 7 € K , we denote by M (7) the subset of M contained in the
restriction of 7 to M. For 6,7 € K, we write M(8,7) = M(8) N M(r).
We denote the degree of 7 by d(7) and the character of 7 by x,. We set
& = d(1)X,. We set for k,ky, k2 € K, g € G that

’G) = {f € I7(G) l frx = f} ,

L?(G,T)

{F € I?(G,End(V;)) l F(gk) = T(k)“F(g)},

I*(G,V,) = {f:G—)V,

104

[ 15 dg <o, s(gk) = T(k)"lf(g)}
G

LP(G,7,7) = {F € L?(G,End(V;)) . F(kigks) = 'r(kz)_lF(g)'r(kl)‘l}.

Let D.(G) (resp. D(G,T), D(G,V;), D(G,T,T)) be the subset of L7(G)
(resp. L?(G,T), L?(G,V;), L*(G,T,T)) comprised of all compactly sup-
ported C®-functions. For f € D,(G), we set Fy(g) = [ f(gk)7(k)dk.
Then the mapping f — Fy is a topological isomorphism of D,(G) onto
D(G,7) and its inverse is the mapping F — d(7)TrF, (F € D(G, 7)) (cf.
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8], p. 397). For f € LP(G,V,) and v € V;, we define f ® v by

<(f‘® v)(g9), w)v, = (w,v)y. f(g), for all we V,.

For f € L?(G,V,) and v € V,, we have

(1) If ®vllzea,ry = [IfllLeevyllvllvs s

and thus f®v € LP(G, 7). For F1, F; € D(G, 1), we define the convolution
Fy x F5 by

2) (Fy % Fy)(g) = /G Fy(z™g) Fy(a)da.

This definition is arranged so that F; * Fy € D(G, 7). And we also define
the convolution for ¥ € D(G, 7,7) and f € D(G,V;) by

3) (¥4 1)) = [ Vo) f(x)ds.

G

It is easy to show that ¥ * (f ®v) = (¥ * f) ® v.

3. The vector-valued Helgason—Fourier transform

Let (0, H,) be a unitary representation of M and v € /—1la*. We
denote by 7, , the representation induced from c ® v ® 1 of P to G. The
representation space H" is

> = {p € L (K, H,) | p(km) = o(m)o(k), m € M, k € K},
with the norm
lilpers = [ Nip(k)IE,
K
The action of 7,, on H’" is given by

(Tow(9)p) (k) = e~ HAHETE) (15(g1E)).

It is known that (7,,, H%") is unitary. We set

HY ={p e H™ | pxk & = o}



For P € Homp(V;, H,), v € V;, we write ppgy(k) = P(7(k)~'v). Then
the mapping P ® v — ©pgy 18 a bijection of Homps(Vr, H;) ® V; onto
Ho¥. For f € L}(Q), its Fourier transform on G is defined by

(4) Tow(f) = /G £(9)man(9)dg.

R. Camporesi defined the Helgason-Fourier transform of f € L'(G,V;)
by

(5) F(k,v) = /G A7 (g7 1K) " (9)d,

for k € K and v € af. The Plancherel formula for f € D(G, V;) is given
by ' ‘

£ 22wy =D cpr Y
-

1
d_,

/a,* /I{<T5'f(k,1/'+\/—_—1U1),Tc;,f(k,l/' — V=1 )y, po (V' )dv' dk,

(see [2], p. 286). The relation between (4) and (5) is given by the following
proposition.

Proposition 3.1. If f € L1(G) and T ® v € Homp(V;, H;) ® V;, then
we have

(Wa,u(f)(pT&))(k) = T(fv(k) V))a

where f,(g) = Fy(g)v.
Proof. We have
TGk = T( [ e rua k) [ flok)rit) ki)
= [ H@)e T T (g k) g

= ‘/c;'f(g)ﬂa,u(g)(pT®v(k)dg
(ﬂ'a,u(f)(pT®v)(k)' O
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Let f € LY(G,V;). We have

flew) = [ et a(g)) 5 (hg)dg
G
= ///e_("+”)H(k1_lnmi“_l)'r(fc(kfln"la_l))_1f(kank1)dadndk1
AJnJk | , |
// e“(”+p)H(d—l)f(kan)dadn ="/ e”H(“)/ e"H(“)f(kan)dnda.
AJN A N

For k € K and a € A, we set

(6) .Rf(k,a) =/'e”H(“)_f(kan)dn.

N

We call Rf the (vector-valued) Radon transform of f. And also, define
the Fourier transform of f € L}(K x A) on A by

JA

Faflh) = [ e 5(k,a)da

for k € K. , o o

Let 0 € M(,7). In the following, we write m, = [7|p ¢ o] and
ne = [0lm 1 o). Let {F,;}j=12,.m, and {Qs;}j=12..n, be bases of
Hom(V;, H,) and Homy,(Vs, H,), respectively, such that

Te(PyiPyg) = d(0)d5,  Tr(QS Qo) = d(0)05.

Foro € M(6,7), weset T, ;; = Q5 ;Foi € Homp (V7, V). Let {vete=1,2, a(r)
and {we}s=12,.. 4@ be orthonormal bases of V; and Vj, respectively.

Lemma’ 3.2. ‘_ The set

{_1_T0' i
(o)

is an orthonormal basis of Hom s (V;, V).

JGM(daT)a Z=1,2, y Mg, ]:1a2a 7na}

Proof. For k =1,2,--- ,m, z‘;md£=1,2,---v,n¢,,z we have‘ .

(To,i5s To k) Homp (v Vs) = Tr(T7 keTos5) = dlo )C?ikfsje- “
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In a similar fashion,

(T4 Ty ko) Homae (v, vs) = 0
for y1,0 € M(68,7) such that p % 0. For T € Homp(Vr, Vs), we obtain

ny me
T=1,Tly,= Y. >, 2. > QQuiTP;iPus.

ueM(8) 7=1 geM(r) =1

Let

(o) Hom s (Vs Vo) (ui) = {ngQwTP il o,

Te HomM(VT,V,;)} )

Then we have

me Nu

(7) Homp(Vi,Va)= > . S (i Homu (Ve Vo) -

ceM(r) peM(8) =1 J=1

From Q,;TF;; € Homys(H,, H,), we have (o)) Homas (Vz, Vs)(ugy = 0 for
u % o. Since Qy;TP;; € Endy(H,), there exists ¢(T) € C such that
Qo ;TP;; = c(T)lg,. Therefore,

Q;JQU,jTPa'*,iPO’,i = C(T)Ta,ij-
Especially, we have
Q;,anJTa,ij P, ;,iP o = T

Hence ¢(T,:) = 1 and (,,,,-)HomM(VT,V,;)(,, ) = CT,;. From (7), we
obtain

Z Z Z Z (”’i)HomM (V.,-, V&)(a,j)

oceM(t) oeM(8) i=1 j=1

Mg No

= > 22 T

oeM(s,r) =1 5=1

Homp (V7, Vs)

I

Let 6,7 € K. For T € Homp(V;, Vs), we set

E(T,V,g)zf 6(k)TT(K,(g—1k))_le-(""'P)H(g_lk)dk'
K



The function E(T, v, g) is so called the Eisenstein integral. In case & *x
f = f, R. Camporesi gave the expression of the Helgason —Fourier trans-
form f(k, v) in terms of the Eisenstein integrals.

Proposition 3.3. ([2]) If@; *K f =f, for f € D(G,V_T), then

f(k,l/): Z za:za O"I,J /E C”J7Vg )dg

aeM(a,T) =1 j=1

We define the Helgason-Fourier transform F(k,v) € End(V;) of F.€
D(G,T) by

Bk, v) = / e~ HIHTR L (5(7 k)" F(g)dg.
G

From the definition of F for F' € D(G, 7), we have F(k,v)v = (/F;)/)(k, V)
for v e V,. For ¥ € D(G, 1,7), we have

Uky) = [ ooy (x(97') ™ (o) dg
. G
= / e("“’)(bg“)lll(kan)dadn
AN
= / e P8 ) (an)dadnr (k) 1.
AN
Therefore, we define the Fourier transform of ¥ € D(G, 7,7) by
b)) = / e +0)1989) G (g dadn,
AN

Remark. R. Camporesi (cf. [2]) defined the Fourier transform of
¥ e D(G,r,7) by

b,)(P) =Y 3—(%5 [ Tx(¥(0) B(P;, .1, 9))doPus,

for P € Homy (V,, H,). Each v € V, can be decomposed into

= Y Z iPov € Y Homy(V;, H,) ® H,.

aEM('r) i=1 O'EM(T)

109
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Accordingly, for v € V;, the relation between Ve End(V;) and ¥, is

dpw = ) }: T, (0)(Pyg)v

UGM(T) =1

mMe Mo

- Y Y P /’I‘r(\Il(gE( P,;,v,9))dgPs .

ceM(r) =1 J=1

We have the following proposition.

Proposition 3.4. If f € D(G,V;) and v € V;, then the Helgason-
Fourier transform of f(g) ® v € D(G, ) is given by

(fg) ® v)(k,v) = f(k,v) ®v.

From the definition of ¥ for ¥ € D(G, T, T), we have
Proposition 3.5. If¥ € D(G,7,T), then we have P(k,v) = ()7 (k)L

The next proposition can be proved by using a similar argument to the
K -biinvariant case.

Proposition 3.6. Let ¥ € D(G,r,7) and F' € D(G, 7). Then we have
(P * F)(k v) =V()F(k,v).
From Proposition 3.6, we have

Corollary 3.7. IfV € D(G,7,7) and f € D(G,V;), then

(@ * f)(k,v) = ¥ () f(k, v).

4. The Cowling—-Price theorem for vector-valued Helgason—
Fourier transform

In this section, we shall prove the Cowling-Price theorem for a vector-
valued function over G/K. The following is the Cowling-Price theorem
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for a vector-valued function on R™.

Lemma 4.1. Leta,b>0,1< p,q < oo, min(p,q) < 0o and V a finite-
dimensional vector space. Let f be a measurable V-valued function on
R™ such that

2 :
e F@llzrmn) < 00, 1169 F(1) aoqmny < .

Ifab 2 1/4, then f =0 (a.e.).
Proof. For v € V', we set h(z) = (f(x),v)y. Then

® @ = T @dn vy = h)

We have’ }
/ |e°” h(z)[Pdz = / = |( f(z), v)v [Pdx
\ n - R” . ; P :
= / e || £ ()% |[v][5 dz < oo.
Rn

Similarly, from (8), we have ||€**A(y)||La(r~) < co. Applying the Cowling-
Price theorem to A, we obtain h =0 (a.e.). Then f =0 (a.e.). O

Let 1 € C°(A) be a non-negative W-invariant function with supp(y o
exp) & B(0,1) and Ja, ¥(exp H)D(exp H)dH = 1. For Hear,e>0
and ky, ky € K, we set |

U, (ki exp Hky) = e *D(exp H) " D(exp e " H)tp(expe " H)r (k1o)™Y

and )
Ye(exp H) = e™%D(exp H) ' D(exp e_lff)z/)(éxb e 'H).

From the smoothness of ¥,, ¥, is Well-déﬁned on G. }Ar;d élso, we set‘

‘?De(exP H)D(exp H)dH = 1.
Jay ,

The next lemma, is given by the same way to [13].
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Lemma 4.2. (cf. [13)) Iffe€ L?(G,V;) and 1< p < oo, then

lim 1% * f — flleec.ve) =0

We have the following Cowling—Price theorem for V;-valued functions.

Theorem 4.3. Let1 < p,q < oo and a,b,C > 0. Let f be a measur-
able V,-valued function such that

2 2z
€279 F()lrve) < Co 1€ F(k, V)| oqrexv=ta* v iwyavary < C

where pu(v) is a positive function on v/—1a* of polynomial order. If ab >
1/4, then f =0 (a.e.).

Proof. At first, by using a similar argument of J. Sengupta [11], we
have f = 0.
Secondly, we shall show f = 0 (a.e.). If 1 £ p',¢' < oo and rl =

p~1+ ¢! —121, then the Young inequality implies that

1 .
JT—)IIUHVTII‘I’ * fllerevy = WY * Fipmllreirm
é "\P"LPI(G,T,‘T)”F(fyu)”Lq,(G,T,T)
1 .
a(_,r)'”u”v-r“‘I’”LP'(G,T,T)”f"L‘i'(G,V-,-)’

for u € V, and ¥ € D(G, ,7). From the assumption, we have ¥ x f €
LY(G,V,) N L*G,V,). Corollary 3.7 implies ¥ x f = ¥f = 0. Then we
obtain ¥ % f = 0. As shown in Lemma 4.2, we can compose {¥_ }.o such
that '

gi_fjtl) ¥ * f — fllzra,v) = 0.

Therefore, this proves f =0 (a.e.). [

5. The Cowling—Price theorem for semisimple Lie groups

We need the following lemma, which can be proved by a slight 'modiﬁ—
cation of [3].
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Lemma 5.1. Let 1 < p £ o0, s>OandA>O Letg be an entire
function on C such that ‘

l9(z + V=1y)|

(/R !9($)|P|$|sdx> 1/p

Then g is a constant function on C. Moreover, if p < oo then g = 0.

HA

Ae”2, (z,y € R),

HA

A.

Let u(o,v) be the Harish-Chandra p-function. We need an analogous
one for general y-functions.

Lemma 5.2. Leto e M andv € v —1la*. Then there exist B, B, > 0,
t 2 0 and s € R such that

o) [ (1 | e N e
Buie) s T1 |36 (1+ 22) < Bantorv).
Proof. In [15, p. 47] there exist az,b,,(z' = 1 ),‘cj,dji,(j =
1,--+,n) such that
0)/4(p, @) — a)T(=(v,0)/4(p, @) — c;)
OLL 1<I_<[m a)/4(p, &) — b)T'(—(v, ) /4(p, @) — d;)

1<J<n

In [14, p. 96], Trombi proved that a; and c; must be real numbers. By
considering zeros of the Plancherel measure (cf. [10], p. 536) and the
property of I'(2), b; and d; must be real numbers. Let mg and ng be
numbers of the case b; # 0 and d; # 0, respectively. In a similar fashion
to [7], we can find By, By > 0 such that

(v, @) t( (v, @) )3
Bl“U7V g 1+ §B2/J'0-7V)7
S Qv B G s (
where
t = m+n-—mg—mny
S = ~mai+m0bi—ncj+n0dj-—m—n+m0+n0. d

Finally, we shall prove the Cowling—Price theorem for G.
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Theorem 5.3. Let1l < p,q £ oo and a,b,C,C, > 0. Let f be a
measurable function on G such that

ao 2
lle (g)zf(g)”LP(G) <C, ”ebM ﬂa,V(f)”Lq(\/—_la',B(’Ha)) < Cs.
If ab > 1/4, then f =0 (a.e.).

Proof. 1t is sufficient to prove the case when f = & g f *x &,. First
assumption and f, € L}(G,V;) imply that

(9) | 1279 £,(9)| ey < C.

From f € L1(G) and Proposition 3.1, we have

(Mo (£)Ppew) (k) = P(fo(k,V))

for P ® v € Homp(V;, H;) ® V7. We also have 7r¢,,,,(f)<pp®v € HYY =
Homy (Vs, H,) ® V5. Therefore, we obtain

fv(k, V) = ]-V,-fv(k, V) = Z Z P:,-,:Pa,ifv(k: V)
a‘GM(&,r) =1 ‘
Mo No d(d)

= Z Z Z Z(WO’,V(f)(pPg,i®‘U7 (an,j®‘lUl>H°'v” P:,'iQa,j (5(k)_1we),

oceM(8,7) i=1 j=1 £=1
where P;;Q,,; € Homp(V5,V;). And we see that

' 1 . . d(o)
ler, ;eull” = (©r, @v; <PP.,,,-®u>1(w = M(v1v>Vr’]}(Po,jPU;j) = d—(ﬁllvll.%,

(cf. [2], p. 281). Hence we obtain

”fv (k’ V) ”Lq(Kx\/_—'Ta' Ve u(v)dkdv)
mes No d(‘s)

A

< N S S men ()R 00 P00 e o (v=Tar wiwyan)
c€EM(6,7) 1=1 j=1 £=1 '
X || Py Qo (6(k) " we) || Lo(k,v2)
Mo No d(‘s) d(o‘)
< 2 22 D Imen Dyt mouorn) gy agyye e
ceM(s,r) =1 j=1 £=1 :
3 d(o)d()

MmN ||v]lv, [|7o,0 (£) ||Lq‘(\/——1a* JB(H),u(v)dv)-
- d(7)
oceM(d,7) :



(v,a) [
4(p, a)

z(”?ﬂ) = H

acAt

Lemma 5.2, the second assumptlon and the Holder 1nequahty imply that

(10)

[l 7, (, V)| (=10 W atopriia) < OO

where 'y > 0 and 0 < b, < b such that ab; > 1/4. Applying (9) and (10)
to Theorem 4.3 and Lemma 5.1, we conclude f =0 (ae.). O
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